metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis(1,10-phenanthroline)zinc(II) tetra­chlorido(1,10-phenan­throline)bis­­muthate(III) monohydrate

aCollege of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: wxchai_cm@yahoo.com.cn

(Received 19 November 2010; accepted 15 December 2010; online 24 December 2010)

In the crystal structure of the title monohydrate salt, [ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2O, the ionic components are linked into three-dimensional supra­molecular channels by five pairs of C—H⋯Cl hydrogen bonds and ππ stacking inter­actions with an inter­planar distance of 3.643 (2) Å. The solvent water mol­ecules are lodged in the channels.

Related literature

For related bis­muth compounds, see: James et al. (2000[James, S. C., Lawson, Y. G., Norman, N. C., Orpen, A. G. & Quayle, M. J. (2000). Acta Cryst. C56, 427-429.]); Jarraya et al. (1995[Jarraya, S., Ben Hassen, R., Daoud, A. & Jouini, T. (1995). Acta Cryst. C51, 2537-2538.]); Bowmaker et al. (1998[Bowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 317-324.]). For a related [Zn(phen)2Cl]+ coordinated cation structure, see: Yu & Zhang (2006[Yu, C.-H. & Zhang, R.-C. (2006). Acta Cryst. E62, m1758-m1759.]). For supra­molecular systems containing halometallate groups as their main component, see: Mitzi & Brock (2001[Mitzi, D. B. & Brock, P. (2001). Inorg. Chem. 40, 2096-2104.]); Zhu et al. (2003[Zhu, X.-H., Mercier, N., Frere, P., Blanchard, P., Roncali, J., Allain, M., Pasquier, C. & Riou, A. (2003). Inorg. Chem. 42, 5330-5339.]); Papavassiliou et al. (1995[Papavassiliou, G. C., Koutselas, I. B., Terzis, A. & Raptopolou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566-1569.]); Pohl et al. (1994[Pohl, S., Peter, M., Haase, D. & Saak, W. (1994). Z. Naturforsch. Teil B, 49, 741-746.]); Carmalt et al. (1995[Carmalt, C. J., Farrugia, L. J. & Norman, N. C. (1995). Z. Anorg. Allg. Chem. 621, 47-56.]). For ππ inter­actions, see: Chandrasekhar et al. (2006[Chandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847-8861.]). For hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86-89. Oxford University Press.]).

[Scheme 1]

.

Experimental

Crystal data
  • [ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2O

  • Mr = 1010.25

  • Triclinic, [P \overline 1]

  • a = 9.748 (2) Å

  • b = 13.694 (4) Å

  • c = 14.249 (4) Å

  • α = 86.848 (7)°

  • β = 74.660 (5)°

  • γ = 80.692 (7)°

  • V = 1810.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.93 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.200, Tmax = 0.269

  • 13923 measured reflections

  • 8140 independent reflections

  • 7571 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.03

  • 8140 reflections

  • 451 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −1.03 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl3i 0.93 2.82 3.588 (4) 141
C6—H6⋯Cl4ii 0.93 2.82 3.637 (4) 147
C10—H10⋯Cl5iii 0.93 2.80 3.707 (4) 164
C15—H15⋯Cl1iv 0.93 2.69 3.579 (4) 160
C25—H25⋯Cl2v 0.93 2.80 3.506 (4) 134
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z; (iii) x-1, y, z; (iv) -x+2, -y+1, -z; (v) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Supramolecular compounds are attractting much interest due to their importance for the study of biological systems and their potential applications in material research, as sensors, gas storage and catalysis, or as optoelectronic and magnetic devices. Recently, many supramolecular systems containing halometallate groups as their main component have been reported (Mitzi et al., 2001; Zhu et al., 2003; Papavassiliou et al., 1995; Pohl et al., 1994; Carmalt et al., 1995). Here, we present one of those supramolecular compounds [Zn(phen)2Cl][Bi(phen)Cl4].H2O (I), composed of an halometallate main anionic group ( [Bi(phen)Cl4]- , phen = C12H8N2 = 1,10-phenanthroline), a coordinated cation containing a transition-metal, ( [Zn(phen)2Cl]+ ) and a solvent H2O.

In compound (I), the Bi atom is located in a distorted octahedral enviroment of four chlorine atoms and two nitrogen atoms from the phen ligand. In this BiN2Cl4 octahedron, the Bi1—N1 = 2.505 (3) Å, Bi1—N2 = 2.474 (3) Å, Bi1—Cl1 = 2.7272 (10) Å, Bi1—Cl2 = 2.6708 (10) Å, Bi1—Cl3 = 2.7841 (12) Å, Bi1—Cl4 = 2.5853 (11) Å. All bond lengths are within commonly accepted values in the literature (James et al., 2000; Jarraya et al., 1995). The crystal structure of the [Bi(phen)I4]- salt has already been determined (Bowmaker et al., 1998), and the Bi atom therein is coordinated in a similar distorted octahedron by two N atoms and four I atoms.

The axial and equatorial I—Bi—I bond angles therein are 165.81 (3) and 111.59 (5)° as compared to Cl3—Bi1—Cl4 = 169.50 (4) and Cl1—Bi1—Cl2 = 117.18 (4)° , respectively. The large deviations of these bond angles from those in the perfect octahedron are probably derived from the inert electron pair effect of the Bi atom. A [Zn(phen)2Cl]+ cation balances charge in the salt. This coordinated cation has been reported elsewhere (Yu et al., 2006), with the Zn atom also located in a distorted trigonal-bipyramidal coordination.

In the crystal structure of I, hydrogen bonds and offset face-to face aromatic π-π stacking interactions lead to the formation of a three-dimensional supramolecular channel, and the solvent water molecules are located within. Firstly, the [Bi(phen)Cl4]- anion and [Zn(phen)2Cl]+ cations connect to each other by hydrogen bonding interactions (details listed in Table 1), and the result is the building up a supramolecular sheet. The hydrogen bonding data are in the normal range (Desiraju et al., 1999). Adjacent sheets are joined together by way of π-π stacking interactions between two phen ligands to form a three-dimensional framework (Chandrasekhar et al., 2006). The phen skeletons are arranged in a parallel fashion; ring 1 (N5/C25—C29) [symmetry code: (x, y, z)] of one cation stacks with ring 2 (C28—C33) [symmetry code: (1 - x, -y, 1 - z)] of a neighbouring cation with an interplanar distance of 3.643 (2) Å. As a result, through these π-π stacking interactions, the supramolecular sheets stack one by one to present a firm three-dimensional supramolecular channel, where the water molecules are located. Even if the water hydrogens could not be determined in the difference Fourier, the geometry around O1 strongly suggests H-bonding interactions between O1 and the neighbouring Cl atoms (O1···Cl3 : 3.3723 (7) Å ; O1···Cl5: 3.3776 (6) Å ).

Related literature top

For related bismuth compounds, see: James et al. (2000); Jarraya et al. (1995); Bowmaker et al. (1998). For a related [Zn(phen)2Cl]+ coordinated cation structure, see: Yu et al. (2006). For supramolecular systems containing halometallate groups as their main component, see: Mitzi & Brock (2001); Zhu et al. (2003); Papavassiliou et al. (1995); Pohl et al. (1994); Carmalt et al. (1995). For ππ interactions, see: Chandrasekhar et al. (2006). For hydrogen bonds, see: Desiraju & Steiner (1999).

.

Experimental top

The title compound (I) was synthesized by hydrothermal reaction of ZnCl2 (136 mg, 1 mmol), Bi(NO3)3.5H2O (250 mg, 0.52 mmol), oxalic acid (380 mg, 3 mmol) and 1,10-phenanthroline monohydrate (400 mg, 2 mmol) in 5 mL water. The mixture was heated to 393 K at the rate of 20 K/h, and kept at this temperature for 2 days and then cooled to room temperature at the rate of 2 K/h. The yellow crystals of (I) were obtained in a yield of 18% (73 mg). Anal. Calc. for C36H26BiCl5N6OZn (%): C, 42.80; H, 2.59; N, 8.32; O, 1.58. Found: C, 42.96; H, 2.77; N, 8.23;O, 1.74. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

All hydrogen atoms attached to C were added at calculated positions and refined using a riding model, (C-H: . Due to the presence of Bi in the structure, those pertaining to the hydration water O1 could not be found in the difference Fourier map and were not included in the model.

Structure description top

Supramolecular compounds are attractting much interest due to their importance for the study of biological systems and their potential applications in material research, as sensors, gas storage and catalysis, or as optoelectronic and magnetic devices. Recently, many supramolecular systems containing halometallate groups as their main component have been reported (Mitzi et al., 2001; Zhu et al., 2003; Papavassiliou et al., 1995; Pohl et al., 1994; Carmalt et al., 1995). Here, we present one of those supramolecular compounds [Zn(phen)2Cl][Bi(phen)Cl4].H2O (I), composed of an halometallate main anionic group ( [Bi(phen)Cl4]- , phen = C12H8N2 = 1,10-phenanthroline), a coordinated cation containing a transition-metal, ( [Zn(phen)2Cl]+ ) and a solvent H2O.

In compound (I), the Bi atom is located in a distorted octahedral enviroment of four chlorine atoms and two nitrogen atoms from the phen ligand. In this BiN2Cl4 octahedron, the Bi1—N1 = 2.505 (3) Å, Bi1—N2 = 2.474 (3) Å, Bi1—Cl1 = 2.7272 (10) Å, Bi1—Cl2 = 2.6708 (10) Å, Bi1—Cl3 = 2.7841 (12) Å, Bi1—Cl4 = 2.5853 (11) Å. All bond lengths are within commonly accepted values in the literature (James et al., 2000; Jarraya et al., 1995). The crystal structure of the [Bi(phen)I4]- salt has already been determined (Bowmaker et al., 1998), and the Bi atom therein is coordinated in a similar distorted octahedron by two N atoms and four I atoms.

The axial and equatorial I—Bi—I bond angles therein are 165.81 (3) and 111.59 (5)° as compared to Cl3—Bi1—Cl4 = 169.50 (4) and Cl1—Bi1—Cl2 = 117.18 (4)° , respectively. The large deviations of these bond angles from those in the perfect octahedron are probably derived from the inert electron pair effect of the Bi atom. A [Zn(phen)2Cl]+ cation balances charge in the salt. This coordinated cation has been reported elsewhere (Yu et al., 2006), with the Zn atom also located in a distorted trigonal-bipyramidal coordination.

In the crystal structure of I, hydrogen bonds and offset face-to face aromatic π-π stacking interactions lead to the formation of a three-dimensional supramolecular channel, and the solvent water molecules are located within. Firstly, the [Bi(phen)Cl4]- anion and [Zn(phen)2Cl]+ cations connect to each other by hydrogen bonding interactions (details listed in Table 1), and the result is the building up a supramolecular sheet. The hydrogen bonding data are in the normal range (Desiraju et al., 1999). Adjacent sheets are joined together by way of π-π stacking interactions between two phen ligands to form a three-dimensional framework (Chandrasekhar et al., 2006). The phen skeletons are arranged in a parallel fashion; ring 1 (N5/C25—C29) [symmetry code: (x, y, z)] of one cation stacks with ring 2 (C28—C33) [symmetry code: (1 - x, -y, 1 - z)] of a neighbouring cation with an interplanar distance of 3.643 (2) Å. As a result, through these π-π stacking interactions, the supramolecular sheets stack one by one to present a firm three-dimensional supramolecular channel, where the water molecules are located. Even if the water hydrogens could not be determined in the difference Fourier, the geometry around O1 strongly suggests H-bonding interactions between O1 and the neighbouring Cl atoms (O1···Cl3 : 3.3723 (7) Å ; O1···Cl5: 3.3776 (6) Å ).

For related bismuth compounds, see: James et al. (2000); Jarraya et al. (1995); Bowmaker et al. (1998). For a related [Zn(phen)2Cl]+ coordinated cation structure, see: Yu et al. (2006). For supramolecular systems containing halometallate groups as their main component, see: Mitzi & Brock (2001); Zhu et al. (2003); Papavassiliou et al. (1995); Pohl et al. (1994); Carmalt et al. (1995). For ππ interactions, see: Chandrasekhar et al. (2006). For hydrogen bonds, see: Desiraju & Steiner (1999).

.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probabilithy level and H atoms are omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for I. The view shows a three-dimensional supramolecular channel along the a axis. The H atoms are shown as small spheres of arbitrary radii, and hydrogen bonds are indicated by dashed lines.
Chloridobis(1,10-phenanthroline)zinc(II) tetrachlorido(1,10-phenanthroline)bismuthate(III) monohydrate top
Crystal data top
[ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2OZ = 2
Mr = 1010.25F(000) = 980
Triclinic, P1Dx = 1.854 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.748 (2) ÅCell parameters from 5205 reflections
b = 13.694 (4) Åθ = 2.1–27.5°
c = 14.249 (4) ŵ = 5.93 mm1
α = 86.848 (7)°T = 293 K
β = 74.660 (5)°Block, yellow
γ = 80.692 (7)°0.40 × 0.30 × 0.30 mm
V = 1810.0 (8) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8140 independent reflections
Radiation source: fine-focus sealed tube7571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 2.1°
CCD_Profile_fitting scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.200, Tmax = 0.269l = 1815
13923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.035P)2 + 0.8909P]
where P = (Fo2 + 2Fc2)/3
8140 reflections(Δ/σ)max = 0.003
451 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
[ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2Oγ = 80.692 (7)°
Mr = 1010.25V = 1810.0 (8) Å3
Triclinic, P1Z = 2
a = 9.748 (2) ÅMo Kα radiation
b = 13.694 (4) ŵ = 5.93 mm1
c = 14.249 (4) ÅT = 293 K
α = 86.848 (7)°0.40 × 0.30 × 0.30 mm
β = 74.660 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
8140 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7571 reflections with I > 2σ(I)
Tmin = 0.200, Tmax = 0.269Rint = 0.012
13923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.03Δρmax = 1.76 e Å3
8140 reflectionsΔρmin = 1.03 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.187173 (6)0.746413 (5)0.167412 (4)0.03413 (2)
Zn10.78062 (2)0.150812 (15)0.327965 (15)0.03602 (5)
Cl10.40709 (6)0.82384 (5)0.04129 (4)0.06274 (16)
Cl30.35492 (8)0.63095 (6)0.27504 (5)0.0836 (2)
Cl40.01178 (7)0.82443 (4)0.06630 (5)0.07034 (15)
Cl50.62441 (5)0.27909 (4)0.29060 (5)0.05442 (14)
Cl20.03588 (6)0.85536 (4)0.32106 (4)0.06049 (15)
O10.4158 (4)0.4571 (2)0.4424 (2)0.1368 (12)
N10.24551 (18)0.60304 (12)0.05446 (12)0.0432 (4)
N20.01895 (17)0.62449 (12)0.21779 (12)0.0430 (4)
N30.98388 (15)0.12811 (11)0.23401 (11)0.0347 (4)
N40.89400 (17)0.24614 (12)0.39095 (12)0.0404 (4)
N50.75232 (16)0.04934 (12)0.44323 (11)0.0385 (4)
N60.68957 (17)0.04085 (12)0.27109 (11)0.0412 (4)
C10.3532 (3)0.59510 (18)0.02525 (16)0.0569 (6)
H10.40770.64620.04190.068*
C20.3879 (3)0.5125 (2)0.08527 (18)0.0699 (8)
H20.46520.50840.14030.084*
C30.3071 (3)0.43848 (18)0.06212 (17)0.0719 (7)
H30.33040.38260.10080.086*
C40.1870 (3)0.44578 (15)0.02089 (16)0.0568 (6)
C50.1617 (2)0.53089 (14)0.07824 (14)0.0428 (5)
C60.0902 (3)0.37504 (16)0.04618 (19)0.0721 (6)
H60.10710.31890.00840.087*
C70.0242 (3)0.38787 (16)0.12303 (19)0.0695 (6)
H70.08700.34150.13660.083*
C80.0520 (2)0.47192 (15)0.18510 (17)0.0549 (5)
C90.0414 (2)0.54307 (14)0.16269 (14)0.0420 (5)
C100.1687 (3)0.48762 (18)0.2676 (2)0.0683 (7)
H100.23240.44190.28480.082*
C110.1894 (3)0.5695 (2)0.3228 (2)0.0694 (8)
H110.26670.58010.37760.083*
C120.0926 (2)0.63737 (18)0.29562 (18)0.0554 (6)
H120.10680.69330.33320.067*
C131.0301 (2)0.06529 (15)0.16107 (14)0.0437 (5)
H130.96880.02320.15210.052*
C141.1661 (2)0.05940 (17)0.09739 (15)0.0526 (6)
H141.19490.01370.04730.063*
C151.2568 (2)0.12066 (18)0.10860 (16)0.0530 (6)
H151.34790.11760.06590.064*
C161.2123 (2)0.18894 (15)0.18524 (14)0.0416 (5)
C171.07434 (18)0.18846 (13)0.24784 (12)0.0331 (4)
C181.2984 (2)0.25820 (17)0.20192 (17)0.0519 (6)
H181.38860.26050.15940.062*
C191.2519 (2)0.31960 (16)0.27741 (18)0.0536 (6)
H191.30920.36500.28540.064*
C201.1157 (2)0.31706 (14)0.34626 (16)0.0456 (5)
C211.02573 (18)0.25202 (13)0.33039 (13)0.0358 (4)
C221.0659 (3)0.37315 (16)0.43134 (18)0.0578 (6)
H221.12240.41590.44580.069*
C230.9347 (3)0.36507 (16)0.49287 (17)0.0591 (6)
H230.90230.40110.55010.071*
C240.8495 (2)0.30251 (16)0.46956 (16)0.0503 (6)
H240.75830.30010.51040.060*
C250.7844 (2)0.05377 (17)0.52733 (15)0.0505 (6)
H250.82750.10650.53800.061*
C260.7559 (3)0.01784 (19)0.60065 (17)0.0638 (7)
H260.77920.01200.65910.077*
C270.6945 (3)0.09541 (18)0.58647 (17)0.0606 (7)
H270.67250.14210.63590.073*
C280.6640 (2)0.10539 (15)0.49649 (16)0.0472 (6)
C290.69474 (18)0.03026 (13)0.42664 (14)0.0369 (4)
C300.6035 (2)0.18692 (17)0.47345 (19)0.0613 (7)
H300.58560.23800.51870.074*
C310.5726 (2)0.19043 (17)0.3879 (2)0.0610 (7)
H310.53160.24350.37540.073*
C320.6008 (2)0.11468 (15)0.31452 (17)0.0482 (6)
C330.66186 (18)0.03468 (14)0.33480 (14)0.0378 (5)
C340.5661 (2)0.11203 (18)0.22484 (18)0.0595 (6)
H340.52590.16350.20810.071*
C350.5913 (2)0.03448 (19)0.16243 (17)0.0596 (6)
H350.56670.03200.10350.071*
C360.6542 (2)0.04149 (17)0.18741 (16)0.0518 (6)
H360.67190.09410.14410.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.03586 (3)0.03625 (3)0.03228 (3)0.00975 (2)0.00893 (2)0.00470 (2)
Zn10.03522 (9)0.03824 (10)0.03538 (10)0.00949 (8)0.00859 (8)0.00157 (8)
Cl10.0602 (3)0.0771 (3)0.0524 (3)0.0367 (2)0.0012 (2)0.0027 (2)
Cl30.0772 (4)0.1053 (5)0.0550 (3)0.0289 (4)0.0178 (3)0.0103 (3)
Cl40.0946 (3)0.0496 (3)0.0893 (3)0.0090 (3)0.0637 (3)0.0025 (2)
Cl50.0441 (2)0.0436 (2)0.0793 (3)0.00778 (19)0.0237 (2)0.0085 (2)
Cl20.0624 (3)0.0617 (3)0.0540 (3)0.0005 (2)0.0108 (2)0.0227 (2)
O10.147 (2)0.143 (2)0.117 (2)0.033 (2)0.0196 (19)0.0161 (19)
N10.0500 (8)0.0410 (8)0.0382 (8)0.0010 (7)0.0127 (7)0.0069 (6)
N20.0451 (8)0.0410 (8)0.0453 (8)0.0138 (6)0.0118 (7)0.0009 (7)
N30.0368 (7)0.0334 (7)0.0332 (7)0.0038 (6)0.0088 (6)0.0005 (6)
N40.0410 (7)0.0396 (7)0.0414 (8)0.0051 (6)0.0114 (6)0.0062 (6)
N50.0396 (7)0.0403 (8)0.0351 (7)0.0013 (6)0.0119 (6)0.0014 (6)
N60.0454 (7)0.0444 (8)0.0390 (8)0.0134 (6)0.0164 (6)0.0018 (6)
C10.0560 (12)0.0624 (13)0.0489 (11)0.0006 (10)0.0109 (10)0.0132 (10)
C20.0759 (15)0.0763 (15)0.0503 (12)0.0219 (13)0.0187 (11)0.0278 (11)
C30.1028 (16)0.0555 (12)0.0625 (12)0.0276 (12)0.0483 (11)0.0279 (10)
C40.0866 (12)0.0337 (9)0.0613 (10)0.0111 (9)0.0489 (9)0.0104 (8)
C50.0569 (9)0.0329 (8)0.0471 (9)0.0016 (7)0.0315 (7)0.0014 (7)
C60.1195 (14)0.0295 (9)0.0942 (13)0.0001 (10)0.0803 (11)0.0059 (9)
C70.1020 (13)0.0343 (9)0.1019 (14)0.0225 (9)0.0745 (11)0.0173 (10)
C80.0716 (10)0.0383 (9)0.0753 (11)0.0222 (8)0.0511 (9)0.0218 (8)
C90.0506 (9)0.0354 (8)0.0496 (9)0.0100 (7)0.0295 (7)0.0094 (7)
C100.0674 (11)0.0634 (12)0.0915 (15)0.0389 (10)0.0414 (11)0.0387 (11)
C110.0554 (12)0.0791 (15)0.0740 (16)0.0308 (11)0.0097 (12)0.0206 (13)
C120.0490 (10)0.0583 (12)0.0583 (13)0.0170 (9)0.0080 (10)0.0022 (10)
C130.0487 (9)0.0429 (9)0.0400 (9)0.0067 (8)0.0118 (8)0.0043 (8)
C140.0557 (11)0.0562 (12)0.0382 (10)0.0004 (10)0.0025 (9)0.0071 (9)
C150.0394 (10)0.0659 (13)0.0440 (11)0.0014 (10)0.0011 (9)0.0035 (10)
C160.0341 (8)0.0483 (10)0.0405 (9)0.0041 (8)0.0101 (7)0.0107 (8)
C170.0340 (7)0.0338 (8)0.0329 (8)0.0036 (6)0.0134 (6)0.0057 (6)
C180.0347 (8)0.0642 (12)0.0584 (12)0.0164 (8)0.0129 (8)0.0159 (10)
C190.0462 (9)0.0524 (11)0.0710 (13)0.0209 (8)0.0251 (9)0.0109 (10)
C200.0505 (9)0.0366 (9)0.0594 (11)0.0109 (8)0.0297 (8)0.0038 (8)
C210.0367 (8)0.0327 (8)0.0414 (9)0.0045 (7)0.0171 (7)0.0013 (7)
C220.0693 (11)0.0424 (10)0.0745 (13)0.0137 (9)0.0362 (10)0.0084 (9)
C230.0770 (14)0.0485 (11)0.0558 (12)0.0079 (10)0.0216 (10)0.0190 (9)
C240.0558 (11)0.0478 (10)0.0458 (10)0.0064 (9)0.0092 (9)0.0114 (8)
C250.0591 (11)0.0534 (11)0.0411 (10)0.0002 (9)0.0219 (8)0.0015 (9)
C260.0781 (14)0.0688 (15)0.0427 (11)0.0056 (12)0.0243 (10)0.0070 (10)
C270.0637 (13)0.0607 (13)0.0459 (11)0.0065 (11)0.0078 (10)0.0189 (10)
C280.0383 (9)0.0436 (10)0.0500 (11)0.0023 (8)0.0014 (8)0.0089 (9)
C290.0285 (7)0.0381 (9)0.0391 (9)0.0002 (7)0.0036 (7)0.0029 (7)
C300.0521 (11)0.0488 (11)0.0740 (15)0.0122 (10)0.0022 (11)0.0196 (11)
C310.0511 (11)0.0444 (10)0.0840 (17)0.0184 (9)0.0058 (11)0.0039 (11)
C320.0394 (9)0.0416 (9)0.0618 (12)0.0105 (8)0.0064 (9)0.0055 (9)
C330.0293 (7)0.0401 (9)0.0419 (9)0.0055 (7)0.0053 (7)0.0004 (7)
C340.0540 (10)0.0629 (12)0.0679 (13)0.0198 (10)0.0170 (10)0.0164 (10)
C350.0634 (11)0.0718 (13)0.0526 (11)0.0185 (11)0.0236 (9)0.0124 (10)
C360.0611 (11)0.0574 (11)0.0429 (10)0.0173 (9)0.0194 (9)0.0016 (9)
Geometric parameters (Å, º) top
Bi1—N22.4745 (17)C12—H120.9300
Bi1—N12.5041 (17)C13—C141.387 (3)
Bi1—Cl42.5853 (8)C13—H130.9300
Bi1—Cl22.6708 (8)C14—C151.356 (4)
Bi1—Cl12.7271 (7)C14—H140.9300
Bi1—Cl32.7838 (9)C15—C161.409 (3)
Zn1—N32.0635 (14)C15—H150.9300
Zn1—N52.0828 (16)C16—C171.404 (2)
Zn1—N62.1586 (18)C16—C181.431 (3)
Zn1—N42.2026 (18)C17—C211.432 (2)
Zn1—Cl52.2690 (7)C18—C191.337 (3)
N1—C11.323 (3)C18—H180.9300
N1—C51.355 (3)C19—C201.431 (3)
N2—C121.329 (3)C19—H190.9300
N2—C91.354 (3)C20—C221.402 (3)
N3—C131.322 (2)C20—C211.412 (3)
N3—C171.358 (2)C22—C231.363 (3)
N4—C241.330 (3)C22—H220.9300
N4—C211.356 (2)C23—C241.393 (3)
N5—C251.323 (3)C23—H230.9300
N5—C291.362 (3)C24—H240.9300
N6—C361.325 (3)C25—C261.397 (3)
N6—C331.351 (2)C25—H250.9300
C1—C21.398 (3)C26—C271.349 (4)
C1—H10.9300C26—H260.9300
C2—C31.357 (4)C27—C281.409 (4)
C2—H20.9300C27—H270.9300
C3—C41.422 (3)C28—C291.403 (3)
C3—H30.9300C28—C301.434 (3)
C4—C51.411 (3)C29—C331.434 (3)
C4—C61.427 (3)C30—C311.336 (4)
C5—C91.436 (3)C30—H300.9300
C6—C71.336 (4)C31—C321.437 (3)
C6—H60.9300C31—H310.9300
C7—C81.437 (3)C32—C341.403 (4)
C7—H70.9300C32—C331.405 (3)
C8—C101.401 (3)C34—C351.358 (4)
C8—C91.407 (3)C34—H340.9300
C10—C111.363 (4)C35—C361.396 (3)
C10—H100.9300C35—H350.9300
C11—C121.397 (3)C36—H360.9300
C11—H110.9300
N2—Bi1—N166.87 (6)N2—C12—C11122.1 (2)
N2—Bi1—Cl484.27 (5)N2—C12—H12119.0
N1—Bi1—Cl485.90 (5)C11—C12—H12119.0
N2—Bi1—Cl288.88 (4)N3—C13—C14122.8 (2)
N1—Bi1—Cl2155.73 (4)N3—C13—H13118.6
Cl4—Bi1—Cl291.03 (3)C14—C13—H13118.6
N2—Bi1—Cl1153.56 (4)C15—C14—C13119.6 (2)
N1—Bi1—Cl186.95 (4)C15—C14—H14120.2
Cl4—Bi1—Cl190.49 (3)C13—C14—H14120.2
Cl2—Bi1—Cl1117.18 (2)C14—C15—C16119.66 (18)
N2—Bi1—Cl386.01 (5)C14—C15—H15120.2
N1—Bi1—Cl386.63 (5)C16—C15—H15120.2
Cl4—Bi1—Cl3169.50 (2)C17—C16—C15117.14 (19)
Cl2—Bi1—Cl392.75 (3)C17—C16—C18118.88 (18)
Cl1—Bi1—Cl396.48 (3)C15—C16—C18123.98 (18)
N3—Zn1—N5113.48 (6)N3—C17—C16122.25 (16)
N3—Zn1—N698.12 (6)N3—C17—C21117.79 (15)
N5—Zn1—N678.81 (7)C16—C17—C21119.95 (17)
N3—Zn1—N478.42 (6)C19—C18—C16121.28 (18)
N5—Zn1—N496.10 (7)C19—C18—H18119.4
N6—Zn1—N4172.24 (6)C16—C18—H18119.4
N3—Zn1—Cl5116.25 (5)C18—C19—C20121.5 (2)
N5—Zn1—Cl5130.27 (4)C18—C19—H19119.3
N6—Zn1—Cl593.82 (5)C20—C19—H19119.3
N4—Zn1—Cl593.95 (5)C22—C20—C21116.82 (18)
C1—N1—C5119.74 (18)C22—C20—C19124.3 (2)
C1—N1—Bi1123.11 (15)C21—C20—C19118.81 (19)
C5—N1—Bi1117.14 (12)N4—C21—C20122.70 (17)
C12—N2—C9119.59 (18)N4—C21—C17117.84 (17)
C12—N2—Bi1122.15 (15)C20—C21—C17119.46 (16)
C9—N2—Bi1118.25 (12)C23—C22—C20120.0 (2)
C13—N3—C17118.48 (15)C23—C22—H22120.0
C13—N3—Zn1126.69 (14)C20—C22—H22120.0
C17—N3—Zn1114.75 (11)C22—C23—C24119.6 (2)
C24—N4—C21118.43 (18)C22—C23—H23120.2
C24—N4—Zn1131.04 (14)C24—C23—H23120.2
C21—N4—Zn1110.17 (12)N4—C24—C23122.4 (2)
C25—N5—C29118.35 (17)N4—C24—H24118.8
C25—N5—Zn1127.75 (15)C23—C24—H24118.8
C29—N5—Zn1113.89 (13)N5—C25—C26122.4 (2)
C36—N6—C33119.11 (18)N5—C25—H25118.8
C36—N6—Zn1128.84 (14)C26—C25—H25118.8
C33—N6—Zn1111.98 (13)C27—C26—C25119.9 (2)
N1—C1—C2122.3 (2)C27—C26—H26120.1
N1—C1—H1118.9C25—C26—H26120.1
C2—C1—H1118.9C26—C27—C28119.7 (2)
C3—C2—C1119.1 (2)C26—C27—H27120.2
C3—C2—H2120.5C28—C27—H27120.2
C1—C2—H2120.5C29—C28—C27117.1 (2)
C2—C3—C4120.4 (2)C29—C28—C30119.1 (2)
C2—C3—H3119.8C27—C28—C30123.7 (2)
C4—C3—H3119.8N5—C29—C28122.45 (19)
C5—C4—C3116.5 (2)N5—C29—C33117.80 (16)
C5—C4—C6119.4 (2)C28—C29—C33119.74 (19)
C3—C4—C6124.0 (2)C31—C30—C28120.8 (2)
N1—C5—C4121.85 (18)C31—C30—H30119.6
N1—C5—C9118.84 (17)C28—C30—H30119.6
C4—C5—C9119.29 (19)C30—C31—C32122.0 (2)
C7—C6—C4121.3 (2)C30—C31—H31119.0
C7—C6—H6119.4C32—C31—H31119.0
C4—C6—H6119.4C34—C32—C33116.9 (2)
C6—C7—C8121.3 (2)C34—C32—C31124.8 (2)
C6—C7—H7119.4C33—C32—C31118.3 (2)
C8—C7—H7119.4N6—C33—C32122.45 (19)
C10—C8—C9117.5 (2)N6—C33—C29117.52 (17)
C10—C8—C7123.4 (2)C32—C33—C29120.03 (18)
C9—C8—C7119.1 (2)C35—C34—C32120.1 (2)
N2—C9—C8121.52 (18)C35—C34—H34119.9
N2—C9—C5118.83 (17)C32—C34—H34119.9
C8—C9—C5119.63 (18)C34—C35—C36119.5 (2)
C11—C10—C8120.3 (2)C34—C35—H35120.2
C11—C10—H10119.8C36—C35—H35120.2
C8—C10—H10119.8N6—C36—C35121.9 (2)
C10—C11—C12119.0 (2)N6—C36—H36119.0
C10—C11—H11120.5C35—C36—H36119.0
C12—C11—H11120.5
N2—Bi1—N1—C1178.34 (19)C7—C8—C10—C11179.4 (2)
Cl4—Bi1—N1—C192.83 (17)C8—C10—C11—C120.1 (4)
Cl2—Bi1—N1—C1176.22 (14)C9—N2—C12—C110.4 (4)
Cl1—Bi1—N1—C12.12 (17)Bi1—N2—C12—C11178.55 (19)
Cl3—Bi1—N1—C194.56 (17)C10—C11—C12—N20.1 (4)
N2—Bi1—N1—C52.14 (14)C17—N3—C13—C140.9 (3)
Cl4—Bi1—N1—C587.65 (14)Zn1—N3—C13—C14175.64 (16)
Cl2—Bi1—N1—C54.3 (2)N3—C13—C14—C150.6 (3)
Cl1—Bi1—N1—C5178.36 (14)C13—C14—C15—C160.5 (3)
Cl3—Bi1—N1—C584.96 (14)C14—C15—C16—C171.0 (3)
N1—Bi1—N2—C12178.07 (19)C14—C15—C16—C18178.5 (2)
Cl4—Bi1—N2—C1290.09 (17)C13—N3—C17—C162.6 (3)
Cl2—Bi1—N2—C121.06 (17)Zn1—N3—C17—C16174.40 (14)
Cl1—Bi1—N2—C12169.56 (14)C13—N3—C17—C21176.49 (17)
Cl3—Bi1—N2—C1293.90 (17)Zn1—N3—C17—C216.5 (2)
N1—Bi1—N2—C90.89 (14)C15—C16—C17—N32.6 (3)
Cl4—Bi1—N2—C988.87 (14)C18—C16—C17—N3176.91 (18)
Cl2—Bi1—N2—C9179.98 (14)C15—C16—C17—C21176.45 (18)
Cl1—Bi1—N2—C99.4 (2)C18—C16—C17—C214.1 (3)
Cl3—Bi1—N2—C987.14 (14)C17—C16—C18—C192.2 (3)
N5—Zn1—N3—C1383.48 (17)C15—C16—C18—C19178.3 (2)
N6—Zn1—N3—C132.21 (17)C16—C18—C19—C201.7 (3)
N4—Zn1—N3—C13175.16 (17)C18—C19—C20—C22174.2 (2)
Cl5—Zn1—N3—C1396.15 (16)C18—C19—C20—C213.7 (3)
N5—Zn1—N3—C1799.84 (13)C24—N4—C21—C201.5 (3)
N6—Zn1—N3—C17178.89 (12)Zn1—N4—C21—C20172.35 (15)
N4—Zn1—N3—C178.17 (12)C24—N4—C21—C17177.89 (18)
Cl5—Zn1—N3—C1780.53 (13)Zn1—N4—C21—C178.2 (2)
N3—Zn1—N4—C24178.41 (19)C22—C20—C21—N43.1 (3)
N5—Zn1—N4—C2465.64 (19)C19—C20—C21—N4178.80 (19)
Cl5—Zn1—N4—C2465.59 (18)C22—C20—C21—C17176.29 (18)
N3—Zn1—N4—C218.74 (12)C19—C20—C21—C171.8 (3)
N5—Zn1—N4—C21121.51 (12)N3—C17—C21—N41.7 (2)
Cl5—Zn1—N4—C21107.27 (12)C16—C17—C21—N4177.41 (17)
N3—Zn1—N5—C2585.42 (17)N3—C17—C21—C20178.89 (17)
N6—Zn1—N5—C25179.49 (17)C16—C17—C21—C202.0 (3)
N4—Zn1—N5—C255.42 (16)C21—C20—C22—C231.6 (3)
Cl5—Zn1—N5—C2595.02 (16)C19—C20—C22—C23179.5 (2)
N3—Zn1—N5—C2994.02 (12)C20—C22—C23—C241.4 (4)
N6—Zn1—N5—C290.06 (11)C21—N4—C24—C231.7 (3)
N4—Zn1—N5—C29174.01 (11)Zn1—N4—C24—C23174.04 (17)
Cl5—Zn1—N5—C2985.55 (12)C22—C23—C24—N43.2 (4)
N3—Zn1—N6—C3670.90 (17)C29—N5—C25—C262.7 (3)
N5—Zn1—N6—C36176.64 (17)Zn1—N5—C25—C26177.91 (16)
Cl5—Zn1—N6—C3646.31 (17)N5—C25—C26—C270.5 (3)
N3—Zn1—N6—C33112.22 (12)C25—C26—C27—C282.1 (3)
N5—Zn1—N6—C330.24 (11)C26—C27—C28—C292.5 (3)
Cl5—Zn1—N6—C33130.57 (11)C26—C27—C28—C30177.8 (2)
C5—N1—C1—C22.3 (3)C25—N5—C29—C282.2 (3)
Bi1—N1—C1—C2177.25 (19)Zn1—N5—C29—C28178.29 (13)
N1—C1—C2—C31.1 (4)C25—N5—C29—C33179.36 (16)
C1—C2—C3—C41.3 (4)Zn1—N5—C29—C330.13 (19)
C2—C3—C4—C52.5 (4)C27—C28—C29—N50.3 (3)
C2—C3—C4—C6175.1 (2)C30—C28—C29—N5179.94 (17)
C1—N1—C5—C40.9 (3)C27—C28—C29—C33178.05 (17)
Bi1—N1—C5—C4178.59 (15)C30—C28—C29—C331.7 (3)
C1—N1—C5—C9177.2 (2)C29—C28—C30—C312.0 (3)
Bi1—N1—C5—C93.2 (2)C27—C28—C30—C31177.8 (2)
C3—C4—C5—N11.4 (3)C28—C30—C31—C321.3 (3)
C6—C4—C5—N1176.3 (2)C30—C31—C32—C34177.5 (2)
C3—C4—C5—C9179.5 (2)C30—C31—C32—C330.4 (3)
C6—C4—C5—C91.9 (3)C36—N6—C33—C322.1 (3)
C5—C4—C6—C70.1 (4)Zn1—N6—C33—C32179.28 (13)
C3—C4—C6—C7177.3 (2)C36—N6—C33—C29176.84 (16)
C4—C6—C7—C81.9 (4)Zn1—N6—C33—C290.38 (19)
C6—C7—C8—C10178.7 (2)C34—C32—C33—N61.4 (3)
C6—C7—C8—C91.6 (4)C31—C32—C33—N6178.71 (17)
C12—N2—C9—C80.8 (3)C34—C32—C33—C29177.48 (17)
Bi1—N2—C9—C8178.14 (15)C31—C32—C33—C290.2 (3)
C12—N2—C9—C5179.3 (2)N5—C29—C33—N60.4 (2)
Bi1—N2—C9—C50.4 (2)C28—C29—C33—N6178.11 (16)
C10—C8—C9—N20.8 (3)N5—C29—C33—C32179.28 (15)
C7—C8—C9—N2178.9 (2)C28—C29—C33—C320.8 (2)
C10—C8—C9—C5179.3 (2)C33—C32—C34—C350.3 (3)
C7—C8—C9—C50.4 (3)C31—C32—C34—C35176.9 (2)
N1—C5—C9—N22.4 (3)C32—C34—C35—C361.2 (3)
C4—C5—C9—N2179.33 (19)C33—N6—C36—C351.1 (3)
N1—C5—C9—C8176.08 (19)Zn1—N6—C36—C35177.77 (15)
C4—C5—C9—C82.1 (3)C34—C35—C36—N60.5 (3)
C9—C8—C10—C110.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3i0.932.823.588 (4)141
C6—H6···Cl4ii0.932.823.637 (4)147
C10—H10···Cl5iii0.932.803.707 (4)164
C15—H15···Cl1iv0.932.693.579 (4)160
C25—H25···Cl2v0.932.803.506 (4)134
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[ZnCl(C12H8N2)2][BiCl4(C12H8N2)]·H2O
Mr1010.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.748 (2), 13.694 (4), 14.249 (4)
α, β, γ (°)86.848 (7), 74.660 (5), 80.692 (7)
V3)1810.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)5.93
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.200, 0.269
No. of measured, independent and
observed [I > 2σ(I)] reflections
13923, 8140, 7571
Rint0.012
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.03
No. of reflections8140
No. of parameters451
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 1.03

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3i0.932.823.588 (4)140.8
C6—H6···Cl4ii0.932.823.637 (4)147.1
C10—H10···Cl5iii0.932.803.707 (4)164.3
C15—H15···Cl1iv0.932.693.579 (4)159.8
C25—H25···Cl2v0.932.803.506 (4)133.6
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+2, y+1, z; (v) x+1, y+1, z+1.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (project 20803070) and the Natural Science Foundation of Zhejiang Province (project Y4100610).

References

First citationBowmaker, G. A., Junk, P. C., Lee, A. M., Skelton, B. W. & White, A. H. (1998). Aust. J. Chem. 51, 317–324.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarmalt, C. J., Farrugia, L. J. & Norman, N. C. (1995). Z. Anorg. Allg. Chem. 621, 47–56.  CSD CrossRef CAS Web of Science Google Scholar
First citationChandrasekhar, V., Thilagar, P., Steiner, A. & Bickley, J. F. (2006). Chem. Eur. J. 12, 8847–8861.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 86–89. Oxford University Press.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJames, S. C., Lawson, Y. G., Norman, N. C., Orpen, A. G. & Quayle, M. J. (2000). Acta Cryst. C56, 427–429.  CrossRef CAS IUCr Journals Google Scholar
First citationJarraya, S., Ben Hassen, R., Daoud, A. & Jouini, T. (1995). Acta Cryst. C51, 2537–2538.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMitzi, D. B. & Brock, P. (2001). Inorg. Chem. 40, 2096–2104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPapavassiliou, G. C., Koutselas, I. B., Terzis, A. & Raptopolou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566–1569.  CAS Google Scholar
First citationPohl, S., Peter, M., Haase, D. & Saak, W. (1994). Z. Naturforsch. Teil B, 49, 741–746.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, C.-H. & Zhang, R.-C. (2006). Acta Cryst. E62, m1758–m1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, X.-H., Mercier, N., Frere, P., Blanchard, P., Roncali, J., Allain, M., Pasquier, C. & Riou, A. (2003). Inorg. Chem. 42, 5330–5339.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds