metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{2-[3-(di­methyl­amino)­propyl­imino­meth­yl]-6-meth­­oxy­phenolato}-κ3N,N′,O1;κ2N,O1-zinc(II) dihydrate

aJinhua Professional–Technical College, Jinhua, Zhejiang 321007, People's Republic of China, and bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: jh_ll@126.com

(Received 3 December 2010; accepted 14 December 2010; online 18 December 2010)

In the title mononuclear ZnII complex, [Zn(C13H19N2O2)2]·2H2O, the ZnII atom is coordinated by two O atoms and three N atoms from two crystallographically different Schiff base ligands in a distorted trigonal–bipyramidal environment. One O and two N atoms constitute the base of the pyramid, and one O and one N atoms occupy the apical positions. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds between the lattice water mol­ecules and N/O atoms of the Schiff base ligands stabilize the conformation, whereas inter­molecular O—H⋯O hydrogen bonds between the two lattice water mol­ecules lead to a chain structure in [001].

Related literature

For related structures, see: Choudhury et al. (2001[Choudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57-62.]); Guo & Lin (2008[Guo, H.-M. & Lin, H. (2008). Acta Cryst. E64, m1009.]); Lin et al. (2009[Lin, H., Huang, J. L. & Feng, Y. L. (2009). Chin. J. Struct. Chem. 28, 718-722.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C13H19N2O2)2]·2H2O

  • Mr = 572.01

  • Orthorhombic, P n a 21

  • a = 14.982 (3) Å

  • b = 9.4411 (19) Å

  • c = 20.384 (4) Å

  • V = 2883.2 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.33 × 0.24 × 0.09 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.773, Tmax = 0.923

  • 14801 measured reflections

  • 6371 independent reflections

  • 4666 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.072

  • S = 1.00

  • 6371 reflections

  • 352 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2935 Friedel pairs

  • Flack parameter: −0.002 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.82 (2) 2.02 (2) 2.805 (3) 161 (3)
O1W—H1WA⋯O4 0.82 (2) 2.49 (3) 3.067 (3) 129 (3)
O1W—H1WB⋯O1 0.83 (2) 2.39 (3) 3.019 (3) 133 (3)
O1W—H1WB⋯O2 0.83 (2) 2.58 (2) 3.379 (3) 162 (3)
O2W—H2WA⋯N4 0.85 (2) 2.05 (2) 2.894 (4) 178 (4)
O2W—H2WB⋯O1Wi 0.84 (2) 2.06 (2) 2.900 (3) 175 (5)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes with multidentate Schiff base ligands have been extensively studied recently for their various crystallographic features, enzymatic reactions, catalysis, electrochemical and magnetic properties. Metal complexes with tridentate N2O Schiff base ligands derived from salicylaldehyde have been well studied in the past, such as [NiMe2NCH2CH2CH2N=CHC6H4O)2] (Choudhury et al., 2001), [Ni(C13H19N2O2]2] (Guo et al., 2008) and [Cd(C13H20N2O2)2X2] (Lin et al., 2009). Molecule of the title complex (I) (Fig. 1) comprises one zinc(II) ion, two 2-[3-(dimethylamino)propyliminomethyl]-6-methoxyphenolato anions and two lattice water molecules. The center ZnII atom is coordinated by two O atoms and three N atoms from two different Schiff base ligands in a distorted trigonal dipyramidal environment. Three coordinated atoms of O(1), N(2), and N(3) constitute the base of the pyramid, whereas N(1) and O(3) atoms occupy the apical position. The O and N atoms together with lattice water molecules are involved in hydrogen-bonding interactions (Fig.2). In detail, the structure is stabilized by intramolecular O—H···O and O—H···N hydrogen bonds between the lattice water molecules and N and O atoms from Schiff base ligands. The other intermolecular O—H···O hydrogen bonds between two lattice water molecules lead to a one-dimensional chain structure running along c direction.

Related literature top

For related structures, see: Choudhury et al. (2001); Guo et al. (2008); Lin et al. (2009).

Experimental top

3-methoxysalicylaldehyde (2.0 mmol) and 3-dimethylaminopropylamine (2.0 mmol) in 15 ml of methyl alcohol were stirred for 4 h. ZnSO4.7H2O (1.0 mmol) was added and stirred for 10 h. The resulting solution was placed in a refrigerator at 263 K for 7 days, and the crystals were filtered off, giving colorless cystals of the title complex for x-ray analysis.

Refinement top

The methyl groups were allowed to rotate to fit the electron density [O—H = 0.82 (2) Å, Uiso(H) = 1.2Ueq(O); C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C)]; the other H atoms were positioned geometrically [aromatic C—Haromatic 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)].

Structure description top

Transition metal complexes with multidentate Schiff base ligands have been extensively studied recently for their various crystallographic features, enzymatic reactions, catalysis, electrochemical and magnetic properties. Metal complexes with tridentate N2O Schiff base ligands derived from salicylaldehyde have been well studied in the past, such as [NiMe2NCH2CH2CH2N=CHC6H4O)2] (Choudhury et al., 2001), [Ni(C13H19N2O2]2] (Guo et al., 2008) and [Cd(C13H20N2O2)2X2] (Lin et al., 2009). Molecule of the title complex (I) (Fig. 1) comprises one zinc(II) ion, two 2-[3-(dimethylamino)propyliminomethyl]-6-methoxyphenolato anions and two lattice water molecules. The center ZnII atom is coordinated by two O atoms and three N atoms from two different Schiff base ligands in a distorted trigonal dipyramidal environment. Three coordinated atoms of O(1), N(2), and N(3) constitute the base of the pyramid, whereas N(1) and O(3) atoms occupy the apical position. The O and N atoms together with lattice water molecules are involved in hydrogen-bonding interactions (Fig.2). In detail, the structure is stabilized by intramolecular O—H···O and O—H···N hydrogen bonds between the lattice water molecules and N and O atoms from Schiff base ligands. The other intermolecular O—H···O hydrogen bonds between two lattice water molecules lead to a one-dimensional chain structure running along c direction.

For related structures, see: Choudhury et al. (2001); Guo et al. (2008); Lin et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional chain structure of (I). The hydrogen bond interactions are depicted by dashed lines.
Bis{2-[3-(dimethylamino)propyliminomethyl]-6-methoxyphenolato}- κ3N,N',O1;κ2N,O1-zinc(II) dihydrate top
Crystal data top
[Zn(C13H19N2O2)2]·2H2OF(000) = 1216
Mr = 572.01Dx = 1.318 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4118 reflections
a = 14.982 (3) Åθ = 2.0–27.6°
b = 9.4411 (19) ŵ = 0.90 mm1
c = 20.384 (4) ÅT = 293 K
V = 2883.2 (10) Å3Block, colorless
Z = 40.33 × 0.24 × 0.09 mm
Data collection top
Bruker APEXII area-detector
diffractometer
6371 independent reflections
Radiation source: Bruker APEXII area-detector4666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.773, Tmax = 0.923k = 1212
14801 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0255P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6371 reflectionsΔρmax = 0.23 e Å3
352 parametersΔρmin = 0.30 e Å3
7 restraintsAbsolute structure: Flack (1983), 2935 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (11)
Crystal data top
[Zn(C13H19N2O2)2]·2H2OV = 2883.2 (10) Å3
Mr = 572.01Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.982 (3) ŵ = 0.90 mm1
b = 9.4411 (19) ÅT = 293 K
c = 20.384 (4) Å0.33 × 0.24 × 0.09 mm
Data collection top
Bruker APEXII area-detector
diffractometer
6371 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4666 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.923Rint = 0.027
14801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.30 e Å3
6371 reflectionsAbsolute structure: Flack (1983), 2935 Friedel pairs
352 parametersAbsolute structure parameter: 0.002 (11)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.501709 (16)0.23339 (2)0.01203 (3)0.04162 (7)
O10.41420 (11)0.08139 (17)0.02808 (8)0.0529 (4)
O20.27116 (12)0.07155 (19)0.03168 (10)0.0629 (5)
O30.43100 (11)0.30686 (17)0.06314 (8)0.0485 (4)
O40.37783 (13)0.34372 (19)0.18311 (9)0.0654 (5)
O1W0.34773 (18)0.0621 (2)0.11145 (11)0.0825 (7)
H1WA0.373 (2)0.139 (2)0.1067 (16)0.099*
H1WB0.341 (2)0.031 (3)0.0738 (11)0.099*
O2W0.2026 (2)0.4945 (4)0.25478 (12)0.1031 (8)
H2WA0.248 (2)0.442 (4)0.261 (2)0.124*
H2WB0.185 (3)0.511 (5)0.2931 (11)0.124*
N10.58144 (13)0.1529 (3)0.08746 (12)0.0537 (6)
N20.61050 (15)0.1672 (2)0.05394 (11)0.0549 (6)
N30.48338 (13)0.4313 (2)0.05770 (10)0.0452 (5)
N40.35581 (16)0.3123 (3)0.27371 (11)0.0587 (6)
C10.40909 (17)0.0067 (3)0.07683 (12)0.0438 (6)
C20.33160 (18)0.0943 (3)0.08146 (13)0.0515 (6)
C30.3217 (2)0.1901 (3)0.13098 (16)0.0625 (8)
H3A0.27080.24650.13270.075*
C40.3872 (3)0.2044 (3)0.17916 (15)0.0713 (9)
H4A0.37940.26850.21330.086*
C50.4618 (2)0.1250 (3)0.17601 (14)0.0642 (7)
H5A0.50570.13700.20780.077*
C60.47512 (18)0.0246 (3)0.12599 (13)0.0508 (6)
C70.55804 (18)0.0535 (3)0.12662 (14)0.0566 (7)
H7A0.59890.02900.15900.068*
C80.1961 (2)0.1628 (4)0.02810 (19)0.0948 (12)
H8A0.16140.13960.01000.142*
H8B0.16020.15120.06670.142*
H8C0.21600.25920.02510.142*
C90.67298 (18)0.2078 (4)0.09311 (17)0.0738 (9)
H9A0.69960.17430.13360.089*
H9B0.67160.31050.09440.089*
C100.7290 (2)0.1591 (4)0.03513 (18)0.0797 (10)
H10A0.79020.18880.04240.096*
H10B0.72850.05640.03400.096*
C110.6997 (2)0.2131 (4)0.03087 (18)0.0778 (10)
H11A0.70050.31580.02960.093*
H11B0.74360.18360.06310.093*
C120.6000 (3)0.2242 (4)0.12109 (19)0.0991 (13)
H12A0.64950.19460.14770.149*
H12B0.59820.32580.11940.149*
H12C0.54540.18930.13980.149*
C130.6053 (2)0.0128 (4)0.05818 (19)0.0838 (10)
H13A0.65700.02270.08060.126*
H13B0.55250.01360.08190.126*
H13C0.60290.02650.01480.126*
C140.41844 (15)0.4378 (2)0.08135 (12)0.0428 (6)
C150.38774 (16)0.4642 (3)0.14615 (13)0.0482 (6)
C160.37146 (18)0.5993 (3)0.16748 (14)0.0590 (7)
H16A0.35230.61400.21030.071*
C170.3831 (2)0.7150 (3)0.12611 (17)0.0689 (8)
H17A0.37110.80610.14100.083*
C180.41185 (19)0.6940 (3)0.06417 (16)0.0626 (7)
H18A0.41930.77150.03650.075*
C190.43089 (15)0.5564 (3)0.04033 (12)0.0458 (6)
C200.45707 (16)0.5433 (2)0.02733 (12)0.0484 (6)
H20A0.45470.62590.05210.058*
C210.3374 (2)0.3549 (3)0.24481 (13)0.0692 (8)
H21A0.32760.26190.26240.104*
H21B0.37570.40740.27380.104*
H21C0.28130.40310.24060.104*
C220.49389 (17)0.4456 (3)0.12804 (13)0.0541 (6)
H22A0.49840.54520.13940.065*
H22B0.54860.39920.14170.065*
C230.41505 (17)0.3800 (3)0.16412 (13)0.0567 (7)
H23A0.36150.43380.15440.068*
H23B0.40610.28390.14860.068*
C240.42988 (19)0.3780 (3)0.23717 (13)0.0615 (7)
H24A0.48440.32650.24650.074*
H24B0.43780.47450.25250.074*
C250.3547 (3)0.1609 (3)0.26234 (18)0.0878 (10)
H25A0.30860.11830.28830.132*
H25B0.41140.12130.27440.132*
H25C0.34350.14280.21670.132*
C260.3640 (3)0.3397 (4)0.34359 (14)0.0808 (10)
H26A0.31580.29440.36640.121*
H26B0.36170.43990.35130.121*
H26C0.41980.30280.35920.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03884 (11)0.04110 (12)0.04493 (13)0.00035 (12)0.00269 (13)0.0007 (2)
O10.0492 (9)0.0547 (10)0.0548 (12)0.0107 (8)0.0075 (8)0.0098 (8)
O20.0537 (10)0.0627 (12)0.0724 (15)0.0166 (9)0.0013 (9)0.0003 (9)
O30.0580 (10)0.0357 (9)0.0520 (10)0.0006 (7)0.0125 (8)0.0000 (8)
O40.0898 (15)0.0527 (11)0.0537 (12)0.0042 (10)0.0228 (10)0.0007 (9)
O1W0.122 (2)0.0499 (12)0.0752 (14)0.0135 (12)0.0216 (15)0.0070 (11)
O2W0.123 (2)0.120 (2)0.0667 (16)0.0474 (19)0.0175 (15)0.0036 (16)
N10.0387 (11)0.0638 (15)0.0586 (14)0.0032 (11)0.0071 (10)0.0045 (12)
N20.0477 (13)0.0566 (14)0.0604 (15)0.0065 (11)0.0074 (10)0.0005 (11)
N30.0466 (12)0.0476 (12)0.0413 (12)0.0035 (9)0.0004 (9)0.0070 (9)
N40.0621 (15)0.0655 (16)0.0485 (14)0.0026 (12)0.0012 (11)0.0080 (11)
C10.0522 (15)0.0361 (13)0.0432 (14)0.0042 (11)0.0062 (11)0.0000 (11)
C20.0595 (16)0.0434 (14)0.0516 (16)0.0000 (12)0.0161 (14)0.0049 (11)
C30.074 (2)0.0469 (15)0.067 (2)0.0033 (14)0.0221 (16)0.0011 (14)
C40.105 (3)0.0479 (18)0.061 (2)0.0131 (17)0.0260 (19)0.0135 (14)
C50.080 (2)0.0602 (18)0.0528 (18)0.0214 (17)0.0036 (16)0.0060 (13)
C60.0585 (16)0.0467 (14)0.0471 (16)0.0096 (12)0.0038 (12)0.0011 (11)
C70.0535 (17)0.0614 (17)0.0548 (18)0.0142 (14)0.0101 (13)0.0011 (14)
C80.074 (2)0.103 (3)0.108 (3)0.040 (2)0.001 (2)0.003 (2)
C90.0438 (16)0.092 (2)0.085 (2)0.0037 (16)0.0130 (16)0.0061 (18)
C100.0409 (15)0.106 (3)0.092 (3)0.0003 (17)0.0033 (15)0.003 (2)
C110.0478 (19)0.091 (2)0.095 (3)0.0036 (17)0.0188 (18)0.0029 (19)
C120.090 (3)0.139 (3)0.069 (2)0.024 (2)0.022 (2)0.023 (2)
C130.082 (2)0.069 (2)0.100 (3)0.0112 (18)0.016 (2)0.020 (2)
C140.0341 (12)0.0416 (13)0.0527 (16)0.0018 (10)0.0008 (11)0.0009 (11)
C150.0449 (14)0.0484 (15)0.0512 (16)0.0001 (11)0.0018 (12)0.0025 (12)
C160.0545 (16)0.0606 (18)0.0617 (19)0.0068 (14)0.0026 (13)0.0146 (14)
C170.082 (2)0.0446 (16)0.080 (2)0.0102 (15)0.0018 (17)0.0110 (15)
C180.0719 (19)0.0419 (15)0.074 (2)0.0064 (13)0.0077 (16)0.0069 (14)
C190.0390 (13)0.0433 (14)0.0552 (17)0.0034 (11)0.0044 (11)0.0001 (11)
C200.0443 (13)0.0395 (12)0.061 (2)0.0020 (11)0.0094 (12)0.0129 (11)
C210.086 (2)0.070 (2)0.0521 (19)0.0025 (16)0.0141 (16)0.0014 (14)
C220.0529 (16)0.0562 (15)0.0532 (16)0.0028 (13)0.0050 (13)0.0116 (12)
C230.0539 (15)0.0653 (18)0.0509 (17)0.0032 (14)0.0054 (13)0.0067 (13)
C240.0697 (19)0.0656 (18)0.0491 (18)0.0109 (15)0.0047 (14)0.0066 (13)
C250.100 (3)0.069 (2)0.094 (3)0.0146 (19)0.024 (2)0.0051 (19)
C260.099 (3)0.090 (2)0.053 (2)0.002 (2)0.0011 (17)0.0009 (16)
Geometric parameters (Å, º) top
Zn1—O11.9711 (16)C9—H9B0.9700
Zn1—O31.9878 (17)C10—C111.504 (5)
Zn1—N12.090 (2)C10—H10A0.9700
Zn1—N32.106 (2)C10—H10B0.9700
Zn1—N22.204 (2)C11—H11A0.9700
O1—C11.298 (3)C11—H11B0.9700
O2—C21.377 (3)C12—H12A0.9600
O2—C81.418 (3)C12—H12B0.9600
O3—C141.304 (3)C12—H12C0.9600
O4—C151.372 (3)C13—H13A0.9600
O4—C211.400 (3)C13—H13B0.9600
O1W—H1WA0.818 (17)C13—H13C0.9600
O1W—H1WB0.826 (17)C14—C191.410 (3)
O2W—H2WA0.850 (18)C14—C151.421 (3)
O2W—H2WB0.838 (18)C15—C161.370 (4)
N1—C71.281 (3)C16—C171.390 (4)
N1—C91.471 (3)C16—H16A0.9300
N2—C131.462 (4)C17—C181.349 (4)
N2—C121.479 (4)C17—H17A0.9300
N2—C111.482 (4)C18—C191.415 (4)
N3—C201.287 (3)C18—H18A0.9300
N3—C221.449 (3)C19—C201.439 (4)
N4—C251.448 (4)C20—H20A0.9300
N4—C261.453 (4)C21—H21A0.9600
N4—C241.473 (3)C21—H21B0.9600
C1—C61.418 (4)C21—H21C0.9600
C1—C21.428 (3)C22—C231.523 (4)
C2—C31.364 (4)C22—H22A0.9700
C3—C41.395 (5)C22—H22B0.9700
C3—H3A0.9300C23—C241.506 (4)
C4—C51.348 (4)C23—H23A0.9700
C4—H4A0.9300C23—H23B0.9700
C5—C61.406 (4)C24—H24A0.9700
C5—H5A0.9300C24—H24B0.9700
C6—C71.445 (4)C25—H25A0.9600
C7—H7A0.9300C25—H25B0.9600
C8—H8A0.9600C25—H25C0.9600
C8—H8B0.9600C26—H26A0.9600
C8—H8C0.9600C26—H26B0.9600
C9—C101.521 (4)C26—H26C0.9600
C9—H9A0.9700
O1—Zn1—O391.58 (7)N2—C11—H11B108.1
O1—Zn1—N189.63 (8)C10—C11—H11B108.1
O3—Zn1—N1176.90 (9)H11A—C11—H11B107.3
O1—Zn1—N3119.07 (8)N2—C12—H12A109.5
O3—Zn1—N387.80 (7)N2—C12—H12B109.5
N1—Zn1—N394.12 (9)H12A—C12—H12B109.5
O1—Zn1—N2112.75 (8)N2—C12—H12C109.5
O3—Zn1—N291.31 (8)H12A—C12—H12C109.5
N1—Zn1—N285.59 (9)H12B—C12—H12C109.5
N3—Zn1—N2128.17 (8)N2—C13—H13A109.5
C1—O1—Zn1129.26 (16)N2—C13—H13B109.5
C2—O2—C8117.7 (2)H13A—C13—H13B109.5
C14—O3—Zn1128.83 (15)N2—C13—H13C109.5
C15—O4—C21118.5 (2)H13A—C13—H13C109.5
H1WA—O1W—H1WB105 (2)H13B—C13—H13C109.5
H2WA—O2W—H2WB103 (3)O3—C14—C19124.4 (2)
C7—N1—C9117.7 (2)O3—C14—C15118.5 (2)
C7—N1—Zn1124.63 (18)C19—C14—C15117.1 (2)
C9—N1—Zn1117.6 (2)C16—C15—O4125.3 (2)
C13—N2—C12107.6 (3)C16—C15—C14121.0 (2)
C13—N2—C11111.0 (2)O4—C15—C14113.6 (2)
C12—N2—C11106.5 (3)C15—C16—C17121.1 (3)
C13—N2—Zn1106.22 (19)C15—C16—H16A119.5
C12—N2—Zn1112.48 (19)C17—C16—H16A119.5
C11—N2—Zn1112.99 (18)C18—C17—C16119.5 (3)
C20—N3—C22115.6 (2)C18—C17—H17A120.3
C20—N3—Zn1123.81 (17)C16—C17—H17A120.3
C22—N3—Zn1120.40 (17)C17—C18—C19121.4 (3)
C25—N4—C26109.5 (3)C17—C18—H18A119.3
C25—N4—C24110.1 (2)C19—C18—H18A119.3
C26—N4—C24110.9 (2)C14—C19—C18119.9 (2)
O1—C1—C6125.2 (2)C14—C19—C20122.4 (2)
O1—C1—C2118.0 (2)C18—C19—C20117.5 (2)
C6—C1—C2116.8 (2)N3—C20—C19127.9 (2)
C3—C2—O2125.2 (3)N3—C20—H20A116.0
C3—C2—C1121.4 (3)C19—C20—H20A116.0
O2—C2—C1113.3 (2)O4—C21—H21A109.5
C2—C3—C4120.5 (3)O4—C21—H21B109.5
C2—C3—H3A119.7H21A—C21—H21B109.5
C4—C3—H3A119.7O4—C21—H21C109.5
C5—C4—C3119.8 (3)H21A—C21—H21C109.5
C5—C4—H4A120.1H21B—C21—H21C109.5
C3—C4—H4A120.1N3—C22—C23110.8 (2)
C4—C5—C6121.8 (3)N3—C22—H22A109.5
C4—C5—H5A119.1C23—C22—H22A109.5
C6—C5—H5A119.1N3—C22—H22B109.5
C5—C6—C1119.6 (3)C23—C22—H22B109.5
C5—C6—C7117.3 (3)H22A—C22—H22B108.1
C1—C6—C7123.0 (2)C24—C23—C22111.6 (2)
N1—C7—C6127.2 (2)C24—C23—H23A109.3
N1—C7—H7A116.4C22—C23—H23A109.3
C6—C7—H7A116.4C24—C23—H23B109.3
O2—C8—H8A109.5C22—C23—H23B109.3
O2—C8—H8B109.5H23A—C23—H23B108.0
H8A—C8—H8B109.5N4—C24—C23113.2 (2)
O2—C8—H8C109.5N4—C24—H24A108.9
H8A—C8—H8C109.5C23—C24—H24A108.9
H8B—C8—H8C109.5N4—C24—H24B108.9
N1—C9—C10110.3 (3)C23—C24—H24B108.9
N1—C9—H9A109.6H24A—C24—H24B107.7
C10—C9—H9A109.6N4—C25—H25A109.5
N1—C9—H9B109.6N4—C25—H25B109.5
C10—C9—H9B109.6H25A—C25—H25B109.5
H9A—C9—H9B108.1N4—C25—H25C109.5
C11—C10—C9115.6 (3)H25A—C25—H25C109.5
C11—C10—H10A108.4H25B—C25—H25C109.5
C9—C10—H10A108.4N4—C26—H26A109.5
C11—C10—H10B108.4N4—C26—H26B109.5
C9—C10—H10B108.4H26A—C26—H26B109.5
H10A—C10—H10B107.5N4—C26—H26C109.5
N2—C11—C10116.6 (3)H26A—C26—H26C109.5
N2—C11—H11A108.1H26B—C26—H26C109.5
C10—C11—H11A108.1
O3—Zn1—O1—C1171.2 (2)C3—C4—C5—C61.5 (4)
N1—Zn1—O1—C111.7 (2)C4—C5—C6—C10.8 (4)
N3—Zn1—O1—C182.8 (2)C4—C5—C6—C7179.2 (3)
N2—Zn1—O1—C196.8 (2)O1—C1—C6—C5179.4 (2)
O1—Zn1—O3—C14143.2 (2)C2—C1—C6—C50.1 (3)
N1—Zn1—O3—C14103.9 (15)O1—C1—C6—C71.1 (4)
N3—Zn1—O3—C1424.2 (2)C2—C1—C6—C7178.2 (2)
N2—Zn1—O3—C14103.9 (2)C9—N1—C7—C6173.9 (3)
O1—Zn1—N1—C77.8 (2)Zn1—N1—C7—C61.8 (4)
O3—Zn1—N1—C7120.7 (14)C5—C6—C7—N1176.9 (3)
N3—Zn1—N1—C7111.3 (2)C1—C6—C7—N14.8 (4)
N2—Zn1—N1—C7120.7 (2)C7—N1—C9—C10107.7 (3)
O1—Zn1—N1—C9167.9 (2)Zn1—N1—C9—C1068.3 (3)
O3—Zn1—N1—C955.0 (16)N1—C9—C10—C1163.9 (4)
N3—Zn1—N1—C973.0 (2)C13—N2—C11—C1059.0 (4)
N2—Zn1—N1—C955.0 (2)C12—N2—C11—C10175.8 (3)
O1—Zn1—N2—C1313.9 (2)Zn1—N2—C11—C1060.2 (3)
O3—Zn1—N2—C13106.2 (2)C9—C10—C11—N263.8 (4)
N1—Zn1—N2—C1373.8 (2)Zn1—O3—C14—C1919.8 (3)
N3—Zn1—N2—C13165.60 (19)Zn1—O3—C14—C15162.02 (17)
O1—Zn1—N2—C12103.6 (2)C21—O4—C15—C168.6 (4)
O3—Zn1—N2—C1211.3 (2)C21—O4—C15—C14172.1 (2)
N1—Zn1—N2—C12168.7 (2)O3—C14—C15—C16178.5 (2)
N3—Zn1—N2—C1276.9 (2)C19—C14—C15—C160.2 (3)
O1—Zn1—N2—C11135.9 (2)O3—C14—C15—O42.1 (3)
O3—Zn1—N2—C11131.9 (2)C19—C14—C15—O4179.6 (2)
N1—Zn1—N2—C1148.1 (2)O4—C15—C16—C17179.7 (3)
N3—Zn1—N2—C1143.6 (2)C14—C15—C16—C171.0 (4)
O1—Zn1—N3—C20106.31 (19)C15—C16—C17—C180.8 (5)
O3—Zn1—N3—C2015.73 (19)C16—C17—C18—C190.3 (5)
N1—Zn1—N3—C20161.8 (2)O3—C14—C19—C18177.4 (2)
N2—Zn1—N3—C2074.2 (2)C15—C14—C19—C180.8 (3)
O1—Zn1—N3—C2269.01 (18)O3—C14—C19—C201.6 (4)
O3—Zn1—N3—C22159.59 (17)C15—C14—C19—C20176.6 (2)
N1—Zn1—N3—C2222.85 (18)C17—C18—C19—C141.0 (4)
N2—Zn1—N3—C22110.48 (18)C17—C18—C19—C20177.0 (3)
Zn1—O1—C1—C69.4 (4)C22—N3—C20—C19172.0 (2)
Zn1—O1—C1—C2171.35 (16)Zn1—N3—C20—C193.6 (3)
C8—O2—C2—C35.7 (4)C14—C19—C20—N39.6 (4)
C8—O2—C2—C1173.9 (2)C18—C19—C20—N3174.6 (3)
O1—C1—C2—C3179.5 (2)C20—N3—C22—C23102.0 (3)
C6—C1—C2—C30.2 (4)Zn1—N3—C22—C2373.7 (2)
O1—C1—C2—O20.1 (3)N3—C22—C23—C24173.1 (2)
C6—C1—C2—O2179.4 (2)C25—N4—C24—C2370.9 (3)
O2—C2—C3—C4179.9 (2)C26—N4—C24—C23167.8 (3)
C1—C2—C3—C40.6 (4)C22—C23—C24—N4178.7 (2)
C2—C3—C4—C51.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.82 (2)2.02 (2)2.805 (3)161 (3)
O1W—H1WA···O40.82 (2)2.49 (3)3.067 (3)129 (3)
O1W—H1WB···O10.83 (2)2.39 (3)3.019 (3)133 (3)
O1W—H1WB···O20.83 (2)2.58 (2)3.379 (3)162 (3)
O2W—H2WA···N40.85 (2)2.05 (2)2.894 (4)178 (4)
O2W—H2WB···O1Wi0.84 (2)2.06 (2)2.900 (3)175 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C13H19N2O2)2]·2H2O
Mr572.01
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)14.982 (3), 9.4411 (19), 20.384 (4)
V3)2883.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.33 × 0.24 × 0.09
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.773, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
14801, 6371, 4666
Rint0.027
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.072, 1.00
No. of reflections6371
No. of parameters352
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.30
Absolute structureFlack (1983), 2935 Friedel pairs
Absolute structure parameter0.002 (11)

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.818 (17)2.02 (2)2.805 (3)161 (3)
O1W—H1WA···O40.818 (17)2.49 (3)3.067 (3)129 (3)
O1W—H1WB···O10.826 (17)2.39 (3)3.019 (3)133 (3)
O1W—H1WB···O20.826 (17)2.583 (18)3.379 (3)162 (3)
O2W—H2WA···N40.850 (18)2.045 (19)2.894 (4)178 (4)
O2W—H2WB···O1Wi0.838 (18)2.064 (19)2.900 (3)175 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2002). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoudhury, C. R., Dey, S. K., Mondal, N., Mitra, S., Mahalli, S. O. G. & Malik, K. M. A. (2001). J. Chem. Crystallogr. 31, 57–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, H.-M. & Lin, H. (2008). Acta Cryst. E64, m1009.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLin, H., Huang, J. L. & Feng, Y. L. (2009). Chin. J. Struct. Chem. 28, 718–722.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds