metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridyl-κ2N,N′)(sulfato-κ2O,O′)cobalt(II) ethane-1,2-diol monosolvate

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: zklong@tom.com

(Received 28 November 2010; accepted 2 December 2010; online 8 December 2010)

The title compound, [Co(SO4)(C10H8N2)2]·C2H6O2, has the Co2+ ion in a distorted octa­hedral CoN4O2 coordination geometry. A twofold rotation axis passes through the Co and S atoms, and through the mid-point of the C—C bond of the ethane­diol mol­ecule. In the crystal, the [CoSO4(C10H8N2)2] and C2H6O2 units are held together by a pair of O—H⋯O hydrogen bonds.

Related literature

For applications of cobalt complexes, see: Bottcher et al. (1995[Bottcher, A., Takeuchi, T., Simon, M. I., Meade, T. J. & Gray, H. B. (1995). J. Inorg. Biochem. 59, 221-228.]). For related Co compounds with sulfate ions, see: Henning et al. (1975[Henning, H., Benedie, R., Hempel, K. & Reinhold, J. (1975). Z. Anorg. Allg. Chem. 412, 141-147.]); Lu et al. (2006[Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448-m450.]); Zheng & Lin (2003[Zheng, Y. Q. & Lin, J. L. (2003). Z. Anorg. Allg. Chem. 629, 185-187.]); Paul et al. (2002[Paul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859-3867.]). For isotypic structures, see: Zhong et al. (2006[Zhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631-m633.]). Zhong (2010a[Zhong, K.-L. (2010a). Acta Cryst. E66, m247.],b[Zhong, K.-L. (2010b). Acta Cryst. E66, m131.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(SO4)(C10H8N2)2]·C2H6O2

  • Mr = 529.44

  • Monoclinic, C 2/c

  • a = 16.916 (3) Å

  • b = 11.913 (2) Å

  • c = 12.870 (3) Å

  • β = 122.16 (3)°

  • V = 2195.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 223 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.802, Tmax = 0.874

  • 6197 measured reflections

  • 2509 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.085

  • S = 1.06

  • 2509 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.1175 (18)
Co1—N2 2.1285 (17)
Co1—O1 2.1420 (15)
S1—O2 1.4629 (15)
S1—O1 1.4958 (15)
N1—Co1—N2 76.92 (7)
O1—Co1—O1i 66.68 (8)
O2i—S1—O2 111.03 (13)
O2—S1—O1 110.97 (9)
O1i—S1—O1 103.82 (12)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.97 2.758 (2) 160

Data collection: CrystalClear (Rigaku, 2007[Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the first octahedral coordination cobalt complexes was recognized by Werner, some metal cobalt complexes as potent antiviral agents (Bottcher et al., 1995) have been previously reported. Furthermore, many cobalt complexes with monodentate sulfate ions (Henning et al., 1975; Lu et al., 2006), bidentate sulfate ions (Zheng & Lin, 2003) and bidentate bridging sulfate ions (Paul et al., 2002) have been synthesized and characterized. In our investigation, we have carried out solvothermal reactions using metal sulfate and mixed-ligands with the aim of obtaining complexes retainig some of the solvent molecules capable of hydrogen bonding.

We have previously synthesized Co-complexes with bidentate-chelating sulfate ions, in which uncoordinated O atoms of the sulfate ligand and dihydric alcohol solvent molecules formed classical O—H···O hydrogen bonds via a solvothermal reaction, e.g. [CoSO4(phen)2].C3H8O2 (Zhong, 2010a), [CoSO4(phen)2].C2H6O2, (Zhong et al., 2006).

The title compound crystal structures consist of a neutral monomeric [CoSO4(C10H8N2)2] complex and a solvent ethane-1,2-diol molecule. The cobalt metal ion is six-coordinated by four N atoms from two 2,2'-bipy ligands and two O atoms from an O,O'-bidentate sulfate ion, in a distorted CoN4O2 octalhedral environment (Fig. 1). The two fairly perpendicularly 2,2'-bipy ligands [dihedral angle = 80.923 (25)°] are in cis positions similar to the analogous and [ZnSO4(C10H8N2)2]. C2H6O2 (Zhong, 2010b). The Co—N bond distances, the Co—O bond distances, the N—Co—N bite angle, the O—Co—O bite angle and the dihedral angle between the two chelating NCCN groups is 2.1175 (18)–2.1285 (17) Å, 2.1420 (15) Å, 76.92 (7)°, 66.68 (8)° and 82.798 (73)°, respectively. The [CoSO4(C10H8N2)2] and C2H6O2 units are connected by a pair of symmetry-related intermolecular O—H···O hydrogen bonds with the uncoordinated O atoms of the sulfate ligand. The Co2+ ion, the S atom and the mid-point of C—C bond of the ethane-1,2-diol solvent molecule are located on symmmetry 2 (symmetry code: -x, y, - z + 1/2) (Fig.1 and Table 2).

Related literature top

For applications of cobalt complexes, see: Bottcher et al. (1995). For related Co compounds with sulfate ions, see: Henning et al. (1975); Lu et al. (2006); Zheng & Lin (2003); Paul et al. (2002). For isotypic structures, see: Zhong et al. (2006). Zhong (2010a,b).

Experimental top

Orange block-shaped single crystals of the title compound were obtained by a procedure similar to that described previously by Zhong (2010b), using CoSO4.7H2O instead of ZnSO4.7H2O.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H =0.93-0.97 Å O—H =0.82 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Since the first octahedral coordination cobalt complexes was recognized by Werner, some metal cobalt complexes as potent antiviral agents (Bottcher et al., 1995) have been previously reported. Furthermore, many cobalt complexes with monodentate sulfate ions (Henning et al., 1975; Lu et al., 2006), bidentate sulfate ions (Zheng & Lin, 2003) and bidentate bridging sulfate ions (Paul et al., 2002) have been synthesized and characterized. In our investigation, we have carried out solvothermal reactions using metal sulfate and mixed-ligands with the aim of obtaining complexes retainig some of the solvent molecules capable of hydrogen bonding.

We have previously synthesized Co-complexes with bidentate-chelating sulfate ions, in which uncoordinated O atoms of the sulfate ligand and dihydric alcohol solvent molecules formed classical O—H···O hydrogen bonds via a solvothermal reaction, e.g. [CoSO4(phen)2].C3H8O2 (Zhong, 2010a), [CoSO4(phen)2].C2H6O2, (Zhong et al., 2006).

The title compound crystal structures consist of a neutral monomeric [CoSO4(C10H8N2)2] complex and a solvent ethane-1,2-diol molecule. The cobalt metal ion is six-coordinated by four N atoms from two 2,2'-bipy ligands and two O atoms from an O,O'-bidentate sulfate ion, in a distorted CoN4O2 octalhedral environment (Fig. 1). The two fairly perpendicularly 2,2'-bipy ligands [dihedral angle = 80.923 (25)°] are in cis positions similar to the analogous and [ZnSO4(C10H8N2)2]. C2H6O2 (Zhong, 2010b). The Co—N bond distances, the Co—O bond distances, the N—Co—N bite angle, the O—Co—O bite angle and the dihedral angle between the two chelating NCCN groups is 2.1175 (18)–2.1285 (17) Å, 2.1420 (15) Å, 76.92 (7)°, 66.68 (8)° and 82.798 (73)°, respectively. The [CoSO4(C10H8N2)2] and C2H6O2 units are connected by a pair of symmetry-related intermolecular O—H···O hydrogen bonds with the uncoordinated O atoms of the sulfate ligand. The Co2+ ion, the S atom and the mid-point of C—C bond of the ethane-1,2-diol solvent molecule are located on symmmetry 2 (symmetry code: -x, y, - z + 1/2) (Fig.1 and Table 2).

For applications of cobalt complexes, see: Bottcher et al. (1995). For related Co compounds with sulfate ions, see: Henning et al. (1975); Lu et al. (2006); Zheng & Lin (2003); Paul et al. (2002). For isotypic structures, see: Zhong et al. (2006). Zhong (2010a,b).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. The light broken lines depict O—H···O interactions. Unlabeled atoms are related to the labelled atoms by the symmetry operator(-x, y, -z + 1/2).
Bis(2,2'-bipyridyl-κ2N,N')(sulfato- κ2O,O')cobalt(II) ethane-1,2-diol monosolvate top
Crystal data top
[Co(SO4)(C10H8N2)2]·C2H6O2F(000) = 1092
Mr = 529.44Dx = 1.602 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4711 reflections
a = 16.916 (3) Åθ = 3.3–27.5°
b = 11.913 (2) ŵ = 0.93 mm1
c = 12.870 (3) ÅT = 223 K
β = 122.16 (3)°Block, orange
V = 2195.6 (10) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2509 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.027
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 2118
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1512
Tmin = 0.802, Tmax = 0.874l = 1216
6197 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.042P)2 + 1.1555P]
where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(SO4)(C10H8N2)2]·C2H6O2V = 2195.6 (10) Å3
Mr = 529.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.916 (3) ŵ = 0.93 mm1
b = 11.913 (2) ÅT = 223 K
c = 12.870 (3) Å0.25 × 0.20 × 0.15 mm
β = 122.16 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2153 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.874Rint = 0.027
6197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2509 reflectionsΔρmin = 0.36 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.19027 (3)0.25000.02208 (12)
S10.00000.03740 (6)0.25000.02590 (17)
O20.06779 (10)0.10692 (12)0.24186 (15)0.0364 (4)
O10.04964 (9)0.04006 (12)0.14236 (13)0.0294 (3)
N20.10048 (11)0.20811 (14)0.19955 (16)0.0252 (4)
N10.09694 (11)0.30564 (13)0.38131 (15)0.0245 (4)
C100.09756 (15)0.15529 (18)0.1057 (2)0.0301 (5)
H10A0.04990.10390.06050.036*
C80.23390 (15)0.2495 (2)0.1420 (2)0.0348 (5)
H8A0.27870.26340.12260.042*
C10.09295 (15)0.34961 (19)0.4742 (2)0.0313 (5)
H1A0.04310.33000.48200.038*
C60.17071 (13)0.28155 (16)0.26698 (19)0.0246 (4)
C30.23441 (15)0.45087 (18)0.5493 (2)0.0321 (5)
H3A0.28060.49920.60570.038*
C90.16241 (16)0.17394 (19)0.0733 (2)0.0334 (5)
H9A0.15810.13670.00690.040*
C40.23959 (14)0.40584 (17)0.45416 (19)0.0284 (4)
H4A0.28960.42360.44600.034*
C50.16990 (13)0.33406 (16)0.37080 (18)0.0231 (4)
C70.23820 (15)0.30389 (18)0.2396 (2)0.0301 (5)
H7A0.28580.35500.28640.036*
C20.15949 (16)0.42283 (19)0.5591 (2)0.0335 (5)
H2A0.15380.45260.62160.040*
O30.01928 (16)0.32127 (14)0.14765 (18)0.0554 (5)
H30.02410.26040.18040.083*
C110.03386 (18)0.4076 (2)0.2296 (3)0.0446 (6)
H11A0.09660.40100.30130.054*
H11B0.02970.47900.19080.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0199 (2)0.0207 (2)0.0263 (2)0.0000.01267 (16)0.000
S10.0213 (3)0.0204 (3)0.0355 (4)0.0000.0148 (3)0.000
O20.0300 (8)0.0279 (8)0.0558 (10)0.0043 (7)0.0258 (7)0.0023 (7)
O10.0258 (7)0.0271 (7)0.0308 (8)0.0010 (6)0.0120 (6)0.0008 (6)
N20.0231 (8)0.0252 (9)0.0274 (9)0.0002 (7)0.0136 (7)0.0020 (7)
N10.0232 (8)0.0244 (9)0.0270 (9)0.0012 (7)0.0140 (7)0.0004 (7)
C100.0299 (10)0.0289 (10)0.0334 (11)0.0024 (9)0.0181 (9)0.0054 (9)
C80.0318 (11)0.0389 (13)0.0410 (13)0.0008 (10)0.0242 (10)0.0046 (10)
C10.0309 (11)0.0347 (11)0.0307 (11)0.0035 (10)0.0181 (9)0.0023 (9)
C60.0231 (9)0.0210 (9)0.0288 (10)0.0020 (8)0.0133 (8)0.0042 (8)
C30.0301 (11)0.0273 (11)0.0299 (11)0.0039 (9)0.0100 (9)0.0040 (9)
C90.0371 (11)0.0351 (12)0.0361 (12)0.0033 (10)0.0249 (10)0.0014 (10)
C40.0250 (10)0.0259 (10)0.0316 (11)0.0029 (9)0.0133 (9)0.0003 (9)
C50.0225 (9)0.0200 (9)0.0251 (10)0.0022 (8)0.0116 (8)0.0038 (7)
C70.0257 (10)0.0318 (11)0.0349 (12)0.0051 (9)0.0175 (9)0.0008 (9)
C20.0371 (11)0.0348 (12)0.0279 (11)0.0034 (10)0.0169 (9)0.0053 (9)
O30.0969 (16)0.0373 (10)0.0538 (12)0.0015 (10)0.0548 (12)0.0044 (9)
C110.0522 (15)0.0301 (12)0.0563 (16)0.0035 (11)0.0320 (13)0.0021 (11)
Geometric parameters (Å, º) top
Co1—N12.1175 (18)C8—H8A0.9300
Co1—N1i2.1175 (18)C1—C21.383 (3)
Co1—N2i2.1285 (17)C1—H1A0.9300
Co1—N22.1285 (17)C6—C71.388 (3)
Co1—O12.1420 (15)C6—C51.482 (3)
Co1—O1i2.1420 (15)C3—C21.380 (3)
Co1—S12.7122 (9)C3—C41.382 (3)
S1—O2i1.4629 (15)C3—H3A0.9300
S1—O21.4629 (15)C9—H9A0.9300
S1—O1i1.4958 (15)C4—C51.388 (3)
S1—O11.4958 (15)C4—H4A0.9300
N2—C101.339 (3)C7—H7A0.9300
N2—C61.354 (3)C2—H2A0.9300
N1—C11.339 (3)O3—C111.398 (3)
N1—C51.354 (3)O3—H30.8200
C10—C91.384 (3)C11—C11i1.492 (5)
C10—H10A0.9300C11—H11A0.9700
C8—C71.380 (3)C11—H11B0.9700
C8—C91.384 (3)
N1—Co1—N1i99.06 (9)N2—C10—C9122.8 (2)
N1—Co1—N2i95.55 (7)N2—C10—H10A118.6
N1i—Co1—N2i76.92 (7)C9—C10—H10A118.6
N1—Co1—N276.92 (7)C7—C8—C9119.5 (2)
N1i—Co1—N295.55 (7)C7—C8—H8A120.3
N2i—Co1—N2168.54 (9)C9—C8—H8A120.3
N1—Co1—O1158.26 (6)N1—C1—C2123.0 (2)
N1i—Co1—O198.95 (6)N1—C1—H1A118.5
N2i—Co1—O1100.31 (6)C2—C1—H1A118.5
N2—Co1—O189.31 (6)N2—C6—C7121.38 (19)
N1—Co1—O1i98.95 (6)N2—C6—C5115.13 (17)
N1i—Co1—O1i158.26 (6)C7—C6—C5123.48 (18)
N2i—Co1—O1i89.31 (6)C2—C3—C4118.8 (2)
N2—Co1—O1i100.31 (6)C2—C3—H3A120.6
O1—Co1—O1i66.68 (8)C4—C3—H3A120.6
N1—Co1—S1130.47 (5)C10—C9—C8118.3 (2)
N1i—Co1—S1130.47 (5)C10—C9—H9A120.8
N2i—Co1—S195.73 (5)C8—C9—H9A120.8
N2—Co1—S195.73 (5)C3—C4—C5119.7 (2)
O1—Co1—S133.34 (4)C3—C4—H4A120.1
O1i—Co1—S133.34 (4)C5—C4—H4A120.1
O2i—S1—O2111.03 (13)N1—C5—C4121.42 (18)
O2i—S1—O1i110.97 (9)N1—C5—C6115.52 (17)
O2—S1—O1i109.91 (8)C4—C5—C6123.05 (18)
O2i—S1—O1109.91 (8)C8—C7—C6119.3 (2)
O2—S1—O1110.97 (9)C8—C7—H7A120.4
O1i—S1—O1103.82 (12)C6—C7—H7A120.4
O2i—S1—Co1124.48 (6)C3—C2—C1118.8 (2)
O2—S1—Co1124.48 (6)C3—C2—H2A120.6
O1i—S1—Co151.91 (6)C1—C2—H2A120.6
O1—S1—Co151.91 (6)C11—O3—H3109.5
S1—O1—Co194.75 (8)O3—C11—C11i113.9 (2)
C10—N2—C6118.71 (18)O3—C11—H11A108.8
C10—N2—Co1125.17 (14)C11i—C11—H11A108.8
C6—N2—Co1116.09 (13)O3—C11—H11B108.8
C1—N1—C5118.22 (17)C11i—C11—H11B108.8
C1—N1—Co1125.50 (14)H11A—C11—H11B107.7
C5—N1—Co1116.26 (13)
N1—Co1—S1—O2i113.14 (10)O1i—Co1—N2—C699.02 (14)
N1i—Co1—S1—O2i66.86 (10)S1—Co1—N2—C6132.39 (13)
N2i—Co1—S1—O2i10.83 (9)N1i—Co1—N1—C188.69 (17)
N2—Co1—S1—O2i169.17 (9)N2i—Co1—N1—C111.08 (18)
O1—Co1—S1—O2i89.23 (11)N2—Co1—N1—C1177.68 (18)
O1i—Co1—S1—O2i90.77 (11)O1—Co1—N1—C1125.71 (19)
N1—Co1—S1—O266.86 (10)O1i—Co1—N1—C179.09 (18)
N1i—Co1—S1—O2113.14 (10)S1—Co1—N1—C191.31 (17)
N2i—Co1—S1—O2169.17 (9)N1i—Co1—N1—C593.12 (14)
N2—Co1—S1—O210.83 (9)N2i—Co1—N1—C5170.72 (14)
O1—Co1—S1—O290.77 (11)N2—Co1—N1—C50.52 (13)
O1i—Co1—S1—O289.23 (11)O1—Co1—N1—C552.5 (2)
N1—Co1—S1—O1i22.38 (9)O1i—Co1—N1—C599.11 (14)
N1i—Co1—S1—O1i157.62 (9)S1—Co1—N1—C586.88 (14)
N2i—Co1—S1—O1i79.94 (9)C6—N2—C10—C91.1 (3)
N2—Co1—S1—O1i100.06 (9)Co1—N2—C10—C9176.85 (16)
O1—Co1—S1—O1i180.0C5—N1—C1—C20.3 (3)
N1—Co1—S1—O1157.62 (9)Co1—N1—C1—C2178.49 (16)
N1i—Co1—S1—O122.38 (9)C10—N2—C6—C70.9 (3)
N2i—Co1—S1—O1100.06 (9)Co1—N2—C6—C7177.24 (16)
N2—Co1—S1—O179.94 (9)C10—N2—C6—C5178.55 (18)
O1i—Co1—S1—O1180.0Co1—N2—C6—C53.3 (2)
O2i—S1—O1—Co1118.76 (8)N2—C10—C9—C80.8 (3)
O2—S1—O1—Co1118.03 (8)C7—C8—C9—C100.3 (3)
O1i—S1—O1—Co10.0C2—C3—C4—C50.1 (3)
N1—Co1—O1—S151.43 (19)C1—N1—C5—C40.6 (3)
N1i—Co1—O1—S1162.95 (7)Co1—N1—C5—C4177.70 (14)
N2i—Co1—O1—S184.73 (8)C1—N1—C5—C6179.33 (18)
N2—Co1—O1—S1101.54 (8)Co1—N1—C5—C61.0 (2)
O1i—Co1—O1—S10.0C3—C4—C5—N10.9 (3)
N1—Co1—N2—C10179.84 (18)C3—C4—C5—C6179.46 (19)
N1i—Co1—N2—C1082.12 (18)N2—C6—C5—N12.8 (3)
N2i—Co1—N2—C10130.43 (17)C7—C6—C5—N1177.70 (18)
O1—Co1—N2—C1016.80 (17)N2—C6—C5—C4175.85 (17)
O1i—Co1—N2—C1082.94 (18)C7—C6—C5—C43.6 (3)
S1—Co1—N2—C1049.57 (17)C9—C8—C7—C60.1 (3)
N1—Co1—N2—C62.12 (13)N2—C6—C7—C80.4 (3)
N1i—Co1—N2—C695.92 (14)C5—C6—C7—C8179.00 (19)
N2i—Co1—N2—C647.61 (13)C4—C3—C2—C10.8 (3)
O1—Co1—N2—C6165.15 (14)N1—C1—C2—C31.0 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.972.758 (2)160

Experimental details

Crystal data
Chemical formula[Co(SO4)(C10H8N2)2]·C2H6O2
Mr529.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)16.916 (3), 11.913 (2), 12.870 (3)
β (°) 122.16 (3)
V3)2195.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.802, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
6197, 2509, 2153
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 1.06
No. of reflections2509
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N12.1175 (18)S1—O21.4629 (15)
Co1—N22.1285 (17)S1—O11.4958 (15)
Co1—O12.1420 (15)
N1—Co1—N276.92 (7)O2—S1—O1110.97 (9)
O1—Co1—O1i66.68 (8)O1i—S1—O1103.82 (12)
O2i—S1—O2111.03 (13)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.972.758 (2)159.8
 

Acknowledgements

This work was partially supported by the Scientific Research Foundation of Nanjing College of Chemical Technology (grant No. NHKY-2010–17)

References

First citationBottcher, A., Takeuchi, T., Simon, M. I., Meade, T. J. & Gray, H. B. (1995). J. Inorg. Biochem. 59, 221–228.  CrossRef Google Scholar
First citationHenning, H., Benedie, R., Hempel, K. & Reinhold, J. (1975). Z. Anorg. Allg. Chem. 412, 141–147.  Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationLu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448–m450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPaul, G., Choudhury, A. & Rao, C. N. R. (2002). J. Chem. Soc. Dalton Trans. pp. 3859–3867.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y. Q. & Lin, J. L. (2003). Z. Anorg. Allg. Chem. 629, 185–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, K.-L. (2010a). Acta Cryst. E66, m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L. (2010b). Acta Cryst. E66, m131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, K.-L., Zhu, Y.-M. & Lu, W.-J. (2006). Acta Cryst. E62, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds