metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromidobis(pyridine-3-carbo­nitrile-κN1)zinc(II)

aDepartment of Chemistry, Basic Science Faculty, East Tehran, Islamic Azad University, Qiam Dasht Branch, Tehran, Iran
*Correspondence e-mail: rezaghiasi1975@gmail.com

(Received 5 December 2010; accepted 7 December 2010; online 18 December 2010)

In the title compound, [ZnBr2(C6H4N2)2], the ZnII atom is four coordinated in a slightly distorted tetra­hedral fashion by two pyridine N atoms and two Br anions. ππ inter­actions between adjacent pyridine rings [centroid–centroid distance = 3.6229 (19) Å] are the main factor controlling the packing and are effective in the stabilization of the crystal structure.

Related literature

For related structures, see: Li et al. (2004[Li, X.-H., Wu, H.-Y. & Hu, J.-G. (2004). Acta Cryst. E60, m1533-m1535.]); Steffen & Palenik (1976[Steffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298-300.], 1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C6H4N2)2]

  • Mr = 433.41

  • Orthorhombic, P b c a

  • a = 8.5600 (4) Å

  • b = 14.5379 (5) Å

  • c = 23.3751 (9) Å

  • V = 2908.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 7.17 mm−1

  • T = 120 K

  • 0.40 × 0.30 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.071, Tmax = 0.210

  • 12287 measured reflections

  • 3876 independent reflections

  • 2842 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.070

  • S = 0.97

  • 3876 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—Zn1 2.061 (3)
N3—Zn1 2.072 (3)
Zn1—Br2 2.3369 (5)
Zn1—Br1 2.3471 (5)
N1—Zn1—N3 100.85 (11)
N1—Zn1—Br2 111.60 (8)
N3—Zn1—Br2 108.98 (8)
N1—Zn1—Br1 105.62 (8)
N3—Zn1—Br1 105.82 (8)
Br2—Zn1—Br1 121.841 (19)

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Several complexes with the formula [MX2L2], such as [ZnCl2(py)2], (Steffen & Palenik, 1976), [ZnCl2(4-cypy)2], (Steffen & Palenik, 1977), [CuBr2(3-Cypy)2], (Li et al. 2004), [where py is pyridine, 4-cypy is 4-cyanopyridine and 3-cypy is 3-cyanopyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. The molecular structure of the title compound is shown in Fig. 1. The ZnII atom is four-coordinated in a slightly distorted tetrahedral configuration by two N atoms from two pyridine rings and two Br- anions. The Zn—Br and Zn—N bond distances and angles (Table 1) are within normal ranges. It seems that π-π interactions between adjacent pyridine rings [centroid···centroid distance of 3.6229 (19) Å, symmetry codes: 1 - x,-y,1 - z] are the main factor controlling the packing and are effective in the stabilization of the crystal structure.

Related literature top

For related structures, see: Li et al. (2004); Steffen & Palenik (1976, 1977).

Experimental top

Zinc(II) bromide (0.45 gr, 2 mmol) was disolved in methanol (10 ml) and the solution was mixed with a methanolic solution (10 ml) of 3-pyridinecarbonitrile (0.42 g, 4 mmol). This solution was left to evaporate slowly at room temperature. After one week, colorless block shaped crystals of the title compound were isolated (yield 0.66 g, 75.9%, m.p. < 580 K).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96Å atoms and constrained to ride on their parent atoms, with Uiso(H)=1.2Ueq(C).

Structure description top

Several complexes with the formula [MX2L2], such as [ZnCl2(py)2], (Steffen & Palenik, 1976), [ZnCl2(4-cypy)2], (Steffen & Palenik, 1977), [CuBr2(3-Cypy)2], (Li et al. 2004), [where py is pyridine, 4-cypy is 4-cyanopyridine and 3-cypy is 3-cyanopyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. The molecular structure of the title compound is shown in Fig. 1. The ZnII atom is four-coordinated in a slightly distorted tetrahedral configuration by two N atoms from two pyridine rings and two Br- anions. The Zn—Br and Zn—N bond distances and angles (Table 1) are within normal ranges. It seems that π-π interactions between adjacent pyridine rings [centroid···centroid distance of 3.6229 (19) Å, symmetry codes: 1 - x,-y,1 - z] are the main factor controlling the packing and are effective in the stabilization of the crystal structure.

For related structures, see: Li et al. (2004); Steffen & Palenik (1976, 1977).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound with view along the a-axis.
Dibromidobis(pyridine-3-carbonitrile-κN1)zinc(II) top
Crystal data top
[ZnBr2(C6H4N2)2]Dx = 1.979 Mg m3
Mr = 433.41Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 12287 reflections
a = 8.5600 (4) Åθ = 2.9–29.1°
b = 14.5379 (5) ŵ = 7.17 mm1
c = 23.3751 (9) ÅT = 120 K
V = 2908.9 (2) Å3Prism, colorless
Z = 80.4 × 0.3 × 0.22 mm
F(000) = 1664
Data collection top
Bruker SMART CCD area-detector
diffractometer
2842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 29.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 119
Tmin = 0.071, Tmax = 0.210k = 1916
12287 measured reflectionsl = 2631
3876 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.07H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0331P)2]
where P = (Fo2 + 2Fc2)/3
3876 reflections(Δ/σ)max = 0.009
172 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[ZnBr2(C6H4N2)2]V = 2908.9 (2) Å3
Mr = 433.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.5600 (4) ŵ = 7.17 mm1
b = 14.5379 (5) ÅT = 120 K
c = 23.3751 (9) Å0.4 × 0.3 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2842 reflections with I > 2σ(I)
Tmin = 0.071, Tmax = 0.210Rint = 0.053
12287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.07H-atom parameters constrained
S = 0.97Δρmax = 0.82 e Å3
3876 reflectionsΔρmin = 0.50 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5292 (4)0.0361 (2)0.40962 (14)0.0200 (7)
H10.4690.07950.39040.024*
C20.6824 (4)0.0582 (2)0.42453 (14)0.0200 (7)
C30.7438 (4)0.1464 (2)0.40720 (15)0.0233 (7)
C40.7723 (4)0.0060 (2)0.45419 (15)0.0222 (7)
H40.87410.00770.46510.027*
C50.7070 (4)0.0900 (2)0.46690 (15)0.0231 (7)
H50.76430.13420.48660.028*
C60.5542 (4)0.1082 (2)0.44994 (14)0.0202 (7)
H60.51120.16550.45810.024*
C70.3503 (4)0.1991 (2)0.29772 (15)0.0252 (7)
H70.36060.24190.3270.03*
C80.3943 (4)0.2234 (2)0.24242 (16)0.0276 (8)
C90.4489 (5)0.3149 (3)0.23096 (18)0.0382 (10)
C100.3819 (4)0.1597 (3)0.19849 (15)0.0286 (7)
H100.41280.17450.16150.034*
C110.3233 (5)0.0745 (3)0.21094 (16)0.0307 (8)
H110.31310.03040.18230.037*
C120.2792 (4)0.0545 (2)0.26661 (15)0.0264 (7)
H120.2380.00330.27460.032*
N10.4666 (3)0.04558 (19)0.42210 (12)0.0188 (6)
N20.7925 (3)0.2151 (2)0.39115 (15)0.0320 (7)
N30.2937 (3)0.11564 (19)0.30954 (12)0.0203 (6)
N40.4901 (6)0.3883 (3)0.22082 (17)0.0585 (12)
Zn10.24508 (4)0.07419 (2)0.392462 (16)0.01808 (9)
Br10.11976 (4)0.06879 (2)0.384221 (15)0.02303 (8)
Br20.13208 (4)0.19690 (2)0.442048 (15)0.02540 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (15)0.0199 (15)0.0194 (17)0.0010 (12)0.0011 (12)0.0021 (13)
C20.0196 (14)0.0221 (16)0.0182 (16)0.0003 (12)0.0041 (12)0.0006 (13)
C30.0170 (14)0.0258 (17)0.0271 (18)0.0032 (13)0.0012 (13)0.0004 (14)
C40.0184 (14)0.0291 (17)0.0190 (17)0.0016 (13)0.0000 (12)0.0022 (13)
C50.0221 (15)0.0270 (18)0.0201 (17)0.0048 (13)0.0011 (12)0.0027 (14)
C60.0231 (15)0.0201 (16)0.0175 (17)0.0008 (12)0.0038 (13)0.0014 (13)
C70.0297 (17)0.0248 (17)0.0212 (17)0.0031 (14)0.0064 (13)0.0039 (14)
C80.0315 (18)0.0267 (18)0.0244 (19)0.0003 (15)0.0068 (15)0.0035 (14)
C90.054 (2)0.035 (2)0.025 (2)0.0122 (18)0.0112 (18)0.0017 (18)
C100.0352 (18)0.0329 (19)0.0177 (16)0.0066 (16)0.0071 (15)0.0022 (14)
C110.048 (2)0.0281 (19)0.0158 (17)0.0061 (16)0.0029 (15)0.0047 (15)
C120.0373 (19)0.0216 (17)0.0203 (17)0.0013 (14)0.0008 (14)0.0007 (13)
N10.0179 (12)0.0223 (13)0.0162 (14)0.0015 (10)0.0032 (10)0.0013 (11)
N20.0270 (15)0.0254 (16)0.044 (2)0.0011 (12)0.0020 (14)0.0030 (15)
N30.0224 (13)0.0221 (14)0.0165 (14)0.0023 (11)0.0015 (11)0.0030 (11)
N40.095 (3)0.049 (2)0.032 (2)0.031 (2)0.017 (2)0.0050 (19)
Zn10.01815 (16)0.02033 (17)0.01577 (17)0.00049 (14)0.00133 (14)0.00152 (15)
Br10.02130 (14)0.02218 (16)0.02562 (17)0.00458 (13)0.00254 (13)0.00263 (13)
Br20.02787 (16)0.02558 (16)0.02274 (17)0.00407 (13)0.00031 (14)0.00736 (14)
Geometric parameters (Å, º) top
C1—N11.335 (4)C7—H70.93
C1—C21.394 (4)C8—C101.387 (5)
C1—H10.93C8—C91.436 (5)
C2—C41.394 (5)C9—N41.148 (5)
C2—C31.445 (5)C10—C111.368 (5)
C3—N21.145 (5)C10—H100.93
C4—C51.377 (5)C11—C121.386 (5)
C4—H40.93C11—H110.93
C5—C61.392 (4)C12—N31.346 (4)
C5—H50.93C12—H120.93
C6—N11.347 (4)N1—Zn12.061 (3)
C6—H60.93N3—Zn12.072 (3)
C7—N31.336 (4)Zn1—Br22.3369 (5)
C7—C81.392 (5)Zn1—Br12.3471 (5)
N1—C1—C2121.9 (3)N4—C9—C8178.4 (5)
N1—C1—H1119.1C11—C10—C8118.4 (3)
C2—C1—H1119.1C11—C10—H10120.8
C4—C2—C1119.3 (3)C8—C10—H10120.8
C4—C2—C3122.2 (3)C10—C11—C12119.3 (3)
C1—C2—C3118.5 (3)C10—C11—H11120.3
N2—C3—C2177.1 (4)C12—C11—H11120.3
C5—C4—C2118.5 (3)N3—C12—C11122.4 (3)
C5—C4—H4120.8N3—C12—H12118.8
C2—C4—H4120.8C11—C12—H12118.8
C4—C5—C6119.3 (3)C1—N1—C6118.9 (3)
C4—C5—H5120.4C1—N1—Zn1118.4 (2)
C6—C5—H5120.4C6—N1—Zn1122.6 (2)
N1—C6—C5122.2 (3)C7—N3—C12118.6 (3)
N1—C6—H6118.9C7—N3—Zn1122.0 (2)
C5—C6—H6118.9C12—N3—Zn1119.1 (2)
N3—C7—C8121.4 (3)N1—Zn1—N3100.85 (11)
N3—C7—H7119.3N1—Zn1—Br2111.60 (8)
C8—C7—H7119.3N3—Zn1—Br2108.98 (8)
C10—C8—C7119.9 (3)N1—Zn1—Br1105.62 (8)
C10—C8—C9120.4 (3)N3—Zn1—Br1105.82 (8)
C7—C8—C9119.7 (3)Br2—Zn1—Br1121.841 (19)
N1—C1—C2—C41.2 (5)C8—C7—N3—C120.2 (5)
N1—C1—C2—C3177.2 (3)C8—C7—N3—Zn1174.7 (3)
C1—C2—C4—C51.1 (5)C11—C12—N3—C71.2 (5)
C3—C2—C4—C5177.2 (3)C11—C12—N3—Zn1173.9 (3)
C2—C4—C5—C60.1 (5)C1—N1—Zn1—N382.3 (3)
C4—C5—C6—N11.0 (5)C6—N1—Zn1—N392.9 (3)
N3—C7—C8—C101.1 (5)C1—N1—Zn1—Br2162.1 (2)
N3—C7—C8—C9177.6 (3)C6—N1—Zn1—Br222.7 (3)
C7—C8—C10—C111.3 (5)C1—N1—Zn1—Br127.7 (3)
C9—C8—C10—C11177.3 (4)C6—N1—Zn1—Br1157.1 (2)
C8—C10—C11—C120.3 (6)C7—N3—Zn1—N177.5 (3)
C10—C11—C12—N30.9 (6)C12—N3—Zn1—N197.4 (3)
C2—C1—N1—C60.1 (5)C7—N3—Zn1—Br240.1 (3)
C2—C1—N1—Zn1175.3 (2)C12—N3—Zn1—Br2145.1 (2)
C5—C6—N1—C11.0 (5)C7—N3—Zn1—Br1172.7 (2)
C5—C6—N1—Zn1176.2 (2)C12—N3—Zn1—Br112.4 (3)

Experimental details

Crystal data
Chemical formula[ZnBr2(C6H4N2)2]
Mr433.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)8.5600 (4), 14.5379 (5), 23.3751 (9)
V3)2908.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)7.17
Crystal size (mm)0.4 × 0.3 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.071, 0.210
No. of measured, independent and
observed [I > 2σ(I)] reflections
12287, 3876, 2842
Rint0.053
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.07, 0.97
No. of reflections3876
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N1—Zn12.061 (3)Zn1—Br22.3369 (5)
N3—Zn12.072 (3)Zn1—Br12.3471 (5)
N1—Zn1—N3100.85 (11)N1—Zn1—Br1105.62 (8)
N1—Zn1—Br2111.60 (8)N3—Zn1—Br1105.82 (8)
N3—Zn1—Br2108.98 (8)Br2—Zn1—Br1121.841 (19)
 

Acknowledgements

I am grateful to the Islamic Azad University, Qiam Dasht Branch, for financial support.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLi, X.-H., Wu, H.-Y. & Hu, J.-G. (2004). Acta Cryst. E60, m1533–m1535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1976). Acta Cryst. B32, 298–300.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1127.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds