organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,7′-Dihy­dr­oxy-4,4′-di­methyl-3,4-di­hydro-2H,2′H-4,6′-bichromene-2,2′-dione

aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202002, India
*Correspondence e-mail: psidonio@pollux.fis.uc.pt

(Received 12 December 2010; accepted 14 December 2010; online 18 December 2010)

The title compound, C20H16O6, which contains one chiral centre, crystallizes as a racemate. The mean planes of the two coumarin units make a dihedral angle of 88.07 (2)°. The pyrone ring containing the chiral centre adopts a sofa conformation. In the crystal, four mol­ecules are linked by O—H⋯O hydrogen bonds, forming a tetrameric ring with graph-set motif R44(32). These tetramers are further linked by O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the chemical reactivity and bioactivity of coumarins and derivatives, see: Fylaktakidou et al. (2004[Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des. 10, 3813-3833.]). For a review on bicoumarins, see: Basa (1988[Basa, S. B. (1988). Phytochemistry, 27, 1933-1941.]). For the synthesis of bicoumarins, see: Ilyas & Parveen (1996[Ilyas, M. & Parveen, M. (1996). Tetrahedron, 52, 3991-3996.]); Sharma et al. (1977[Sharma, D. K. & Seshadri, T. R. (1977). Indian J. Chem. 15, 939-341.]); Gašparová et al. (2009[Gašparová, R., Kotlebová, K. & Lácová, M. (2009). Nova Biotechnol. 9, 349-354.]). For the synthesis of the title compound, see: Parveen et al. (1991[Parveen, M., Khan, N. U.-D. & Logani, M. K. (1991). J. Indian Chem. Soc. 68, 617-618.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O6

  • Mr = 352.33

  • Monoclinic, P 21 /c

  • a = 9.0432 (2) Å

  • b = 11.5111 (2) Å

  • c = 17.2212 (4) Å

  • β = 110.870 (1)°

  • V = 1675.06 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.39 × 0.29 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 0.977

  • 44743 measured reflections

  • 4457 independent reflections

  • 3459 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.06

  • 4457 reflections

  • 239 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5i 0.82 2.13 2.9406 (13) 169
O6—H6⋯O2ii 0.82 1.91 2.7024 (15) 161
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Studies of natural and synthetic coumarins and its derivatives have been present for a number of years. Coumarins and their derivatives are characterized by excellent chemical reactivity and bioactivity (Fylaktakidou et al., 2004). Bicoumarins are a comparatively new class of naturally occurring compounds (Basa, 1988) and are reputed for their biological activities such as anticoagulant, anticancer, antifungal agents. Only few bicoumarins have been synthesized (Ilyas & Parveen, 1996; Sharma & Seshadri, 1977; Gašparová et al., 2009). Considering the biological importance and scarcity of work on coumarin dimer a novel coumarin dimer 7,7'-dihydroxy-4,4'-dimethyl-3,4-dihydro-2H,2'H-4,6'- bichromene-2,2'-dione (I) was synthesized by the reinvestigation of synthesis of 7-hydroxy-4-methyl coumarin with the condensation of resorcinol and ethyl acetoacetate in different molar ratio using catalytic amount of polyphospharic acid (PPA) (Parveen et al., 1991). The increase in molar ratio of ethyl acetoacetate leads to a slight increase of coumarin dimer (I).

The title compound, (I), Fig. 1, has one chiral carbon atom (the C11 atom). Both enantiomers are present in the crystal structure, forming a racemate.

In the molecule of (I), the mean planes of the two coumarin units make a dihedral angle of 88.07 (2). In one of the coumarin units, the the dihedral angle between the least-squares planes of the pyrone and benzene rings is 3.36 (6)°. In the other coumarin unit the pyrone ring adopts an envelope conformation and the dihedral angle with the aromatic ring is 13.23 (6)°.

In the crystal, the molecules are linked by O—H···O hydrogen bonds (Fig. 2, Table 2) forming rings with four molecules, graph-set motif R44(32), according to the Etter's graph-set theory (Etter et al., 1990), centered about inversion centres. These rings are linked, with each molecule participating in two rings, forming a three-dimensional network. The structure is stabilized further by weak C—H···O hydrogen bonds.

Related literature top

For literature on the chemical reactivity and bioactivity of coumarins and derivatives see: Fylaktakidou et al., (2004) For a review on bicoumarins see: Basa, (1988) For the synthesis of bicoumarins see: Ilyas & Parveen, (1996); Sharma et al., (1977); Gašparová et al., (2009). For the synthesis of the title compound, see: Parveen et al. (1991). For hydrogen bond motifs, see: Etter et al. (1990).

Experimental top

Polyphospharic acid was prepared by mixing orthophosphoric acid (15 mL) and phosphorus pentaoxide (23.5 g) followed by heating on a water bath for 1.5 hr. A catalytic amount of polyphosphoric acid (160 g) was added to resorcinol (11 g, 100 mmol) and ethyl acetoacetate (13 mL, 100 mmol) and was heated on a water bath (75–80 °C) for 20 min. with stirring. The viscous mixture was then poured into ice cold water and the resulting solid (18 g, m.p. 180 °C) was crystallized with EtOH as shinning crystal (7 g), it was characterized as 7-hydroxy-4-methyl coumarin by comparison with authentic sample. The mother liquor showed the presence of two bands I&II (TLC, silica-gel, benzene-ethylacetate 2:1) which was separated into individual compounds by preparative thin layer chromatography in the same solvent. The compound I was identified as 7-hydroxy-4-methyl coumarin while the compound II (m.p. 305 °C) was characterized as a novel coumarin dimer, (I), by IR, 1H NMR, 13C NMR & MS spectra.

Refinement top

All H atoms were located in a difference Fourier synthesis, placed in calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults.

Structure description top

Studies of natural and synthetic coumarins and its derivatives have been present for a number of years. Coumarins and their derivatives are characterized by excellent chemical reactivity and bioactivity (Fylaktakidou et al., 2004). Bicoumarins are a comparatively new class of naturally occurring compounds (Basa, 1988) and are reputed for their biological activities such as anticoagulant, anticancer, antifungal agents. Only few bicoumarins have been synthesized (Ilyas & Parveen, 1996; Sharma & Seshadri, 1977; Gašparová et al., 2009). Considering the biological importance and scarcity of work on coumarin dimer a novel coumarin dimer 7,7'-dihydroxy-4,4'-dimethyl-3,4-dihydro-2H,2'H-4,6'- bichromene-2,2'-dione (I) was synthesized by the reinvestigation of synthesis of 7-hydroxy-4-methyl coumarin with the condensation of resorcinol and ethyl acetoacetate in different molar ratio using catalytic amount of polyphospharic acid (PPA) (Parveen et al., 1991). The increase in molar ratio of ethyl acetoacetate leads to a slight increase of coumarin dimer (I).

The title compound, (I), Fig. 1, has one chiral carbon atom (the C11 atom). Both enantiomers are present in the crystal structure, forming a racemate.

In the molecule of (I), the mean planes of the two coumarin units make a dihedral angle of 88.07 (2). In one of the coumarin units, the the dihedral angle between the least-squares planes of the pyrone and benzene rings is 3.36 (6)°. In the other coumarin unit the pyrone ring adopts an envelope conformation and the dihedral angle with the aromatic ring is 13.23 (6)°.

In the crystal, the molecules are linked by O—H···O hydrogen bonds (Fig. 2, Table 2) forming rings with four molecules, graph-set motif R44(32), according to the Etter's graph-set theory (Etter et al., 1990), centered about inversion centres. These rings are linked, with each molecule participating in two rings, forming a three-dimensional network. The structure is stabilized further by weak C—H···O hydrogen bonds.

For literature on the chemical reactivity and bioactivity of coumarins and derivatives see: Fylaktakidou et al., (2004) For a review on bicoumarins see: Basa, (1988) For the synthesis of bicoumarins see: Ilyas & Parveen, (1996); Sharma et al., (1977); Gašparová et al., (2009). For the synthesis of the title compound, see: Parveen et al. (1991). For hydrogen bond motifs, see: Etter et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. One of the R44(32) rings. The hydrogen bonds are depicted by dashed lines.
7,7'-Dihydroxy-4,4'-dimethyl-3,4-dihydro-2H,2'H- 4,6'-bichromene-2,2'-dione top
Crystal data top
C20H16O6F(000) = 736
Mr = 352.33Dx = 1.397 Mg m3
Monoclinic, P21/cMelting point: 578 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.0432 (2) ÅCell parameters from 6612 reflections
b = 11.5111 (2) Åθ = 2.5–26.9°
c = 17.2212 (4) ŵ = 0.10 mm1
β = 110.870 (1)°T = 293 K
V = 1675.06 (6) Å3Block, colourless
Z = 40.39 × 0.29 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4457 independent reflections
Radiation source: fine-focus sealed tube3459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.863, Tmax = 0.977k = 1515
44743 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.3328P]
where P = (Fo2 + 2Fc2)/3
4457 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H16O6V = 1675.06 (6) Å3
Mr = 352.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0432 (2) ŵ = 0.10 mm1
b = 11.5111 (2) ÅT = 293 K
c = 17.2212 (4) Å0.39 × 0.29 × 0.22 mm
β = 110.870 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4457 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3459 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.977Rint = 0.032
44743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
4457 reflectionsΔρmin = 0.19 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74647 (10)0.54064 (8)0.87909 (5)0.0368 (2)
O20.54717 (11)0.46437 (9)0.90479 (6)0.0493 (3)
O31.15727 (12)0.69823 (9)0.80504 (6)0.0451 (2)
H31.11420.65500.76560.068*
O41.12946 (11)1.04007 (8)0.96142 (5)0.0417 (2)
O51.02955 (13)1.03756 (9)0.82593 (6)0.0524 (3)
O61.36961 (17)1.09547 (11)1.24734 (7)0.0741 (4)
H61.43191.06631.28990.111*
C151.32138 (13)0.89438 (10)1.03809 (7)0.0316 (2)
C10.67075 (14)0.51800 (11)0.93326 (8)0.0354 (3)
C20.74199 (14)0.55917 (10)1.01676 (8)0.0342 (3)
H20.69600.53931.05540.041*
C30.87346 (13)0.62569 (10)1.04157 (7)0.0299 (2)
C40.94702 (13)0.65387 (9)0.98182 (7)0.0269 (2)
C50.88131 (13)0.60745 (10)0.90244 (7)0.0291 (2)
C60.94786 (14)0.62367 (11)0.84276 (7)0.0341 (3)
H6A0.90140.59080.79030.041*
C71.08379 (14)0.68894 (10)0.86131 (7)0.0319 (2)
C81.14982 (13)0.74657 (9)0.93879 (7)0.0286 (2)
C91.07994 (13)0.72530 (9)0.99702 (7)0.0281 (2)
H91.12340.76021.04890.034*
C100.94310 (18)0.66923 (12)1.12910 (8)0.0429 (3)
H10A0.88210.64051.16060.064*
H10B0.94150.75261.12910.064*
H10C1.05030.64251.15370.064*
C111.29393 (13)0.82800 (10)0.95799 (7)0.0318 (2)
C121.26202 (16)0.92183 (11)0.88992 (8)0.0386 (3)
H12A1.35780.96660.89970.046*
H12B1.23530.88420.83630.046*
C131.13148 (16)1.00189 (10)0.88775 (8)0.0378 (3)
C141.24095 (14)0.99771 (10)1.03566 (7)0.0338 (3)
C161.42053 (15)0.85861 (11)1.11672 (8)0.0393 (3)
H161.47630.78941.12180.047*
C171.43867 (16)0.92269 (12)1.18742 (8)0.0456 (3)
H171.50520.89611.23900.055*
C181.35767 (17)1.02674 (13)1.18141 (8)0.0460 (3)
C191.25766 (17)1.06437 (12)1.10452 (8)0.0428 (3)
H191.20241.13381.09940.051*
C201.44116 (15)0.75869 (12)0.96108 (9)0.0440 (3)
H20A1.45960.69731.00120.066*
H20B1.53130.80940.97670.066*
H20C1.42450.72610.90730.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (4)0.0447 (5)0.0291 (4)0.0113 (4)0.0090 (4)0.0025 (4)
O20.0374 (5)0.0640 (6)0.0427 (5)0.0179 (4)0.0095 (4)0.0013 (5)
O30.0555 (6)0.0535 (6)0.0338 (5)0.0153 (5)0.0250 (4)0.0071 (4)
O40.0494 (5)0.0416 (5)0.0294 (4)0.0115 (4)0.0082 (4)0.0055 (4)
O50.0673 (7)0.0513 (6)0.0321 (5)0.0083 (5)0.0099 (5)0.0129 (4)
O60.0944 (10)0.0718 (8)0.0366 (6)0.0264 (7)0.0004 (6)0.0133 (5)
C150.0309 (6)0.0287 (5)0.0329 (6)0.0062 (4)0.0087 (5)0.0019 (4)
C10.0316 (6)0.0374 (6)0.0360 (6)0.0017 (5)0.0105 (5)0.0052 (5)
C20.0345 (6)0.0376 (6)0.0341 (6)0.0009 (5)0.0165 (5)0.0032 (5)
C30.0351 (6)0.0268 (5)0.0295 (5)0.0035 (4)0.0134 (5)0.0015 (4)
C40.0292 (5)0.0251 (5)0.0255 (5)0.0020 (4)0.0087 (4)0.0015 (4)
C50.0288 (5)0.0285 (5)0.0278 (5)0.0021 (4)0.0073 (4)0.0010 (4)
C60.0407 (6)0.0372 (6)0.0226 (5)0.0054 (5)0.0091 (5)0.0026 (4)
C70.0388 (6)0.0327 (6)0.0268 (5)0.0007 (5)0.0147 (5)0.0023 (4)
C80.0312 (5)0.0247 (5)0.0290 (5)0.0001 (4)0.0099 (5)0.0021 (4)
C90.0329 (6)0.0254 (5)0.0246 (5)0.0005 (4)0.0085 (4)0.0002 (4)
C100.0587 (8)0.0417 (7)0.0325 (6)0.0083 (6)0.0215 (6)0.0054 (5)
C110.0327 (6)0.0290 (5)0.0336 (6)0.0028 (4)0.0116 (5)0.0023 (4)
C120.0486 (7)0.0342 (6)0.0373 (6)0.0056 (5)0.0208 (6)0.0042 (5)
C130.0509 (7)0.0309 (6)0.0314 (6)0.0048 (5)0.0143 (6)0.0069 (5)
C140.0343 (6)0.0330 (6)0.0298 (6)0.0015 (5)0.0063 (5)0.0050 (5)
C160.0359 (6)0.0341 (6)0.0402 (7)0.0004 (5)0.0040 (5)0.0033 (5)
C170.0428 (7)0.0480 (7)0.0334 (6)0.0006 (6)0.0017 (6)0.0035 (6)
C180.0499 (8)0.0469 (7)0.0339 (7)0.0001 (6)0.0061 (6)0.0047 (6)
C190.0492 (8)0.0371 (6)0.0379 (7)0.0059 (6)0.0104 (6)0.0001 (5)
C200.0363 (7)0.0437 (7)0.0543 (8)0.0002 (5)0.0190 (6)0.0004 (6)
Geometric parameters (Å, º) top
O1—C11.3646 (14)C7—C81.4176 (16)
O1—C51.3751 (13)C8—C91.3844 (15)
O2—C11.2166 (15)C8—C111.5424 (15)
O3—C71.3604 (13)C9—H90.9300
O3—H30.8200C10—H10A0.9600
O4—C131.3489 (15)C10—H10B0.9600
O4—C141.4036 (14)C10—H10C0.9600
O5—C131.2052 (15)C11—C201.5367 (17)
O6—C181.3561 (17)C11—C121.5437 (16)
O6—H60.8200C12—C131.4876 (19)
C15—C141.3871 (17)C12—H12A0.9700
C15—C161.3936 (17)C12—H12B0.9700
C15—C111.5180 (16)C14—C191.3749 (18)
C1—C21.4308 (17)C16—C171.3824 (19)
C2—C31.3492 (16)C16—H160.9300
C2—H20.9300C17—C181.388 (2)
C3—C41.4472 (15)C17—H170.9300
C3—C101.4978 (16)C18—C191.3805 (19)
C4—C51.3887 (15)C19—H190.9300
C4—C91.4019 (15)C20—H20A0.9600
C5—C61.3763 (16)C20—H20B0.9600
C6—C71.3776 (16)C20—H20C0.9600
C6—H6A0.9300
C1—O1—C5121.03 (9)H10A—C10—H10C109.5
C7—O3—H3109.5H10B—C10—H10C109.5
C13—O4—C14119.83 (10)C15—C11—C20111.76 (10)
C18—O6—H6109.5C15—C11—C8110.66 (9)
C14—C15—C16115.58 (11)C20—C11—C8110.33 (10)
C14—C15—C11119.34 (10)C15—C11—C12105.29 (9)
C16—C15—C11125.07 (11)C20—C11—C12108.35 (10)
O2—C1—O1115.72 (11)C8—C11—C12110.32 (10)
O2—C1—C2126.38 (11)C13—C12—C11112.62 (10)
O1—C1—C2117.90 (10)C13—C12—H12A109.1
C3—C2—C1122.46 (11)C11—C12—H12A109.1
C3—C2—H2118.8C13—C12—H12B109.1
C1—C2—H2118.8C11—C12—H12B109.1
C2—C3—C4118.58 (10)H12A—C12—H12B107.8
C2—C3—C10121.05 (11)O5—C13—O4117.23 (12)
C4—C3—C10120.37 (10)O5—C13—C12125.71 (12)
C5—C4—C9116.57 (10)O4—C13—C12117.05 (11)
C5—C4—C3118.02 (10)C19—C14—C15123.86 (11)
C9—C4—C3125.41 (10)C19—C14—O4114.47 (11)
O1—C5—C6115.82 (10)C15—C14—O4121.62 (11)
O1—C5—C4121.80 (10)C17—C16—C15122.11 (12)
C6—C5—C4122.37 (10)C17—C16—H16118.9
C5—C6—C7119.49 (10)C15—C16—H16118.9
C5—C6—H6A120.3C16—C17—C18120.06 (12)
C7—C6—H6A120.3C16—C17—H17120.0
O3—C7—C6119.98 (10)C18—C17—H17120.0
O3—C7—C8119.00 (10)O6—C18—C19116.71 (13)
C6—C7—C8121.03 (10)O6—C18—C17123.94 (13)
C9—C8—C7116.82 (10)C19—C18—C17119.34 (13)
C9—C8—C11121.40 (10)C14—C19—C18119.04 (12)
C7—C8—C11121.78 (10)C14—C19—H19120.5
C8—C9—C4123.42 (10)C18—C19—H19120.5
C8—C9—H9118.3C11—C20—H20A109.5
C4—C9—H9118.3C11—C20—H20B109.5
C3—C10—H10A109.5H20A—C20—H20B109.5
C3—C10—H10B109.5C11—C20—H20C109.5
H10A—C10—H10B109.5H20A—C20—H20C109.5
C3—C10—H10C109.5H20B—C20—H20C109.5
C5—O1—C1—O2175.48 (11)C16—C15—C11—C892.09 (14)
C5—O1—C1—C24.23 (16)C14—C15—C11—C1232.87 (14)
O2—C1—C2—C3174.86 (13)C16—C15—C11—C12148.70 (12)
O1—C1—C2—C34.81 (18)C9—C8—C11—C1510.98 (14)
C1—C2—C3—C41.56 (17)C7—C8—C11—C15169.78 (10)
C1—C2—C3—C10178.78 (12)C9—C8—C11—C20113.22 (12)
C2—C3—C4—C52.19 (16)C7—C8—C11—C2066.02 (14)
C10—C3—C4—C5177.46 (11)C9—C8—C11—C12127.09 (11)
C2—C3—C4—C9177.44 (11)C7—C8—C11—C1253.67 (14)
C10—C3—C4—C92.90 (17)C15—C11—C12—C1354.35 (13)
C1—O1—C5—C6179.56 (11)C20—C11—C12—C13174.05 (11)
C1—O1—C5—C40.53 (16)C8—C11—C12—C1365.08 (13)
C9—C4—C5—O1176.89 (10)C14—O4—C13—O5177.23 (11)
C3—C4—C5—O12.77 (16)C14—O4—C13—C124.36 (16)
C9—C4—C5—C64.14 (16)C11—C12—C13—O5138.57 (13)
C3—C4—C5—C6176.19 (11)C11—C12—C13—O443.17 (15)
O1—C5—C6—C7179.59 (10)C16—C15—C14—C191.57 (18)
C4—C5—C6—C70.57 (18)C11—C15—C14—C19179.86 (12)
C5—C6—C7—O3175.00 (11)C16—C15—C14—O4175.78 (11)
C5—C6—C7—C84.60 (18)C11—C15—C14—O42.79 (17)
O3—C7—C8—C9173.82 (10)C13—O4—C14—C19162.46 (12)
C6—C7—C8—C95.79 (16)C13—O4—C14—C1519.96 (17)
O3—C7—C8—C115.46 (17)C14—C15—C16—C170.69 (18)
C6—C7—C8—C11174.94 (10)C11—C15—C16—C17179.17 (12)
C7—C8—C9—C42.04 (16)C15—C16—C17—C180.5 (2)
C11—C8—C9—C4178.69 (10)C16—C17—C18—O6179.39 (15)
C5—C4—C9—C82.76 (16)C16—C17—C18—C190.9 (2)
C3—C4—C9—C8177.60 (10)C15—C14—C19—C181.2 (2)
C14—C15—C11—C20150.29 (11)O4—C14—C19—C18176.31 (12)
C16—C15—C11—C2031.29 (16)O6—C18—C19—C14179.82 (14)
C14—C15—C11—C886.33 (12)C17—C18—C19—C140.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.822.132.9406 (13)169
O6—H6···O2ii0.821.912.7024 (15)161
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16O6
Mr352.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0432 (2), 11.5111 (2), 17.2212 (4)
β (°) 110.870 (1)
V3)1675.06 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.39 × 0.29 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.863, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
44743, 4457, 3459
Rint0.032
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.06
No. of reflections4457
No. of parameters239
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.822.132.9406 (13)169.3
O6—H6···O2ii0.821.912.7024 (15)161.3
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) under the scholarship SFRH/BD/38387/2008.

References

First citationBasa, S. B. (1988). Phytochemistry, 27, 1933–1941.  CrossRef CAS Google Scholar
First citationBruker (2003). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des. 10, 3813–3833.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGašparová, R., Kotlebová, K. & Lácová, M. (2009). Nova Biotechnol. 9, 349–354.  Google Scholar
First citationIlyas, M. & Parveen, M. (1996). Tetrahedron, 52, 3991–3996.  CrossRef CAS Web of Science Google Scholar
First citationParveen, M., Khan, N. U.-D. & Logani, M. K. (1991). J. Indian Chem. Soc. 68, 617–618.  CAS Google Scholar
First citationSharma, D. K. & Seshadri, T. R. (1977). Indian J. Chem. 15, 939–341.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds