metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(5-carb­­oxy-2-propyl-1H-imidazole-4-carboxyl­ato-κ2N3,O4)cobalt(II) 3.5-hydrate

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@163.com

(Received 13 December 2010; accepted 16 December 2010; online 24 December 2010)

In the title complex, [Co(C8H9N2O4)2(H2O)2]·3.5H2O, the CoII cation is six-coordinated by two H2pimda ligands (H3pimda is 2-propyl-1H-imidazole-4,5-carboxylic acid) and two water mol­ecules in a distorted octa­hedral environment. The crystal structures features a three-dimensional network stabilized by extensive O—H⋯O and N—H⋯O hydrogen bonds. The propyl groups of the ligands are disordered over two sets of sites with refined occupancies of 0.673 (8):0.327 (8) and 0.621 (17):0.379 (17). One of the water mol­ecules is located on a site with half-occupancy.

Related literature

For our past work based on H3pimda, see: Yan et al. (2010[Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.]); Li, Dong et al. (2010[Li, S.-J., Dong, J.-J., Song, W.-D., Yan, J.-B. & Li, S.-H. (2010). Acta Cryst. E66, m1175-m1176.]); Song et al. (2010[Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.]); He et al. (2010[He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.]); Fan et al. (2010[Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897-m898.]); Li, Miao et al. (2010[Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096-m1097.]); Li, Song et al. (2010[Li, S.-J., Song, W.-D., Li, S.-H., Dong, J.-J. & Yan, J.-B. (2010). Acta Cryst. E66, m1094-m1095.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8H9N2O4)2(H2O)2]·3.5H2O

  • Mr = 552.36

  • Triclinic, [P \overline 1]

  • a = 10.405 (1) Å

  • b = 10.6131 (11) Å

  • c = 11.2529 (13) Å

  • α = 82.371 (1)°

  • β = 83.743 (1)°

  • γ = 87.330 (2)°

  • V = 1223.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 298 K

  • 0.18 × 0.09 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.948

  • 6529 measured reflections

  • 4249 independent reflections

  • 2522 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.101

  • S = 1.03

  • 4249 reflections

  • 376 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4W 0.86 1.89 2.745 (5) 171
N4—H4⋯O5Wi 0.86 1.93 2.752 (5) 160
O3—H3⋯O2 0.82 1.68 2.500 (4) 179
O7—H7⋯O6 0.82 1.64 2.461 (4) 176
O1W—H1W⋯O8ii 0.85 1.87 2.715 (4) 178
O1W—H2W⋯O3Wiii 0.85 1.81 2.661 (4) 177
O2W—H4W⋯O7Wiv 0.85 1.94 2.791 (4) 174
O2W—H3W⋯O8v 0.85 2.05 2.897 (4) 175
O3W—H5W⋯O2iv 0.85 1.95 2.796 (5) 172
O3W—H6W⋯O5vi 0.85 2.05 2.895 (4) 172
O3W—H6W⋯O6vi 0.85 2.63 3.206 (4) 127
O4W—H8W⋯O6W 0.85 1.89 2.674 (7) 152
O5W—H9W⋯O3Wiii 0.85 2.08 2.867 (5) 153
O5W—H10W⋯O7Wiv 0.85 2.33 3.092 (5) 149
O6W—H12W⋯O6Wvii 0.85 1.68 2.162 (11) 113
O6W—H12W⋯O1viii 0.85 2.14 2.730 (6) 126
O6W—H11W⋯O5Wiv 0.85 2.05 2.588 (7) 121
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z; (iii) x, y, z-1; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -y+1, -z+2; (viii) x, y, z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 2-propyl-1H-imidazole-4,5-carboxylate (H3pimda) ligand has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)] (Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide (Yan et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate (He et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickel(II) tetrahedrate (Fan et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- k2N3,O4)-manganese(II) 3.5-hydrate (Li, Miao et al., 2010), Diaquabis (5-carboxy-2-propyl-1H-imidazole-4-carboxylato-K2N3,O4)zinc(II) 3.5-hydrate (Li, Song et al. 2010) and Diaquabis(5-carboxy-2-propyl-1H- imidazole-4-carboxylato-k2N3,O4)cadmium(II) 3.5-hydrate (Li, Dong et al. 2010). In this paper, we report the synthesis and structure of a new Co(II) complex based the same ligand.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II), Mn(II), Cd(II) and Zn(II) analogues (Fan et al., 2010; Li, Dong et al., 2010; Li, Song et al., 2010; Li, Miao et al., 2010), Similar structural description applies to the present isomorphous complex. The CoII is six-coordinated in a distorted octahedral geometry. the H3pimda acts as a bidentate mode to chelate the center Co(II). one carboxy group of the ligand was delocalized and the other was protonated, indicated by the difference of the bond lengths. The dihedral angle between the two imidazole rings is 84.2 (2) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds.The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.673 (8):0.327 (8) and 0.621 (17): 0.379 (17). One of the water molecules is half occupied.

Related literature top

For our past work based on H3pimda, see: Yan et al. (2010); Li, Dong et al. (2010); Song et al. (2010); He et al. (2010); Fan et al. (2010); Li, Miao et al. (2010); Li, Song et al. (2010).

Experimental top

A mixture of Co(NO3)2 (0.5 mmol, 0.06 g) and 2-propyl-1H-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 15 ml of H2O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433K for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with Uiso(H) = 1.5Ueq(O). Carboxyl H atoms were located in a difference map and refined with distance restraints, Uiso(H) = 1.5Ueq(O). Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C,N). The propyl groups of H3pimda are disordered over two sites with refined occupancies of 0.673 (8):0.327 (8) and 0.621 (17):0.379 (17). C—C distance restraints were applied for the disordered components. The O3W water molecule is located close to an inversion centre, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Structure description top

The 2-propyl-1H-imidazole-4,5-carboxylate (H3pimda) ligand has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k3 N3, O4,O5)calcium(II)] (Song et al., 2010), [diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato-k2N3,O4) manganese(II)]N,N-dimethylformamide (Yan et al., 2010), Diaquabis(4-carboxy-2-propyl-1H-imidazole-5-carboxylato- k2N3,O4)copper(II) N,N-dimethylformamide disolvate (He et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole- 4-carboxylato-k2N3,O4)nickel(II) tetrahedrate (Fan et al., 2010), Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- k2N3,O4)-manganese(II) 3.5-hydrate (Li, Miao et al., 2010), Diaquabis (5-carboxy-2-propyl-1H-imidazole-4-carboxylato-K2N3,O4)zinc(II) 3.5-hydrate (Li, Song et al. 2010) and Diaquabis(5-carboxy-2-propyl-1H- imidazole-4-carboxylato-k2N3,O4)cadmium(II) 3.5-hydrate (Li, Dong et al. 2010). In this paper, we report the synthesis and structure of a new Co(II) complex based the same ligand.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II), Mn(II), Cd(II) and Zn(II) analogues (Fan et al., 2010; Li, Dong et al., 2010; Li, Song et al., 2010; Li, Miao et al., 2010), Similar structural description applies to the present isomorphous complex. The CoII is six-coordinated in a distorted octahedral geometry. the H3pimda acts as a bidentate mode to chelate the center Co(II). one carboxy group of the ligand was delocalized and the other was protonated, indicated by the difference of the bond lengths. The dihedral angle between the two imidazole rings is 84.2 (2) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H···O and N—H···O hydrogen bonds.The propyl groups of H3pimda are disordered over two sets of sites with refined occupiencies of 0.673 (8):0.327 (8) and 0.621 (17): 0.379 (17). One of the water molecules is half occupied.

For our past work based on H3pimda, see: Yan et al. (2010); Li, Dong et al. (2010); Song et al. (2010); He et al. (2010); Fan et al. (2010); Li, Miao et al. (2010); Li, Song et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
Diaquabis(5-carboxy-2-propyl-1H-imidazole-4-carboxylato- κ2N3,O4)cobalt(II) 3.5-hydrate top
Crystal data top
[Co(C8H9N2O4)2(H2O)2]·3.5H2OZ = 2
Mr = 552.36F(000) = 576
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.405 (1) ÅCell parameters from 1702 reflections
b = 10.6131 (11) Åθ = 2.5–25.9°
c = 11.2529 (13) ŵ = 0.77 mm1
α = 82.371 (1)°T = 298 K
β = 83.743 (1)°Cube, red
γ = 87.330 (2)°0.18 × 0.09 × 0.07 mm
V = 1223.7 (2) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4249 independent reflections
Radiation source: fine-focus sealed tube2522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1211
Tmin = 0.873, Tmax = 0.948k = 1211
6529 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0305P)2]
where P = (Fo2 + 2Fc2)/3
4249 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 0.33 e Å3
18 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Co(C8H9N2O4)2(H2O)2]·3.5H2Oγ = 87.330 (2)°
Mr = 552.36V = 1223.7 (2) Å3
Triclinic, P1Z = 2
a = 10.405 (1) ÅMo Kα radiation
b = 10.6131 (11) ŵ = 0.77 mm1
c = 11.2529 (13) ÅT = 298 K
α = 82.371 (1)°0.18 × 0.09 × 0.07 mm
β = 83.743 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
4249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2522 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.948Rint = 0.034
6529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05018 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
4249 reflectionsΔρmin = 0.31 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.34903 (6)0.79029 (6)0.19293 (6)0.0468 (2)
N10.3265 (3)0.7131 (3)0.3764 (3)0.0447 (9)
N20.3046 (3)0.6416 (4)0.5685 (3)0.0548 (11)
H20.29100.64080.64530.066*
N30.1480 (3)0.7861 (3)0.1738 (3)0.0419 (9)
N40.0526 (3)0.7781 (4)0.1332 (3)0.0504 (10)
H40.12310.74780.11710.060*
O10.3958 (3)0.5942 (3)0.1833 (3)0.0525 (8)
O20.4033 (3)0.4039 (3)0.2939 (3)0.0629 (9)
O30.3743 (3)0.3174 (3)0.5125 (3)0.0670 (10)
H30.38300.34580.44080.100*
O7W0.3316 (3)0.3924 (3)0.6857 (3)0.0687 (11)
O50.2850 (3)0.9854 (3)0.2050 (3)0.0533 (9)
O60.1184 (3)1.1214 (3)0.1846 (3)0.0633 (10)
O70.1073 (3)1.1143 (3)0.1400 (3)0.0606 (9)
H70.03271.11360.15710.091*
O80.2424 (3)0.9744 (3)0.1005 (3)0.0585 (9)
O1W0.3850 (3)0.8336 (3)0.0107 (3)0.0766 (12)
H1W0.34180.89370.02590.115*
H2W0.45140.81600.03590.115*
O2W0.5401 (3)0.8259 (3)0.2132 (3)0.0758 (12)
H4W0.57410.75750.24590.114*
H3W0.60040.87320.17860.114*
O3W0.5950 (3)0.7723 (3)0.8703 (3)0.0881 (12)
H5W0.59920.72380.81550.132*
H6W0.63190.84100.84140.132*
O4W0.2706 (4)0.6669 (4)0.8096 (3)0.1170 (16)
H7W0.22640.72870.83590.176*
H8W0.28950.61170.86750.176*
O5W0.7616 (4)0.6532 (4)0.0420 (4)0.1161 (15)
H9W0.73210.70650.01240.174*
H10W0.70770.64760.10480.174*
O6W0.4094 (5)0.5155 (6)0.9607 (5)0.0591 (18)0.50
H12W0.45160.55781.00160.089*0.50
H11W0.35340.47591.01090.089*0.50
C10.3847 (4)0.5225 (5)0.2824 (4)0.0453 (12)
C20.3472 (4)0.5846 (4)0.3905 (4)0.0388 (11)
C30.3330 (4)0.5379 (4)0.5099 (4)0.0424 (11)
C40.3452 (4)0.4105 (5)0.5768 (5)0.0503 (13)
C50.3013 (5)0.7456 (5)0.4860 (5)0.0585 (14)
C60.2961 (17)0.880 (3)0.514 (2)0.073 (6)0.673 (8)
H6A0.34530.93260.44960.088*0.673 (8)
H6B0.33530.88280.58800.088*0.673 (8)
C70.1592 (11)0.9306 (11)0.5282 (9)0.090 (3)0.673 (8)
H7A0.11260.88610.59970.108*0.673 (8)
H7B0.11590.91800.45890.108*0.673 (8)
C80.1612 (10)1.0747 (8)0.5395 (9)0.128 (5)0.673 (8)
H8A0.20851.08670.60550.192*0.673 (8)
H8B0.07421.10750.55370.192*0.673 (8)
H8C0.20231.11880.46620.192*0.673 (8)
C90.1692 (5)1.0100 (5)0.1877 (4)0.0476 (12)
C100.0912 (4)0.9051 (4)0.1699 (4)0.0406 (11)
C110.0345 (4)0.9016 (4)0.1443 (4)0.0410 (11)
C120.1370 (5)1.0008 (5)0.1268 (4)0.0485 (13)
C130.0583 (4)0.7107 (5)0.1515 (4)0.0478 (12)
C140.064 (3)0.569 (3)0.1696 (16)0.054 (5)0.621 (17)
H14A0.15200.53900.14790.064*0.621 (17)
H14B0.00870.53750.11700.064*0.621 (17)
C150.022 (2)0.517 (2)0.2987 (18)0.068 (6)0.621 (17)
H15A0.06930.53700.31720.081*0.621 (17)
H15B0.06970.55670.35210.081*0.621 (17)
C160.0448 (10)0.3732 (14)0.3208 (11)0.099 (5)0.621 (17)
H16A0.00040.33360.26590.148*0.621 (17)
H16B0.01270.34230.40210.148*0.621 (17)
H16C0.13590.35320.30830.148*0.621 (17)
C6'0.237 (3)0.867 (5)0.522 (4)0.067 (11)0.327 (8)
H6'10.18500.85120.59900.080*0.327 (8)
H6'20.18270.90610.46190.080*0.327 (8)
C7'0.350 (2)0.954 (2)0.532 (2)0.083 (7)0.327 (8)
H7'10.40790.95710.45790.099*0.327 (8)
H7'20.31481.03950.53790.099*0.327 (8)
C8'0.426 (2)0.9112 (19)0.637 (2)0.118 (9)0.327 (8)
H8'10.36730.89840.70990.177*0.327 (8)
H8'20.48560.97520.64440.177*0.327 (8)
H8'30.47210.83290.62520.177*0.327 (8)
C14'0.083 (5)0.576 (5)0.122 (3)0.055 (8)0.379 (17)
H14C0.17380.55190.12560.066*0.379 (17)
H14D0.06230.57080.04070.066*0.379 (17)
C15'0.0004 (18)0.4828 (17)0.212 (2)0.068 (6)0.379 (17)
H15C0.09100.50580.20640.082*0.379 (17)
H15D0.01480.39740.19070.082*0.379 (17)
C16'0.029 (4)0.484 (4)0.342 (3)0.083 (12)0.379 (17)
H16D0.00900.40310.38810.125*0.379 (17)
H16E0.02180.55000.37680.125*0.379 (17)
H16F0.11940.49900.34290.125*0.379 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0410 (4)0.0498 (4)0.0465 (4)0.0032 (3)0.0074 (3)0.0067 (3)
N10.047 (2)0.045 (2)0.042 (2)0.0015 (18)0.0092 (18)0.001 (2)
N20.063 (3)0.062 (3)0.037 (2)0.011 (2)0.0069 (19)0.002 (2)
N30.039 (2)0.038 (2)0.047 (2)0.0006 (18)0.0086 (18)0.0025 (18)
N40.039 (2)0.054 (3)0.057 (3)0.002 (2)0.0136 (19)0.005 (2)
O10.058 (2)0.059 (2)0.0373 (19)0.0130 (16)0.0062 (15)0.0021 (16)
O20.090 (3)0.046 (2)0.053 (2)0.0097 (19)0.0150 (18)0.0059 (17)
O30.087 (3)0.052 (2)0.059 (2)0.002 (2)0.0148 (19)0.0103 (19)
O7W0.066 (2)0.086 (3)0.045 (2)0.0101 (19)0.0042 (18)0.0201 (19)
O50.0476 (19)0.049 (2)0.064 (2)0.0059 (16)0.0147 (16)0.0017 (16)
O60.060 (2)0.044 (2)0.087 (3)0.0017 (17)0.0118 (18)0.0077 (19)
O70.049 (2)0.056 (2)0.076 (3)0.0130 (18)0.0102 (17)0.0079 (19)
O80.0412 (19)0.063 (2)0.067 (2)0.0035 (17)0.0112 (17)0.0136 (18)
O1W0.061 (2)0.099 (3)0.054 (2)0.0337 (19)0.0069 (17)0.026 (2)
O2W0.044 (2)0.081 (3)0.092 (3)0.0128 (18)0.0180 (18)0.040 (2)
O3W0.080 (3)0.082 (3)0.104 (3)0.030 (2)0.029 (2)0.042 (2)
O4W0.156 (4)0.133 (4)0.067 (3)0.057 (3)0.025 (3)0.041 (3)
O5W0.105 (3)0.131 (4)0.129 (4)0.012 (3)0.060 (3)0.041 (3)
O6W0.066 (4)0.061 (4)0.052 (4)0.008 (3)0.009 (3)0.012 (3)
C10.041 (3)0.047 (3)0.048 (3)0.003 (2)0.011 (2)0.002 (3)
C20.034 (2)0.042 (3)0.039 (3)0.001 (2)0.007 (2)0.001 (2)
C30.033 (2)0.049 (3)0.044 (3)0.002 (2)0.007 (2)0.000 (2)
C40.037 (3)0.064 (4)0.047 (3)0.001 (2)0.010 (2)0.007 (3)
C50.073 (4)0.051 (4)0.051 (3)0.011 (3)0.010 (3)0.007 (3)
C60.089 (16)0.069 (11)0.062 (8)0.002 (15)0.006 (11)0.008 (7)
C70.105 (9)0.076 (8)0.087 (8)0.014 (7)0.009 (6)0.012 (6)
C80.176 (11)0.061 (7)0.140 (10)0.024 (7)0.016 (8)0.020 (6)
C90.049 (3)0.046 (3)0.046 (3)0.000 (3)0.004 (2)0.002 (2)
C100.038 (3)0.042 (3)0.041 (3)0.002 (2)0.005 (2)0.002 (2)
C110.043 (3)0.036 (3)0.042 (3)0.001 (2)0.003 (2)0.002 (2)
C120.045 (3)0.052 (4)0.043 (3)0.001 (3)0.001 (2)0.007 (3)
C130.046 (3)0.043 (3)0.053 (3)0.001 (2)0.011 (2)0.001 (2)
C140.051 (10)0.048 (10)0.063 (14)0.004 (7)0.016 (11)0.001 (13)
C150.066 (8)0.050 (10)0.082 (17)0.004 (6)0.017 (11)0.016 (11)
C160.091 (8)0.055 (9)0.143 (11)0.000 (6)0.010 (7)0.008 (8)
C6'0.07 (3)0.07 (2)0.060 (16)0.02 (3)0.01 (2)0.007 (14)
C7'0.102 (19)0.072 (17)0.073 (15)0.001 (14)0.011 (12)0.009 (13)
C8'0.128 (19)0.101 (17)0.13 (2)0.005 (14)0.002 (16)0.031 (15)
C14'0.053 (13)0.047 (12)0.06 (2)0.003 (10)0.010 (18)0.01 (2)
C15'0.071 (11)0.051 (12)0.079 (17)0.001 (9)0.009 (10)0.001 (10)
C16'0.074 (13)0.09 (3)0.08 (2)0.009 (17)0.030 (14)0.032 (15)
Geometric parameters (Å, º) top
Co1—O1W2.038 (3)C5—C6'1.51 (5)
Co1—O2W2.083 (3)C6—C71.500 (19)
Co1—N12.110 (4)C6—H6A0.9700
Co1—N32.129 (3)C6—H6B0.9700
Co1—O12.130 (3)C7—C81.552 (13)
Co1—O52.163 (3)C7—H7A0.9700
N1—C51.319 (5)C7—H7B0.9700
N1—C21.362 (5)C8—H8A0.9600
N2—C51.347 (5)C8—H8B0.9600
N2—C31.361 (5)C8—H8C0.9600
N2—H20.8600C9—C101.455 (6)
N3—C131.323 (5)C10—C111.373 (5)
N3—C101.366 (5)C11—C121.473 (6)
N4—C131.349 (5)C13—C141.49 (3)
N4—C111.357 (5)C13—C14'1.52 (6)
N4—H40.8600C14—C151.51 (2)
O1—C11.261 (5)C14—H14A0.9700
O2—C11.256 (5)C14—H14B0.9700
O3—C41.306 (6)C15—C161.52 (2)
O3—H30.8200C15—H15A0.9700
O7W—C41.209 (5)C15—H15B0.9700
O5—C91.252 (5)C16—H16A0.9600
O6—C91.271 (5)C16—H16B0.9600
O7—C121.289 (5)C16—H16C0.9600
O7—H70.8200C6'—C7'1.54 (5)
O8—C121.221 (5)C6'—H6'10.9700
O1W—H1W0.8500C6'—H6'20.9700
O1W—H2W0.8500C7'—C8'1.51 (3)
O2W—H4W0.8500C7'—H7'10.9700
O2W—H3W0.8500C7'—H7'20.9700
O3W—H5W0.8500C8'—H8'10.9600
O3W—H6W0.8500C8'—H8'20.9600
O4W—H7W0.8499C8'—H8'30.9600
O4W—H8W0.8499C14'—C15'1.54 (4)
O5W—H9W0.8499C14'—H14C0.9700
O5W—H10W0.8503C14'—H14D0.9700
O6W—H12W0.8501C15'—C16'1.53 (5)
O6W—H11W0.8503C15'—H15C0.9700
C1—C21.467 (6)C15'—H15D0.9700
C2—C31.364 (5)C16'—H16D0.9600
C3—C41.465 (6)C16'—H16E0.9600
C5—C61.50 (3)C16'—H16F0.9600
O1W—Co1—O2W90.34 (12)C8—C7—H7B110.0
O1W—Co1—N1169.71 (14)H7A—C7—H7B108.4
O2W—Co1—N188.21 (12)O5—C9—O6122.9 (5)
O1W—Co1—N389.35 (12)O5—C9—C10117.7 (4)
O2W—Co1—N3170.64 (14)O6—C9—C10119.5 (4)
N1—Co1—N393.72 (13)N3—C10—C11110.0 (4)
O1W—Co1—O191.72 (13)N3—C10—C9118.4 (4)
O2W—Co1—O191.42 (12)C11—C10—C9131.6 (4)
N1—Co1—O178.13 (13)N4—C11—C10105.1 (4)
N3—Co1—O197.94 (13)N4—C11—C12122.1 (4)
O1W—Co1—O589.43 (12)C10—C11—C12132.7 (4)
O2W—Co1—O593.14 (12)O8—C12—O7123.5 (5)
N1—Co1—O5100.82 (13)O8—C12—C11120.6 (5)
N3—Co1—O577.50 (13)O7—C12—C11116.0 (4)
O1—Co1—O5175.29 (11)N3—C13—N4110.3 (4)
C5—N1—C2106.3 (4)N3—C13—C14126.2 (12)
C5—N1—Co1142.2 (3)N4—C13—C14122.2 (12)
C2—N1—Co1111.5 (3)N3—C13—C14'125.0 (19)
C5—N2—C3108.6 (4)N4—C13—C14'123.3 (19)
C5—N2—H2125.7C14—C13—C14'21.0 (15)
C3—N2—H2125.7C13—C14—C15112 (2)
C13—N3—C10106.0 (4)C13—C14—H14A109.3
C13—N3—Co1142.2 (3)C15—C14—H14A109.3
C10—N3—Co1111.3 (3)C13—C14—H14B109.3
C13—N4—C11108.7 (4)C15—C14—H14B109.3
C13—N4—H4125.7H14A—C14—H14B108.0
C11—N4—H4125.7C14—C15—C16111 (2)
C1—O1—Co1115.7 (3)C14—C15—H15A109.3
C4—O3—H3109.5C16—C15—H15A109.3
C9—O5—Co1114.9 (3)C14—C15—H15B109.3
C12—O7—H7109.5C16—C15—H15B109.3
Co1—O1W—H1W119.6H15A—C15—H15B108.0
Co1—O1W—H2W129.5C5—C6'—C7'105 (2)
H1W—O1W—H2W108.4C5—C6'—H6'1110.7
Co1—O2W—H4W107.6C7'—C6'—H6'1110.7
Co1—O2W—H3W138.9C5—C6'—H6'2110.7
H4W—O2W—H3W108.3C7'—C6'—H6'2110.7
H5W—O3W—H6W108.6H6'1—C6'—H6'2108.8
H7W—O4W—H8W110.7C8'—C7'—C6'114 (3)
H9W—O5W—H10W109.1C8'—C7'—H7'1108.8
H12W—O6W—H11W106.1C6'—C7'—H7'1108.8
O2—C1—O1124.7 (5)C8'—C7'—H7'2108.8
O2—C1—C2119.0 (4)C6'—C7'—H7'2108.8
O1—C1—C2116.4 (4)H7'1—C7'—H7'2107.7
N1—C2—C3110.0 (4)C7'—C8'—H8'1109.5
N1—C2—C1118.2 (4)C7'—C8'—H8'2109.5
C3—C2—C1131.7 (4)H8'1—C8'—H8'2109.5
N2—C3—C2105.1 (4)C7'—C8'—H8'3109.5
N2—C3—C4121.0 (4)H8'1—C8'—H8'3109.5
C2—C3—C4133.9 (5)H8'2—C8'—H8'3109.5
O7W—C4—O3121.6 (5)C13—C14'—C15'110 (2)
O7W—C4—C3122.0 (5)C13—C14'—H14C109.6
O3—C4—C3116.4 (4)C15'—C14'—H14C109.6
N1—C5—N2110.1 (4)C13—C14'—H14D109.6
N1—C5—C6124.1 (10)C15'—C14'—H14D109.6
N2—C5—C6124.8 (10)H14C—C14'—H14D108.1
N1—C5—C6'127.9 (19)C16'—C15'—C14'112 (2)
N2—C5—C6'119.5 (18)C16'—C15'—H15C109.1
C6—C5—C6'24.0 (15)C14'—C15'—H15C109.1
C5—C6—C7111.0 (14)C16'—C15'—H15D109.1
C5—C6—H6A109.4C14'—C15'—H15D109.1
C7—C6—H6A109.4H15C—C15'—H15D107.9
C5—C6—H6B109.4C15'—C16'—H16D109.5
C7—C6—H6B109.4C15'—C16'—H16E109.5
H6A—C6—H6B108.0H16D—C16'—H16E109.5
C6—C7—C8108.5 (12)C15'—C16'—H16F109.5
C6—C7—H7A110.0H16D—C16'—H16F109.5
C8—C7—H7A110.0H16E—C16'—H16F109.5
C6—C7—H7B110.0
O1W—Co1—N1—C5165.8 (7)C2—N1—C5—C6168.5 (10)
O2W—Co1—N1—C583.8 (5)Co1—N1—C5—C69.7 (12)
N3—Co1—N1—C587.1 (5)C2—N1—C5—C6'162.0 (19)
O1—Co1—N1—C5175.6 (5)Co1—N1—C5—C6'20 (2)
O5—Co1—N1—C59.1 (5)C3—N2—C5—N10.0 (5)
O1W—Co1—N1—C212.3 (9)C3—N2—C5—C6168.8 (9)
O2W—Co1—N1—C294.4 (3)C3—N2—C5—C6'163.4 (19)
N3—Co1—N1—C294.8 (3)N1—C5—C6—C798.6 (14)
O1—Co1—N1—C22.6 (3)N2—C5—C6—C794.1 (16)
O5—Co1—N1—C2172.7 (3)C6'—C5—C6—C79 (5)
O1W—Co1—N3—C1385.1 (5)C5—C6—C7—C8172.3 (11)
O2W—Co1—N3—C13173.2 (7)Co1—O5—C9—O6175.8 (3)
N1—Co1—N3—C1385.1 (5)Co1—O5—C9—C103.9 (5)
O1—Co1—N3—C136.6 (5)C13—N3—C10—C110.3 (5)
O5—Co1—N3—C13174.6 (5)Co1—N3—C10—C11173.4 (3)
O1W—Co1—N3—C1084.9 (3)C13—N3—C10—C9178.1 (4)
O2W—Co1—N3—C103.3 (10)Co1—N3—C10—C94.5 (5)
N1—Co1—N3—C10104.9 (3)O5—C9—C10—N30.4 (6)
O1—Co1—N3—C10176.5 (3)O6—C9—C10—N3179.9 (4)
O5—Co1—N3—C104.7 (3)O5—C9—C10—C11176.8 (4)
O1W—Co1—O1—C1178.8 (3)O6—C9—C10—C112.8 (7)
O2W—Co1—O1—C190.8 (3)C13—N4—C11—C100.0 (5)
N1—Co1—O1—C13.0 (3)C13—N4—C11—C12178.7 (4)
N3—Co1—O1—C189.2 (3)N3—C10—C11—N40.2 (5)
O5—Co1—O1—C174.6 (15)C9—C10—C11—N4177.6 (4)
O1W—Co1—O5—C984.7 (3)N3—C10—C11—C12178.3 (4)
O2W—Co1—O5—C9175.0 (3)C9—C10—C11—C120.9 (8)
N1—Co1—O5—C996.2 (3)N4—C11—C12—O80.6 (6)
N3—Co1—O5—C94.8 (3)C10—C11—C12—O8177.6 (4)
O1—Co1—O5—C919.6 (16)N4—C11—C12—O7180.0 (4)
Co1—O1—C1—O2177.2 (3)C10—C11—C12—O71.8 (7)
Co1—O1—C1—C22.7 (4)C10—N3—C13—N40.2 (5)
C5—N1—C2—C30.7 (5)Co1—N3—C13—N4170.0 (3)
Co1—N1—C2—C3179.5 (3)C10—N3—C13—C14167.0 (10)
C5—N1—C2—C1176.7 (4)Co1—N3—C13—C1422.7 (12)
Co1—N1—C2—C12.1 (4)C10—N3—C13—C14'167.2 (15)
O2—C1—C2—N1179.6 (4)Co1—N3—C13—C14'3.1 (16)
O1—C1—C2—N10.4 (5)C11—N4—C13—N30.1 (5)
O2—C1—C2—C33.8 (7)C11—N4—C13—C14167.7 (9)
O1—C1—C2—C3176.3 (4)C11—N4—C13—C14'167.3 (15)
C5—N2—C3—C20.4 (5)N3—C13—C14—C1583 (2)
C5—N2—C3—C4179.0 (4)N4—C13—C14—C1583 (2)
N1—C2—C3—N20.7 (4)C14'—C13—C14—C15178 (10)
C1—C2—C3—N2176.2 (4)C13—C14—C15—C16172.5 (16)
N1—C2—C3—C4179.0 (4)N1—C5—C6'—C7'95 (3)
C1—C2—C3—C42.1 (8)N2—C5—C6'—C7'105 (3)
N2—C3—C4—O7W0.6 (6)C6—C5—C6'—C7'5 (4)
C2—C3—C4—O7W177.6 (4)C5—C6'—C7'—C8'70 (3)
N2—C3—C4—O3179.1 (4)N3—C13—C14'—C15'123 (2)
C2—C3—C4—O31.0 (7)N4—C13—C14'—C15'71 (3)
C2—N1—C5—N20.4 (5)C14—C13—C14'—C15'23 (6)
Co1—N1—C5—N2178.6 (3)C13—C14'—C15'—C16'60 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4W0.861.892.745 (5)171
N4—H4···O5Wi0.861.932.752 (5)160
O3—H3···O20.821.682.500 (4)179
O7—H7···O60.821.642.461 (4)176
O1W—H1W···O8ii0.851.872.715 (4)178
O1W—H2W···O3Wiii0.851.812.661 (4)177
O2W—H4W···O7Wiv0.851.942.791 (4)174
O2W—H3W···O8v0.852.052.897 (4)175
O3W—H5W···O2iv0.851.952.796 (5)172
O3W—H6W···O5vi0.852.052.895 (4)172
O3W—H6W···O6vi0.852.633.206 (4)127
O4W—H8W···O6W0.851.892.674 (7)152
O5W—H9W···O3Wiii0.852.082.867 (5)153
O5W—H10W···O7Wiv0.852.333.092 (5)149
O6W—H12W···O6Wvii0.851.682.162 (11)113
O6W—H12W···O1viii0.852.142.730 (6)126
O6W—H11W···O5Wiv0.852.052.588 (7)121
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+2, z+1; (vii) x+1, y+1, z+2; (viii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C8H9N2O4)2(H2O)2]·3.5H2O
Mr552.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.405 (1), 10.6131 (11), 11.2529 (13)
α, β, γ (°)82.371 (1), 83.743 (1), 87.330 (2)
V3)1223.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.18 × 0.09 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.873, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6529, 4249, 2522
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.101, 1.03
No. of reflections4249
No. of parameters376
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.31

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4W0.861.892.745 (5)170.5
N4—H4···O5Wi0.861.932.752 (5)160.0
O3—H3···O20.821.682.500 (4)179.1
O7—H7···O60.821.642.461 (4)175.9
O1W—H1W···O8ii0.851.872.715 (4)177.7
O1W—H2W···O3Wiii0.851.812.661 (4)177.2
O2W—H4W···O7Wiv0.851.942.791 (4)174.3
O2W—H3W···O8v0.852.052.897 (4)174.8
O3W—H5W···O2iv0.851.952.796 (5)172.2
O3W—H6W···O5vi0.852.052.895 (4)172.0
O3W—H6W···O6vi0.852.633.206 (4)126.6
O4W—H8W···O6W0.851.892.674 (7)152.4
O5W—H9W···O3Wiii0.852.082.867 (5)153.0
O5W—H10W···O7Wiv0.852.333.092 (5)148.9
O6W—H12W···O6Wvii0.851.682.162 (11)113.4
O6W—H12W···O1viii0.852.142.730 (6)125.9
O6W—H11W···O5Wiv0.852.052.588 (7)120.9
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z; (iii) x, y, z1; (iv) x+1, y+1, z+1; (v) x+1, y, z; (vi) x+1, y+2, z+1; (vii) x+1, y+1, z+2; (viii) x, y, z+1.
 

Acknowledgements

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No. A2009011–007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 9252408801000002).

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, S.-J., Dong, J.-J., Song, W.-D., Yan, J.-B. & Li, S.-H. (2010). Acta Cryst. E66, m1175–m1176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, S.-J., Song, W.-D., Li, S.-H., Dong, J.-J. & Yan, J.-B. (2010). Acta Cryst. E66, m1094–m1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds