organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(RS)-1-[5-(2-Chloro­prop­yl)indolin-1-yl]ethanone

aDepartment of Chemistry, Guangdong Medical College, Dongguan 523808, People's Republic of China
*Correspondence e-mail: xuemeiyang131@163.com

(Received 25 November 2010; accepted 2 December 2010; online 8 December 2010)

In the title compound, C13H16ClNO, the acetyl­indoline moiety is roughly planar (r.m.s. deviation = 0.0048 Å). The chloro­propyl group is out of the plane and is statistically disordered over two positions. Indeed, the Cl and CH3 groups located on the stereogenic carbon exchange with each other. The whole crystal is a racemate. Non-classical C—H⋯O hydrogen bonds between symmetry-related benzene rings stabilize the crystal structure.

Related literature

The title compound was synthesized as an inter­mediate in the search for a new synthetic route to silodosin, an adrenoceptor antagonist, see: Asselin et al. (2000[Asselin, A. A., Humber, L. G., Crocilla, D., Oshiro, G., Wojdan, A., Grimes, D., Heaslip, R. J., Rimele, T. J. & Shaw, C. C. (2000). J. Med. Chem. 29, 1009-1015.]); Bremner et al. (2000[Bremner, J. B., Coban, B., Griffith, G., Groenewoud, K. M. & Yates, B. F. (2000). Bioorg. Med. Chem. 8, 201-214.]); Elworthy et al. (1997[Elworthy, T. R., Ford, A. P., Bantle, G. W. & Morgans, D. J. (1997). J. Med. Chem. 40, 2674-2687.]); Sorbera et al. (2001[Sorbera, L. A., Caster, J. & Silvestre, J. S. (2001). Drugs Fut. 26, 553-555.]). For related structures, see: Moreno et al. (1998[Moreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365-373.]); Wang et al.(2007[Wang, Z., Wan, W., Jiang, H. & Hao, J. (2007). J. Org. Chem. 72, 9364-9367.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16ClNO

  • Mr = 237.72

  • Triclinic, [P \overline 1]

  • a = 6.9041 (5) Å

  • b = 8.4887 (6) Å

  • c = 10.6463 (7) Å

  • α = 76.423 (1)°

  • β = 86.955 (1)°

  • γ = 89.969 (1)°

  • V = 605.61 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.46 × 0.41 × 0.22 mm

Data collection
  • Bruker AXS SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany]) Tmin = 0.877, Tmax = 0.938

  • 4719 measured reflections

  • 2343 independent reflections

  • 1915 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.113

  • S = 1.07

  • 2343 reflections

  • 163 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.45 3.388 (2) 168
C12—H12A⋯O1i 0.96 2.44 3.388 (2) 169
Symmetry code: (i) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In searching for new synthetic route of silodosin, a adrenoceptor antagonist (Sorbera et al. 2001; Elworthy et al. 1997; Asselin et al. 2000; Bremner et al. 2000), we synthesized the title compound as racemic intermediate.

In the title compound, C13H16ClNO, the acetylindoline moiety is mainly planar with the largest deviation from the plane being 0.0076 (14)Å at C2. The chloropropane being out of the plane with the C12 atom located 1.0254 (0.0028)Å above the plane (Fig. 1). The chloropropane moiety is statistically disordered over two positions. Indeed, the Cl and CH3 located on the stereogenic carbon exchange each other. The geometry within the 1-acetylindoline fragment compares well with related structures as 1-acetylindoline (Moreno et al., 1998) or 1-(trifluoro)acetylindoline (Wang et al., 2007).

Non-classical C—H···O hydrogen bonds (Table 1) link the molecules forming layers parallel to the (1 0 0) plane (Figure 2).

Related literature top

The title cpond was synthesized as an intermediate in the search for a new synthetic route of silodosin, an adrenoceptor antagonist, see: Asselin et al. (2000); Bremner et al. (2000); Elworthy et al. (1997); Sorbera et al. (2001). For related structures, see: Moreno et al. (1998); Wang et al.(2007).

Experimental top

1 g of (R/S)-1-(1-acetylindolin-5-yl)-2-chloropropan-1-one was dissolved in 50 ml of trifluroacetic acid, and then 1.067 g of triethylsilane was added dropwise within 20 min in -5¯C. The system was stirred overnight in ambient temperature, then extra trifluroacetic acid was distilled out in reduced pressure. To the resulting oil was added 20 ml of water and 5 ml of n-hexane, and stirred for 10 min. The white precipitate was collected through filtration, washed by n-hexane and dried to get 1.24 g of the targeting product. Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. Spectroscopic analysis: 1H NMR (CDCl3,δ, p.p.m.): 1.519–1.542(d,3H), 2.236(s,3H), 2.882–3.093(t,2H), 3.171–3.227(t,2H), 4.037–4.124(t,2H), 4.147–4.213(t, 1H), 7.009–7.0977(s,2H), 8.111–8.140(d,1H).

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.95Å (aromatic), 0.98 Å (methyl), 0.99 Å (methylene) and 0.96Å (methine) with Uiso(H) = 1.2Ueq(Caromatic, Cmethine, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).

The Cl and CH3 substituents on the stereogenic carbon are exchanging each other and such disorder induces two configurations. Two sets of positions were defined for the atoms of this group and the site occupation factor of each conformation were refined while restraining their sum to unity and using restraints on C—C and C—Cl distances with the help of SAME and PART instructions within SHELXL97 (Sheldrick, 2008). In the last stage of refinement, the disordered Cl and C atoms were anisotropically refined but the anistropic thermal parameters of the C atoms were restrained to have similar atomic displacement parameters within a tolerance s.u. of 0.01 Å2.

Structure description top

In searching for new synthetic route of silodosin, a adrenoceptor antagonist (Sorbera et al. 2001; Elworthy et al. 1997; Asselin et al. 2000; Bremner et al. 2000), we synthesized the title compound as racemic intermediate.

In the title compound, C13H16ClNO, the acetylindoline moiety is mainly planar with the largest deviation from the plane being 0.0076 (14)Å at C2. The chloropropane being out of the plane with the C12 atom located 1.0254 (0.0028)Å above the plane (Fig. 1). The chloropropane moiety is statistically disordered over two positions. Indeed, the Cl and CH3 located on the stereogenic carbon exchange each other. The geometry within the 1-acetylindoline fragment compares well with related structures as 1-acetylindoline (Moreno et al., 1998) or 1-(trifluoro)acetylindoline (Wang et al., 2007).

Non-classical C—H···O hydrogen bonds (Table 1) link the molecules forming layers parallel to the (1 0 0) plane (Figure 2).

The title cpond was synthesized as an intermediate in the search for a new synthetic route of silodosin, an adrenoceptor antagonist, see: Asselin et al. (2000); Bremner et al. (2000); Elworthy et al. (1997); Sorbera et al. (2001). For related structures, see: Moreno et al. (1998); Wang et al.(2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Only one component of the disorder is shown in the figure for the sake of clarity.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of chains along [010] built from hydrogen bonds represented as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x, y-1, z]
(RS)-1-[5-(2-Chloropropyl)indolin-1-yl]ethanone top
Crystal data top
C13H16ClNOZ = 2
Mr = 237.72F(000) = 252
Triclinic, P1Dx = 1.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9041 (5) ÅCell parameters from 2890 reflections
b = 8.4887 (6) Åθ = 2.5–27.0°
c = 10.6463 (7) ŵ = 0.29 mm1
α = 76.423 (1)°T = 173 K
β = 86.955 (1)°Block, colourless
γ = 89.969 (1)°0.46 × 0.41 × 0.22 mm
V = 605.61 (7) Å3
Data collection top
Bruker AXS SMART 1000 CCD
diffractometer
2343 independent reflections
Radiation source: fine-focus sealed tube1915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 88
Tmin = 0.877, Tmax = 0.938k = 1010
4719 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.2707P]
where P = (Fo2 + 2Fc2)/3
2343 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.35 e Å3
5 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H16ClNOγ = 89.969 (1)°
Mr = 237.72V = 605.61 (7) Å3
Triclinic, P1Z = 2
a = 6.9041 (5) ÅMo Kα radiation
b = 8.4887 (6) ŵ = 0.29 mm1
c = 10.6463 (7) ÅT = 173 K
α = 76.423 (1)°0.46 × 0.41 × 0.22 mm
β = 86.955 (1)°
Data collection top
Bruker AXS SMART 1000 CCD
diffractometer
2343 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1915 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.938Rint = 0.016
4719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0415 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
2343 reflectionsΔρmin = 0.19 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2493 (2)0.69510 (15)0.57618 (13)0.0462 (4)
N10.25327 (19)0.49053 (16)0.47345 (13)0.0306 (3)
C10.2670 (3)0.4283 (2)0.35441 (16)0.0355 (4)
H1A0.39250.46040.30570.043*
H1B0.16050.47110.29770.043*
C20.2505 (3)0.2437 (2)0.40071 (17)0.0371 (4)
H2A0.13650.20190.36540.045*
H2B0.36860.19120.37390.045*
C30.2275 (2)0.21325 (19)0.54586 (16)0.0293 (4)
C40.2056 (2)0.0682 (2)0.63687 (17)0.0328 (4)
H40.20300.03090.61010.039*
C50.1872 (2)0.0670 (2)0.76852 (17)0.0331 (4)
C60.1927 (2)0.2141 (2)0.80423 (16)0.0340 (4)
H60.18170.21380.89360.041*
C70.2137 (2)0.3621 (2)0.71377 (16)0.0320 (4)
H70.21650.46140.74030.038*
C80.2304 (2)0.35962 (19)0.58388 (15)0.0278 (4)
C90.2613 (2)0.6503 (2)0.47457 (18)0.0337 (4)
C100.2848 (3)0.7693 (2)0.34518 (19)0.0404 (4)
H10A0.29230.87970.35820.061*
H10B0.17340.75980.29400.061*
H10C0.40420.74600.29920.061*
C110.1537 (3)0.0898 (2)0.86977 (18)0.0422 (5)
H11A0.02570.13520.85810.051*
H11B0.14850.06530.95630.051*
C120.3060 (3)0.2180 (2)0.86693 (18)0.0400 (4)
H12A0.30650.24930.78590.048*
Cl10.5409 (4)0.1512 (3)0.8927 (2)0.0525 (4)0.50
C130.245 (2)0.3659 (13)0.9768 (12)0.100 (5)0.50
H13A0.25480.33801.06050.150*0.50
H13B0.33110.45660.97250.150*0.50
H13C0.11110.39700.96720.150*0.50
Cl1B0.2300 (4)0.4048 (3)0.97881 (18)0.0532 (4)0.50
C13B0.4978 (16)0.1668 (14)0.9079 (13)0.102 (5)0.50
H13D0.53860.06210.85160.152*0.50
H13E0.59580.24830.90090.152*0.50
H13F0.48340.15670.99770.152*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0608 (9)0.0299 (7)0.0505 (8)0.0026 (6)0.0098 (6)0.0135 (6)
N10.0303 (7)0.0277 (7)0.0333 (7)0.0010 (5)0.0030 (6)0.0053 (6)
C10.0388 (9)0.0357 (9)0.0312 (9)0.0025 (7)0.0018 (7)0.0063 (7)
C20.0447 (10)0.0343 (9)0.0334 (9)0.0024 (7)0.0009 (7)0.0106 (7)
C30.0261 (8)0.0299 (8)0.0328 (9)0.0017 (6)0.0018 (6)0.0092 (7)
C40.0309 (8)0.0268 (8)0.0409 (10)0.0031 (6)0.0008 (7)0.0087 (7)
C50.0260 (8)0.0341 (9)0.0357 (9)0.0046 (7)0.0005 (7)0.0016 (7)
C60.0304 (9)0.0420 (10)0.0293 (9)0.0067 (7)0.0021 (7)0.0075 (7)
C70.0287 (8)0.0330 (9)0.0366 (9)0.0045 (7)0.0044 (7)0.0122 (7)
C80.0218 (7)0.0279 (8)0.0335 (9)0.0024 (6)0.0033 (6)0.0063 (6)
C90.0262 (8)0.0279 (8)0.0473 (10)0.0011 (6)0.0070 (7)0.0081 (7)
C100.0332 (9)0.0302 (9)0.0534 (11)0.0003 (7)0.0039 (8)0.0005 (8)
C110.0401 (10)0.0401 (10)0.0408 (10)0.0038 (8)0.0034 (8)0.0006 (8)
C120.0495 (11)0.0321 (9)0.0361 (10)0.0033 (8)0.0037 (8)0.0034 (7)
Cl10.0513 (8)0.0619 (10)0.0492 (7)0.0144 (6)0.0190 (6)0.0190 (7)
C130.118 (9)0.030 (6)0.136 (8)0.027 (5)0.001 (5)0.009 (4)
Cl1B0.0777 (10)0.0273 (10)0.0482 (8)0.0008 (7)0.0027 (6)0.0036 (5)
C13B0.081 (7)0.049 (5)0.161 (10)0.028 (4)0.026 (6)0.006 (5)
Geometric parameters (Å, º) top
O1—C91.227 (2)C7—H70.9500
N1—C91.360 (2)C9—C101.506 (3)
N1—C81.417 (2)C10—H10A0.9800
N1—C11.482 (2)C10—H10B0.9800
C1—C21.531 (2)C10—H10C0.9800
C1—H1A0.9900C11—C121.517 (3)
C1—H1B0.9900C11—H11A0.9900
C2—C31.505 (2)C11—H11B0.9900
C2—H2A0.9900C12—C13B1.511 (10)
C2—H2B0.9900C12—C131.543 (10)
C3—C41.379 (2)C12—Cl11.774 (3)
C3—C81.395 (2)C12—Cl1B1.804 (3)
C4—C51.398 (2)C12—H12A0.9604
C4—H40.9500C13—H13A0.9800
C5—C61.389 (3)C13—H13B0.9800
C5—C111.513 (2)C13—H13C0.9800
C6—C71.395 (2)C13B—H13D0.9800
C6—H60.9500C13B—H13E0.9800
C7—C81.387 (2)C13B—H13F0.9800
C9—N1—C8125.79 (15)H10A—C10—H10B109.5
C9—N1—C1124.26 (14)C9—C10—H10C109.5
C8—N1—C1109.95 (13)H10A—C10—H10C109.5
N1—C1—C2105.54 (13)H10B—C10—H10C109.5
N1—C1—H1A110.6C5—C11—C12114.95 (15)
C2—C1—H1A110.6C5—C11—H11A108.5
N1—C1—H1B110.6C12—C11—H11A108.5
C2—C1—H1B110.6C5—C11—H11B108.5
H1A—C1—H1B108.8C12—C11—H11B108.5
C3—C2—C1104.39 (13)H11A—C11—H11B107.5
C3—C2—H2A110.9C13B—C12—C11110.8 (5)
C1—C2—H2A110.9C13B—C12—C13103.1 (7)
C3—C2—H2B110.9C11—C12—C13106.5 (6)
C1—C2—H2B110.9C13B—C12—Cl17.7 (6)
H2A—C2—H2B108.9C11—C12—Cl1112.22 (16)
C4—C3—C8120.53 (15)C13—C12—Cl1109.3 (6)
C4—C3—C2129.25 (15)C13B—C12—Cl1B107.8 (5)
C8—C3—C2110.22 (14)C11—C12—Cl1B109.45 (16)
C3—C4—C5120.04 (15)C13—C12—Cl1B7.6 (6)
C3—C4—H4120.0Cl1—C12—Cl1B113.43 (15)
C5—C4—H4120.0C13B—C12—H12A117.2
C6—C5—C4118.45 (15)C11—C12—H12A109.8
C6—C5—C11120.51 (16)C13—C12—H12A108.8
C4—C5—C11120.99 (16)Cl1—C12—H12A110.2
C5—C6—C7122.45 (16)Cl1B—C12—H12A101.2
C5—C6—H6118.8C12—C13—H13A109.5
C7—C6—H6118.8C12—C13—H13B109.5
C8—C7—C6117.80 (15)H13A—C13—H13B109.5
C8—C7—H7121.1C12—C13—H13C109.5
C6—C7—H7121.1H13A—C13—H13C109.5
C7—C8—C3120.73 (15)H13B—C13—H13C109.5
C7—C8—N1129.36 (15)C12—C13B—H13D109.5
C3—C8—N1109.90 (14)C12—C13B—H13E109.5
O1—C9—N1121.52 (16)H13D—C13B—H13E109.5
O1—C9—C10121.67 (16)C12—C13B—H13F109.5
N1—C9—C10116.80 (16)H13D—C13B—H13F109.5
C9—C10—H10A109.5H13E—C13B—H13F109.5
C9—C10—H10B109.5
C9—N1—C1—C2179.87 (15)C4—C3—C8—N1179.69 (14)
C8—N1—C1—C20.04 (18)C2—C3—C8—N10.25 (18)
N1—C1—C2—C30.17 (17)C9—N1—C8—C70.8 (3)
C1—C2—C3—C4179.67 (16)C1—N1—C8—C7179.34 (16)
C1—C2—C3—C80.26 (18)C9—N1—C8—C3179.70 (14)
C8—C3—C4—C50.4 (2)C1—N1—C8—C30.13 (18)
C2—C3—C4—C5179.70 (16)C8—N1—C9—O10.2 (3)
C3—C4—C5—C60.4 (2)C1—N1—C9—O1179.96 (16)
C3—C4—C5—C11177.16 (15)C8—N1—C9—C10179.55 (14)
C4—C5—C6—C70.7 (2)C1—N1—C9—C100.3 (2)
C11—C5—C6—C7176.83 (15)C6—C5—C11—C12125.81 (18)
C5—C6—C7—C80.3 (2)C4—C5—C11—C1256.7 (2)
C6—C7—C8—C30.4 (2)C5—C11—C12—C13B68.4 (6)
C6—C7—C8—N1179.86 (15)C5—C11—C12—C13179.9 (6)
C4—C3—C8—C70.8 (2)C5—C11—C12—Cl160.3 (2)
C2—C3—C8—C7179.27 (14)C5—C11—C12—Cl1B172.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.453.388 (2)168
C12—H12A···O1i0.962.443.388 (2)169
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H16ClNO
Mr237.72
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.9041 (5), 8.4887 (6), 10.6463 (7)
α, β, γ (°)76.423 (1), 86.955 (1), 89.969 (1)
V3)605.61 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.46 × 0.41 × 0.22
Data collection
DiffractometerBruker AXS SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.877, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
4719, 2343, 1915
Rint0.016
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 1.07
No. of reflections2343
No. of parameters163
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.453.388 (2)167.5
C12—H12A···O1i0.962.443.388 (2)169.4
Symmetry code: (i) x, y1, z.
 

Acknowledgements

We thank Mr Feng Xiaolong for his kind help.

References

First citationAsselin, A. A., Humber, L. G., Crocilla, D., Oshiro, G., Wojdan, A., Grimes, D., Heaslip, R. J., Rimele, T. J. & Shaw, C. C. (2000). J. Med. Chem. 29, 1009–1015.  CrossRef Web of Science Google Scholar
First citationBremner, J. B., Coban, B., Griffith, G., Groenewoud, K. M. & Yates, B. F. (2000). Bioorg. Med. Chem. 8, 201–214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationElworthy, T. R., Ford, A. P., Bantle, G. W. & Morgans, D. J. (1997). J. Med. Chem. 40, 2674–2687.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMoreno, M. M. T., Santos, R. H. A., Gambardella, M. T. P., Camargo, A. J., da Silva, A. B. F. & Trsic, M. (1998). Struct. Chem. 9, 365–373.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorbera, L. A., Caster, J. & Silvestre, J. S. (2001). Drugs Fut. 26, 553–555.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Wan, W., Jiang, H. & Hao, J. (2007). J. Org. Chem. 72, 9364–9367.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds