organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-2-sulfanyl­­idene-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 5 December 2010; accepted 9 December 2010; online 15 December 2010)

In the title compound, C10H9NOS2, the five-membered heterocyclic ring and the benzyl moiety are oriented at a dihedral angle of 77.25 (4)°. In the crystal, infinite polymeric C(6) chains extending along [001] are formed due to C—H⋯O hydrogen bonds. C—H⋯π inter­actions link the chains, building up a three-dimensional network.

Related literature

For background to our inter­est in the sythesis of thia­zolidin derivatives and related structures, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009a). Acta Cryst. E65, o3014.],b[Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009b). Acta Cryst. E65, o3016.], 2010[Shahwar, D., Tahir, M. N., Ahmad, N., Raza, M. A. & Aslam, S. (2010). Acta Cryst. E66, o2159.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H9NOS2

  • Mr = 223.30

  • Monoclinic, P 21 /c

  • a = 13.3271 (4) Å

  • b = 5.9025 (2) Å

  • c = 13.0396 (4) Å

  • β = 92.812 (1)°

  • V = 1024.50 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.950

  • 7899 measured reflections

  • 1818 independent reflections

  • 1594 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.07

  • 1818 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.47 3.338 (2) 156
C3—H3⋯Cgii 0.93 2.95 3.674 (2) 136
C9—H9a⋯Cgiii 0.97 2.66 3.588 (2) 160
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The work presented is part of our interest in synthesizing various thiazolidin derivatives and confirming their structures by x-ray analysis (Shahwar et al., 2010, 2009a,b). These compounds will be utilized for the study of comparative bioactivity.

In (I), the benzyl moiety A (C1—C7) and the five membered ring B (N1/C8/S2/C9/C10) of 2-thioxo-1,3-thiazolidin-4-one are planar with r. m. s. deviations of 0.0157 and 0.0302 Å, respectively. The dihedral angle between A/B is 77.25 (4)° (Fig. 1). In the 2-thioxo-1,3-thiazolidin-4-one, the attached O and S-atom are at a distance of -0.1070 (25) and 0.0763 (24) Å, respectively from the mean square plane of B.

Polymeric chains [C(6), Bernstein et al. (1995)] are formed due to C—H···O hydrogen bonds (Table 1, Fig. 2) and extend along the crystallographic c axis. C—H···π interactions (Table 1) link the chains to build up a three dimensional network.

Related literature top

For background to our interest in the sythesis of thiazolidin derivatives and related structures, see: Shahwar et al. (2009a,b, 2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound has been prepared according to the method described (Shahwar et al. 2009a,b)

Refinement top

All H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and treated as riding on their parent C atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

The work presented is part of our interest in synthesizing various thiazolidin derivatives and confirming their structures by x-ray analysis (Shahwar et al., 2010, 2009a,b). These compounds will be utilized for the study of comparative bioactivity.

In (I), the benzyl moiety A (C1—C7) and the five membered ring B (N1/C8/S2/C9/C10) of 2-thioxo-1,3-thiazolidin-4-one are planar with r. m. s. deviations of 0.0157 and 0.0302 Å, respectively. The dihedral angle between A/B is 77.25 (4)° (Fig. 1). In the 2-thioxo-1,3-thiazolidin-4-one, the attached O and S-atom are at a distance of -0.1070 (25) and 0.0763 (24) Å, respectively from the mean square plane of B.

Polymeric chains [C(6), Bernstein et al. (1995)] are formed due to C—H···O hydrogen bonds (Table 1, Fig. 2) and extend along the crystallographic c axis. C—H···π interactions (Table 1) link the chains to build up a three dimensional network.

For background to our interest in the sythesis of thiazolidin derivatives and related structures, see: Shahwar et al. (2009a,b, 2010). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Thermal ellipsoids are drawn at the 30% probability level. H-atoms are represented as small circles of arbitrary radii.
[Figure 2] Fig. 2. Partial packing showing the formation of the chains through C-H···O hydrogen bonds represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) x, -y+3/2, z+1/2]
3-Benzyl-2-sulfanylidene-1,3-thiazolidin-4-one top
Crystal data top
C10H9NOS2F(000) = 464
Mr = 223.30Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1594 reflections
a = 13.3271 (4) Åθ = 3.1–25.3°
b = 5.9025 (2) ŵ = 0.48 mm1
c = 13.0396 (4) ÅT = 296 K
β = 92.812 (1)°Plate, light yellow
V = 1024.50 (6) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1818 independent reflections
Radiation source: fine-focus sealed tube1594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 3.1°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 67
Tmin = 0.939, Tmax = 0.950l = 1515
7899 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.031P)2 + 0.4046P]
where P = (Fo2 + 2Fc2)/3
1818 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C10H9NOS2V = 1024.50 (6) Å3
Mr = 223.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3271 (4) ŵ = 0.48 mm1
b = 5.9025 (2) ÅT = 296 K
c = 13.0396 (4) Å0.25 × 0.20 × 0.10 mm
β = 92.812 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1818 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1594 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.950Rint = 0.023
7899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
1818 reflectionsΔρmin = 0.14 e Å3
127 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.06040 (4)0.13455 (10)0.18585 (4)0.0638 (2)
S20.09221 (4)0.28252 (9)0.02729 (3)0.0557 (2)
O10.28194 (12)0.7373 (2)0.06176 (11)0.0697 (5)
N10.18237 (9)0.4684 (2)0.12987 (9)0.0396 (4)
C10.30044 (11)0.3660 (3)0.27679 (11)0.0376 (5)
C20.33354 (12)0.1781 (3)0.22537 (13)0.0443 (5)
C30.40774 (14)0.0402 (3)0.26955 (15)0.0565 (6)
C40.44939 (15)0.0897 (4)0.36558 (16)0.0632 (7)
C50.41747 (15)0.2765 (4)0.41688 (15)0.0625 (7)
C60.34380 (14)0.4147 (3)0.37321 (13)0.0509 (6)
C70.21689 (12)0.5173 (3)0.23542 (12)0.0424 (5)
C80.11439 (12)0.3010 (3)0.10525 (13)0.0437 (5)
C90.16998 (14)0.5229 (3)0.05169 (13)0.0531 (6)
C100.21917 (13)0.5926 (3)0.04939 (13)0.0458 (5)
H20.305740.143740.160420.0531*
H30.429490.086090.234250.0678*
H40.498970.003400.395470.0758*
H50.445700.310470.481700.0749*
H60.322960.541690.408640.0611*
H7A0.160400.503130.279150.0509*
H7B0.239720.673250.239230.0509*
H9A0.220400.483110.099750.0637*
H9B0.129600.646060.080700.0637*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0582 (3)0.0707 (4)0.0624 (3)0.0218 (3)0.0027 (2)0.0073 (3)
S20.0562 (3)0.0648 (3)0.0451 (3)0.0033 (2)0.0074 (2)0.0115 (2)
O10.0892 (10)0.0615 (9)0.0584 (8)0.0281 (8)0.0049 (7)0.0054 (7)
N10.0425 (7)0.0405 (7)0.0354 (7)0.0013 (6)0.0010 (5)0.0012 (5)
C10.0404 (8)0.0379 (8)0.0347 (8)0.0064 (7)0.0044 (6)0.0013 (6)
C20.0463 (9)0.0459 (9)0.0407 (9)0.0003 (7)0.0033 (7)0.0057 (7)
C30.0555 (10)0.0499 (11)0.0648 (12)0.0086 (9)0.0100 (9)0.0004 (9)
C40.0541 (11)0.0672 (13)0.0675 (13)0.0063 (10)0.0052 (9)0.0162 (11)
C50.0660 (12)0.0712 (13)0.0483 (11)0.0066 (10)0.0159 (9)0.0056 (10)
C60.0612 (11)0.0503 (10)0.0407 (9)0.0039 (8)0.0029 (8)0.0065 (8)
C70.0502 (9)0.0407 (9)0.0363 (8)0.0017 (7)0.0020 (7)0.0064 (7)
C80.0395 (8)0.0464 (9)0.0448 (9)0.0005 (7)0.0018 (7)0.0047 (7)
C90.0587 (10)0.0617 (12)0.0387 (9)0.0052 (9)0.0020 (8)0.0030 (8)
C100.0516 (9)0.0426 (9)0.0433 (9)0.0018 (8)0.0035 (7)0.0014 (7)
Geometric parameters (Å, º) top
S1—C81.6315 (18)C4—C51.368 (3)
S2—C81.7424 (17)C5—C61.378 (3)
S2—C91.7947 (19)C9—C101.501 (2)
O1—C101.201 (2)C2—H20.9300
N1—C71.459 (2)C3—H30.9300
N1—C81.368 (2)C4—H40.9300
N1—C101.389 (2)C5—H50.9300
C1—C21.380 (2)C6—H60.9300
C1—C61.388 (2)C7—H7A0.9700
C1—C71.507 (2)C7—H7B0.9700
C2—C31.384 (2)C9—H9A0.9700
C3—C41.376 (3)C9—H9B0.9700
C8—S2—C993.15 (8)C1—C2—H2120.00
C7—N1—C8122.61 (13)C3—C2—H2120.00
C7—N1—C10120.12 (13)C2—C3—H3120.00
C8—N1—C10117.27 (13)C4—C3—H3120.00
C2—C1—C6118.55 (15)C3—C4—H4120.00
C2—C1—C7123.43 (14)C5—C4—H4120.00
C6—C1—C7117.98 (15)C4—C5—H5120.00
C1—C2—C3120.62 (16)C6—C5—H5120.00
C2—C3—C4120.13 (18)C1—C6—H6120.00
C3—C4—C5119.66 (19)C5—C6—H6120.00
C4—C5—C6120.49 (18)N1—C7—H7A109.00
C1—C6—C5120.55 (17)N1—C7—H7B109.00
N1—C7—C1114.46 (13)C1—C7—H7A109.00
S1—C8—S2122.86 (10)C1—C7—H7B109.00
S1—C8—N1126.28 (13)H7A—C7—H7B108.00
S2—C8—N1110.86 (12)S2—C9—H9A110.00
S2—C9—C10106.99 (12)S2—C9—H9B110.00
O1—C10—N1122.91 (16)C10—C9—H9A110.00
O1—C10—C9125.76 (16)C10—C9—H9B110.00
N1—C10—C9111.33 (14)H9A—C9—H9B109.00
C9—S2—C8—S1176.53 (12)C6—C1—C2—C30.6 (2)
C9—S2—C8—N14.19 (13)C7—C1—C2—C3177.17 (16)
C8—S2—C9—C105.77 (13)C2—C1—C6—C50.7 (3)
C8—N1—C7—C182.66 (18)C7—C1—C6—C5177.15 (17)
C10—N1—C7—C196.82 (17)C2—C1—C7—N18.0 (2)
C7—N1—C8—S10.9 (2)C6—C1—C7—N1174.18 (14)
C7—N1—C8—S2178.35 (11)C1—C2—C3—C40.1 (3)
C10—N1—C8—S1179.60 (13)C2—C3—C4—C50.4 (3)
C10—N1—C8—S21.15 (18)C3—C4—C5—C60.2 (3)
C7—N1—C10—O12.5 (2)C4—C5—C6—C10.4 (3)
C7—N1—C10—C9177.06 (14)S2—C9—C10—O1174.34 (16)
C8—N1—C10—O1177.01 (16)S2—C9—C10—N16.12 (17)
C8—N1—C10—C93.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.473.338 (2)156
C3—H3···Cgii0.932.953.674 (2)136
C9—H9a···Cgiii0.972.663.588 (2)160
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H9NOS2
Mr223.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.3271 (4), 5.9025 (2), 13.0396 (4)
β (°) 92.812 (1)
V3)1024.50 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
7899, 1818, 1594
Rint0.023
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.07
No. of reflections1818
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.14

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.473.338 (2)156
C3—H3···Cgii0.932.953.674 (2)136
C9—H9a···Cgiii0.972.663.588 (2)160
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

DS is grateful to the Higher Education Commission (Pakistan) for funding of this project and to Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Raza, M. A. & Aslam, S. (2010). Acta Cryst. E66, o2159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009a). Acta Cryst. E65, o3014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009b). Acta Cryst. E65, o3016.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds