organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Carb­­oxy­meth­yl)phen­­oxy]acetic acid

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: wyh@zjnu.edu.cn

(Received 26 November 2010; accepted 10 December 2010; online 18 December 2010)

The title compound, C10H10O5, was obtained by the reaction of 4-hy­droxy­phenyl­acetic acid with chloro­acetic acid. In the crystal, the mol­ecules form a three-dimensional network by way of inter­molecular O—H⋯O hydrogen bonding.

Related literature

For applications of metal-organic frameworks with carb­oxy­lic acid ligands, see: Kuppler et al. (2009)[Kuppler, R. J., Timmons, D. J., Fang, Q. R., Li, J. R. & Makal, T. A. (2009). Coord. Chem. Rev. 253, 3042-3066.]; Jahan et al. (2010[Jahan, M., Bao, Q. L., Yang, J. X. & Loh, K. P. (2010). J. Am. Chem. Soc. 132, 14487-14495.]); Armelao et al. (2010[Armelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M. & Tondello, E.et al. (2010). Coord. Chem. Rev. 254, 487-505.]); Yashima et al. (2009[Yashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. (2009). Chem. Rev. 109, 6102-6211.]). The title compound was obtained by the reaction of 4-hy­droxy­phenyl­acetic (Gracin et al., 2005[Gracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1919-o1920.]) and chloro­acetic acid (Sandhu et al., 1991[Sandhu, G. K., Sharma, N. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 403, 119-131.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O5

  • Mr = 210.18

  • Orthorhombic, P 21 21 21

  • a = 5.4640 (2) Å

  • b = 10.7798 (5) Å

  • c = 16.2550 (7) Å

  • V = 957.43 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.42 × 0.38 × 0.31 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goéttingen, Germany.]) Tmin = 0.95, Tmax = 0.96

  • 11814 measured reflections

  • 1315 independent reflections

  • 1162 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.07

  • 1315 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 1.81 2.617 (2) 168
O5—H5⋯O1ii 0.82 1.85 2.666 (2) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Various aromatic carboxylic acid ligands are being used in designing versatile metal-organic frameworks (MOFs) having potential applications (Kuppler et al., 2009; Jahan et al., 2010; Armelao et al., 2010; Yashima et al., 2009). In present work, we report the synthesis and single crystal structure of a new aromatic dicarboxylic acid ligand namely 4-carboxymethoxy phenylacetic acid (I) containing two flexible carboxylic acid groups, obtained by the reaction of 4-hydroxyphenylacetic (Gracin et al., 2005) and chloroacetic acid (Sandhu et al., 1991).

The molecular structure of the title compound is presented in Fig.1. The carboxymethoxy group is almost parallel to the benzene ring with a dihedral angle of 11.4 (1)° between the two least-squares planes,while the acetic acid unit is almost perpendicular to the benzene ring, making a dihedral angle of 72.4 (2)°.In addtion, the moleculars were linked by the intermolecular O—H···O hydrogen bonding forming a three-dimensional network (Fig.2).

Related literature top

For applications of metal-organic frameworks with carboxylic acid ligands, see: Kuppler et al. (2009); Jahan et al. (2010); Armelao et al. (2010); Yashima et al. (2009). The title compound was obtained by the reaction of 4-hydroxyphenylacetic (Gracin et al., 2005) and chloroacetic acid (Sandhu et al., 1991).

Experimental top

The solution of 4-hydroxyphenylacetic acid (1.522 g, 10.0 mmol) in water (10 ml) neutralized with NaOH (0.8 g, 20 mmol) was added to a 1:1 mixture of chloroacetic acid (3.78 g, 40 mmol) and NaOH (1.600 g, 40 mmol) with stirring to adjust the pH value of the mixture to ca 11 and refluxed at 90 0C for 3 h. The pH value was adjusted to 2–3 with concentrated hydrochloric acid. While cooling the mixture to room temperature, a white precipitate was appeared rapidly. The solid was filtrated, washed by water. Single crystals suitable for X-ray diffraction were obtained in the mother liquid after evaporation within a few days.

Refinement top

The Flack parameter could not be refined to an acceptable value as the title compound is a poor anomalous scatterer even after using MOVE command in Shelxl97. Therefore, the Friedel oppostites were merged (using MERG 3 command in Shelxl97) and Flack parameter is not reported. H-atoms were positioned geometrically and included in the refinement using a riding-model approximation [aromatic C–H = 0.93 Å, aliphatic C–H = 0.97 Å, O–H = 0.82 Å] with Uiso(H) = 1.2Ueq(C,O).

Structure description top

Various aromatic carboxylic acid ligands are being used in designing versatile metal-organic frameworks (MOFs) having potential applications (Kuppler et al., 2009; Jahan et al., 2010; Armelao et al., 2010; Yashima et al., 2009). In present work, we report the synthesis and single crystal structure of a new aromatic dicarboxylic acid ligand namely 4-carboxymethoxy phenylacetic acid (I) containing two flexible carboxylic acid groups, obtained by the reaction of 4-hydroxyphenylacetic (Gracin et al., 2005) and chloroacetic acid (Sandhu et al., 1991).

The molecular structure of the title compound is presented in Fig.1. The carboxymethoxy group is almost parallel to the benzene ring with a dihedral angle of 11.4 (1)° between the two least-squares planes,while the acetic acid unit is almost perpendicular to the benzene ring, making a dihedral angle of 72.4 (2)°.In addtion, the moleculars were linked by the intermolecular O—H···O hydrogen bonding forming a three-dimensional network (Fig.2).

For applications of metal-organic frameworks with carboxylic acid ligands, see: Kuppler et al. (2009); Jahan et al. (2010); Armelao et al. (2010); Yashima et al. (2009). The title compound was obtained by the reaction of 4-hydroxyphenylacetic (Gracin et al., 2005) and chloroacetic acid (Sandhu et al., 1991).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I), the hydrogen bonds are depicted as green dashed lines.
2-[4-(Carboxymethyl)phenoxy]acetic acid top
Crystal data top
C10H10O5F(000) = 440
Mr = 210.18Dx = 1.458 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6173 reflections
a = 5.4640 (2) Åθ = 2.3–27.7°
b = 10.7798 (5) ŵ = 0.12 mm1
c = 16.2550 (7) ÅT = 296 K
V = 957.43 (7) Å3Block, colourless
Z = 40.42 × 0.38 × 0.31 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1315 independent reflections
Radiation source: fine-focus sealed tube1162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
phi and ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.95, Tmax = 0.96k = 1314
11814 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2342P]
where P = (Fo2 + 2Fc2)/3
1315 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H10O5V = 957.43 (7) Å3
Mr = 210.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4640 (2) ŵ = 0.12 mm1
b = 10.7798 (5) ÅT = 296 K
c = 16.2550 (7) Å0.42 × 0.38 × 0.31 mm
Data collection top
Bruker APEXII area-detector
diffractometer
1315 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1162 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.96Rint = 0.049
11814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
1315 reflectionsΔρmin = 0.19 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4626 (4)0.67278 (16)0.64905 (10)0.0651 (5)
O20.7484 (4)0.79234 (17)0.59564 (10)0.0645 (5)
H20.71320.83670.63490.077*
O30.4929 (3)0.51339 (14)0.52607 (9)0.0489 (4)
O40.8002 (3)0.06923 (15)0.22690 (11)0.0536 (4)
O50.6100 (4)0.00299 (16)0.33749 (9)0.0589 (5)
H50.72570.05150.33740.071*
C10.6127 (4)0.6927 (2)0.59700 (12)0.0440 (5)
C20.6695 (4)0.6081 (2)0.52593 (12)0.0443 (5)
H2A0.66320.65380.47460.053*
H2B0.83200.57310.53200.053*
C30.4856 (4)0.43389 (19)0.46020 (12)0.0401 (4)
C40.2906 (4)0.3526 (2)0.45967 (13)0.0449 (5)
H4A0.17410.35590.50130.054*
C50.2681 (4)0.2661 (2)0.39733 (13)0.0467 (5)
H5A0.13570.21190.39720.056*
C60.4405 (4)0.2592 (2)0.33498 (12)0.0427 (5)
C70.6354 (4)0.3416 (2)0.33640 (13)0.0457 (5)
H7A0.75200.33810.29480.055*
C80.6606 (4)0.4294 (2)0.39878 (12)0.0445 (5)
H8A0.79250.48390.39910.053*
C90.4187 (4)0.1613 (2)0.26811 (13)0.0502 (5)
H9A0.26510.11710.27410.060*
H9B0.41980.20090.21450.060*
C100.6279 (4)0.07182 (19)0.27412 (13)0.0431 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0757 (12)0.0593 (11)0.0602 (9)0.0208 (10)0.0218 (10)0.0149 (8)
O20.0736 (12)0.0572 (10)0.0627 (10)0.0251 (10)0.0144 (10)0.0129 (8)
O30.0598 (9)0.0426 (8)0.0444 (7)0.0102 (8)0.0096 (8)0.0050 (6)
O40.0479 (8)0.0490 (9)0.0639 (9)0.0009 (8)0.0033 (8)0.0069 (8)
O50.0625 (10)0.0639 (10)0.0503 (8)0.0177 (10)0.0026 (8)0.0099 (8)
C10.0475 (11)0.0409 (10)0.0437 (10)0.0063 (10)0.0009 (10)0.0025 (9)
C20.0446 (11)0.0461 (11)0.0423 (10)0.0056 (10)0.0009 (10)0.0003 (9)
C30.0448 (10)0.0376 (9)0.0378 (9)0.0010 (9)0.0000 (9)0.0026 (8)
C40.0447 (11)0.0452 (11)0.0448 (10)0.0008 (10)0.0034 (10)0.0012 (9)
C50.0435 (11)0.0452 (11)0.0515 (11)0.0016 (10)0.0029 (10)0.0017 (9)
C60.0436 (11)0.0428 (10)0.0416 (9)0.0092 (10)0.0067 (9)0.0012 (8)
C70.0436 (11)0.0512 (12)0.0422 (10)0.0051 (10)0.0030 (9)0.0011 (9)
C80.0412 (10)0.0465 (11)0.0457 (10)0.0023 (10)0.0002 (9)0.0018 (9)
C90.0493 (12)0.0541 (12)0.0473 (11)0.0129 (11)0.0122 (10)0.0060 (10)
C100.0455 (11)0.0389 (10)0.0451 (10)0.0010 (10)0.0084 (10)0.0040 (9)
Geometric parameters (Å, º) top
O1—C11.198 (3)C4—C51.383 (3)
O2—C11.305 (3)C4—H4A0.9300
O2—H20.8200C5—C61.386 (3)
O3—C31.372 (2)C5—H5A0.9300
O3—C21.405 (3)C6—C71.387 (3)
O4—C101.215 (3)C6—C91.519 (3)
O5—C101.312 (3)C7—C81.394 (3)
O5—H50.8200C7—H7A0.9300
C1—C21.504 (3)C8—H8A0.9300
C2—H2A0.9700C9—C101.499 (3)
C2—H2B0.9700C9—H9A0.9700
C3—C41.380 (3)C9—H9B0.9700
C3—C81.383 (3)
C1—O2—H2109.5C6—C5—H5A119.6
C3—O3—C2118.19 (16)C5—C6—C7118.39 (19)
C10—O5—H5109.5C5—C6—C9120.5 (2)
O1—C1—O2123.3 (2)C7—C6—C9121.11 (19)
O1—C1—C2125.1 (2)C6—C7—C8121.5 (2)
O2—C1—C2111.64 (18)C6—C7—H7A119.2
O3—C2—C1107.31 (17)C8—C7—H7A119.2
O3—C2—H2A110.3C3—C8—C7118.7 (2)
C1—C2—H2A110.3C3—C8—H8A120.6
O3—C2—H2B110.3C7—C8—H8A120.6
C1—C2—H2B110.3C10—C9—C6109.89 (17)
H2A—C2—H2B108.5C10—C9—H9A109.7
O3—C3—C4115.09 (18)C6—C9—H9A109.7
O3—C3—C8124.41 (19)C10—C9—H9B109.7
C4—C3—C8120.47 (19)C6—C9—H9B109.7
C3—C4—C5120.1 (2)H9A—C9—H9B108.2
C3—C4—H4A119.9O4—C10—O5122.6 (2)
C5—C4—H4A119.9O4—C10—C9124.4 (2)
C4—C5—C6120.8 (2)O5—C10—C9112.97 (19)
C4—C5—H5A119.6
C3—O3—C2—C1171.19 (18)C5—C6—C7—C80.3 (3)
O1—C1—C2—O38.2 (3)C9—C6—C7—C8178.2 (2)
O2—C1—C2—O3171.83 (18)O3—C3—C8—C7178.09 (19)
C2—O3—C3—C4172.77 (18)C4—C3—C8—C70.2 (3)
C2—O3—C3—C89.3 (3)C6—C7—C8—C30.2 (3)
O3—C3—C4—C5178.35 (19)C5—C6—C9—C10114.2 (2)
C8—C3—C4—C50.3 (3)C7—C6—C9—C1064.2 (3)
C3—C4—C5—C60.4 (3)C6—C9—C10—O4106.1 (2)
C4—C5—C6—C70.3 (3)C6—C9—C10—O572.4 (2)
C4—C5—C6—C9178.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.812.617 (2)168
O5—H5···O1ii0.821.852.666 (2)171
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H10O5
Mr210.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.4640 (2), 10.7798 (5), 16.2550 (7)
V3)957.43 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.42 × 0.38 × 0.31
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.95, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
11814, 1315, 1162
Rint0.049
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.07
No. of reflections1315
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.812.617 (2)168
O5—H5···O1ii0.821.852.666 (2)171
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1.
 

References

First citationArmelao, L., Quici, S., Barigelletti, F., Accorsi, G., Bottaro, G., Cavazzini, M. & Tondello, E.et al. (2010). Coord. Chem. Rev. 254, 487–505.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGracin, S. & Fischer, A. (2005). Acta Cryst. E61, o1919–o1920.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJahan, M., Bao, Q. L., Yang, J. X. & Loh, K. P. (2010). J. Am. Chem. Soc. 132, 14487–14495.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKuppler, R. J., Timmons, D. J., Fang, Q. R., Li, J. R. & Makal, T. A. (2009). Coord. Chem. Rev. 253, 3042–3066.  Web of Science CrossRef CAS Google Scholar
First citationSandhu, G. K., Sharma, N. & Tiekink, E. R. T. (1991). J. Organomet. Chem. 403, 119–131.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goéttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYashima, E., Maeda, K., Iida, H., Furusho, Y. & Nagai, K. (2009). Chem. Rev. 109, 6102–6211.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds