organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(2-Chloro­phen­yl)-2-hy­dr­oxy­eth­yl](isoprop­yl)ammonium 4-hy­dr­oxy­benzoate

aCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: fenghai289289@163.com

(Received 1 December 2010; accepted 9 December 2010; online 18 December 2010)

The title molecular salt, C11H17ClNO+·C7H5O3, was obtained by the reaction of racemic clorprenaline and 4-hy­droxy­benzoic acid. In the crystal, the components are connected by O—H⋯O and N—H⋯O hydrogen bonds, resulting in a two-dimensional hydrogen-bonded network.

Related literature

For related structures, see: Takwale & Pant (1971[Takwale, M. G. & Pant, L. M. (1971). Acta Cryst. B27, 1152-1158.]); Tang et al. (2009[Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501.]). For hydrogen bonding, see: Feng et al. (2010[Feng, H., Xing, B. T., Huang, X., Zhou, Y. J. & Song, Y. (2010). Acta Cryst. E66, o2605.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17ClNO+·C7H5O3

  • Mr = 351.82

  • Monoclinic, P 21 /n

  • a = 9.4033 (4) Å

  • b = 12.2591 (4) Å

  • c = 15.9290 (7) Å

  • β = 96.144 (1)°

  • V = 1825.68 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.50 × 0.38 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.894, Tmax = 0.953

  • 17614 measured reflections

  • 4131 independent reflections

  • 2891 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.00

  • 4131 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2 0.90 1.91 2.8090 (18) 177
N1—H1A⋯O3i 0.90 1.87 2.7671 (18) 178
O1—H101⋯O2i 0.82 1.94 2.7568 (16) 174
O4—H401⋯O3ii 0.82 1.86 2.6601 (18) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006)[Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]; cell refinement: PROCESS-AUTO[Rigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.]; data reduction: CrystalStructure (Rigaku/MSC, 2007)[Rigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

A recent study reports the structure of N-[2-(2-chlorophenyl)-2-hydroxyethyl]- propan-2-aminium-4-methylbenzoate (Feng et al., 2010), which was synthesized by p-Toluic acid and clorprenaline (Tang et al., 2009). In the present study, reaction of 4-Hydroxybenzoic acid instead of p-Toluic acid with racemic clorprenaline yields the title compound, (I) following a similar synthetic procedure.

In (I), the clorprenaline molecule and the 4-Hydroxybenzoic acid molecule are linked to each other by the N—H···O and the O—H···O hydogen bonds (Fig. 1 & Table 1). The clorprenaline in (I) are twisted moderately as compared with those of other compounds. The C(12)-O(2) distance of 1.257 (2)Å is much shorter than the similar distance of 1.292 (8)Å (Takwale et al., 1971). The C(9)-N(1) distance of 1.509 (2)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang et al., 2009b) and comparable to the similar bond distance of 1.503 (2)Å (Feng et al., 2010). The C(1)—C(6)—C(7)—C(8) torsion angle of 95.72 (19)° is larger than the value of the C(7)—C(2)—C(1)—C(8) torsion angle of 91.9 (2)° (Tang et al., 2009).

Related literature top

For related structures, see: Takwale & Pant (1971); Tang et al. (2009). For hydrogen bonding, see: Feng et al. (2010).

Experimental top

Racemic clorprenaline was prepared from clorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Clorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol-water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic clorprenaline (0.5 g, 0.0023 mol) was dissolved in methanol (6 ml) and then 4-Hydroxybenzoic acid (0.29 g, 0.0023 mol) was added.The mixture was dissolved by stirring for 1h at room temperature. The resulting solution was concentrated at ambient temperature. Colorless crystals of (I) were separated from the solution in about 68% yield after two day.

Refinement top

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (aromatic), 0.98 (methine), 0.97 (methylene), 0.96 (methyl) 0.82 (hydroxyl) and N—H=0.90 Å, with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

A recent study reports the structure of N-[2-(2-chlorophenyl)-2-hydroxyethyl]- propan-2-aminium-4-methylbenzoate (Feng et al., 2010), which was synthesized by p-Toluic acid and clorprenaline (Tang et al., 2009). In the present study, reaction of 4-Hydroxybenzoic acid instead of p-Toluic acid with racemic clorprenaline yields the title compound, (I) following a similar synthetic procedure.

In (I), the clorprenaline molecule and the 4-Hydroxybenzoic acid molecule are linked to each other by the N—H···O and the O—H···O hydogen bonds (Fig. 1 & Table 1). The clorprenaline in (I) are twisted moderately as compared with those of other compounds. The C(12)-O(2) distance of 1.257 (2)Å is much shorter than the similar distance of 1.292 (8)Å (Takwale et al., 1971). The C(9)-N(1) distance of 1.509 (2)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang et al., 2009b) and comparable to the similar bond distance of 1.503 (2)Å (Feng et al., 2010). The C(1)—C(6)—C(7)—C(8) torsion angle of 95.72 (19)° is larger than the value of the C(7)—C(2)—C(1)—C(8) torsion angle of 91.9 (2)° (Tang et al., 2009).

For related structures, see: Takwale & Pant (1971); Tang et al. (2009). For hydrogen bonding, see: Feng et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The cell unit of (I) with atom labels, showing 50% probability displacement ellipsoids.
[2-(2-Chlorophenyl)-2-hydroxyethyl](isopropyl)ammonium 4-hydroxybenzoate top
Crystal data top
C11H17ClNO+·C7H5O3F(000) = 744
Mr = 351.82Dx = 1.280 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12291 reflections
a = 9.4033 (4) Åθ = 3.1–27.4°
b = 12.2591 (4) ŵ = 0.23 mm1
c = 15.9290 (7) ÅT = 296 K
β = 96.144 (1)°Chunk, colorless
V = 1825.68 (13) Å30.50 × 0.38 × 0.21 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4131 independent reflections
Radiation source: rolling anode2891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.894, Tmax = 0.953l = 2020
17614 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.8632P]
where P = (Fo2 + 2Fc2)/3
4131 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C11H17ClNO+·C7H5O3V = 1825.68 (13) Å3
Mr = 351.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4033 (4) ŵ = 0.23 mm1
b = 12.2591 (4) ÅT = 296 K
c = 15.9290 (7) Å0.50 × 0.38 × 0.21 mm
β = 96.144 (1)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
4131 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2891 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.953Rint = 0.025
17614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4131 reflectionsΔρmin = 0.48 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.62065 (7)0.20187 (5)0.20512 (3)0.0746 (2)
O20.41212 (13)0.41383 (9)0.58832 (8)0.0428 (3)
O30.59219 (14)0.46948 (9)0.67954 (8)0.0462 (3)
O40.72015 (17)0.03918 (9)0.68325 (9)0.0606 (4)
H4010.78790.04160.72020.091*
O10.64832 (15)0.37003 (10)0.44750 (9)0.0502 (3)
H1010.63320.43380.43380.075*
N10.34605 (15)0.35386 (10)0.41842 (9)0.0364 (3)
H1A0.36520.41020.38520.044*
H1B0.36870.37480.47230.044*
C170.7690 (2)0.15336 (13)0.68657 (10)0.0398 (4)
H170.86530.14070.70360.048*
C130.57588 (18)0.28014 (12)0.64942 (10)0.0352 (4)
C60.68166 (18)0.20139 (13)0.37627 (11)0.0387 (4)
C70.58728 (18)0.30067 (13)0.38234 (11)0.0377 (4)
H70.57870.34010.32850.045*
C80.44059 (18)0.26082 (12)0.40065 (11)0.0379 (4)
H8A0.39670.22010.35250.045*
H8B0.45110.21220.44890.045*
C120.52260 (19)0.39509 (12)0.63789 (10)0.0364 (4)
C180.71869 (19)0.25922 (13)0.67590 (10)0.0373 (4)
H180.78170.31720.68670.045*
C160.6755 (2)0.06630 (13)0.67183 (11)0.0419 (4)
C10.7039 (2)0.15117 (15)0.30082 (12)0.0475 (4)
C50.7444 (2)0.15316 (15)0.45040 (13)0.0485 (4)
H50.73120.18460.50210.058*
C90.18745 (19)0.33141 (15)0.40517 (12)0.0459 (4)
H90.16360.30570.34710.055*
C140.4843 (2)0.19169 (14)0.63267 (12)0.0451 (4)
H140.38860.20390.61380.054*
C150.5339 (2)0.08564 (14)0.64370 (13)0.0499 (5)
H150.47150.02740.63210.060*
C40.8256 (2)0.05966 (16)0.44857 (16)0.0592 (6)
H40.86490.02800.49880.071*
C20.7882 (2)0.05865 (17)0.29803 (16)0.0620 (6)
H20.80360.02760.24650.074*
C30.8488 (2)0.01326 (17)0.37280 (18)0.0661 (6)
H30.90530.04890.37180.079*
C100.1482 (2)0.2436 (2)0.46424 (17)0.0748 (7)
H10A0.20100.17840.45490.112*
H10B0.04760.22880.45400.112*
H10C0.17090.26730.52150.112*
C110.1090 (3)0.4372 (2)0.4154 (2)0.0839 (8)
H11A0.13810.49010.37610.126*
H11B0.13130.46390.47190.126*
H11C0.00790.42510.40460.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0952 (5)0.0856 (4)0.0451 (3)0.0206 (3)0.0172 (3)0.0027 (3)
O20.0505 (7)0.0338 (6)0.0419 (7)0.0054 (5)0.0060 (6)0.0023 (5)
O30.0609 (8)0.0268 (6)0.0473 (7)0.0027 (5)0.0103 (6)0.0025 (5)
O40.0820 (11)0.0254 (6)0.0667 (10)0.0029 (6)0.0273 (8)0.0004 (6)
O10.0550 (8)0.0324 (6)0.0602 (8)0.0013 (6)0.0078 (6)0.0053 (6)
N10.0410 (8)0.0314 (7)0.0366 (7)0.0006 (6)0.0029 (6)0.0031 (6)
C170.0463 (10)0.0329 (8)0.0377 (9)0.0015 (7)0.0069 (7)0.0017 (7)
C130.0452 (10)0.0277 (7)0.0317 (8)0.0013 (7)0.0004 (7)0.0013 (6)
C60.0362 (9)0.0330 (8)0.0478 (10)0.0001 (7)0.0083 (7)0.0011 (7)
C70.0426 (10)0.0292 (8)0.0409 (9)0.0018 (7)0.0033 (7)0.0008 (7)
C80.0439 (10)0.0257 (7)0.0440 (9)0.0014 (7)0.0044 (7)0.0013 (7)
C120.0461 (10)0.0297 (8)0.0333 (8)0.0007 (7)0.0035 (7)0.0009 (6)
C180.0456 (10)0.0276 (8)0.0372 (9)0.0044 (7)0.0020 (7)0.0010 (6)
C160.0589 (11)0.0255 (8)0.0384 (9)0.0002 (7)0.0083 (8)0.0015 (6)
C10.0470 (11)0.0449 (10)0.0527 (11)0.0026 (8)0.0147 (9)0.0029 (8)
C50.0493 (11)0.0415 (10)0.0539 (11)0.0042 (8)0.0023 (9)0.0009 (8)
C90.0372 (10)0.0539 (11)0.0459 (10)0.0020 (8)0.0017 (8)0.0062 (8)
C140.0439 (10)0.0347 (9)0.0543 (11)0.0052 (7)0.0062 (8)0.0043 (8)
C150.0568 (12)0.0294 (8)0.0605 (12)0.0104 (8)0.0088 (9)0.0036 (8)
C40.0524 (12)0.0464 (11)0.0770 (15)0.0114 (9)0.0012 (11)0.0074 (10)
C20.0587 (13)0.0552 (12)0.0765 (15)0.0088 (10)0.0275 (12)0.0125 (11)
C30.0521 (13)0.0443 (11)0.1031 (19)0.0147 (9)0.0138 (13)0.0011 (12)
C100.0536 (13)0.0820 (16)0.0902 (19)0.0165 (12)0.0137 (13)0.0151 (14)
C110.0480 (13)0.0737 (16)0.131 (2)0.0158 (12)0.0143 (15)0.0056 (16)
Geometric parameters (Å, º) top
Cl1—C11.751 (2)C8—H8B0.9700
O2—C121.257 (2)C18—H180.9300
O3—C121.2678 (19)C16—C151.379 (3)
O4—C161.3656 (19)C1—C21.387 (3)
O4—H4010.8200C5—C41.380 (3)
O1—C71.415 (2)C5—H50.9300
O1—H1010.8200C9—C101.502 (3)
N1—C81.492 (2)C9—C111.510 (3)
N1—C91.509 (2)C9—H90.9800
N1—H1A0.9000C14—C151.386 (2)
N1—H1B0.9000C14—H140.9300
C17—C181.385 (2)C15—H150.9300
C17—C161.387 (2)C4—C31.372 (3)
C17—H170.9300C4—H40.9300
C13—C181.388 (2)C2—C31.381 (3)
C13—C141.392 (2)C2—H20.9300
C13—C121.500 (2)C3—H30.9300
C6—C11.386 (3)C10—H10A0.9600
C6—C51.394 (3)C10—H10B0.9600
C6—C71.515 (2)C10—H10C0.9600
C7—C81.521 (2)C11—H11A0.9600
C7—H70.9800C11—H11B0.9600
C8—H8A0.9700C11—H11C0.9600
C16—O4—H401109.5C6—C1—Cl1120.15 (14)
C7—O1—H101109.5C2—C1—Cl1117.77 (16)
C8—N1—C9115.73 (13)C4—C5—C6121.31 (19)
C8—N1—H1A108.3C4—C5—H5119.3
C9—N1—H1A108.3C6—C5—H5119.3
C8—N1—H1B108.3C10—C9—C11113.15 (19)
C9—N1—H1B108.3C10—C9—N1110.40 (16)
H1A—N1—H1B107.4C11—C9—N1108.36 (16)
C18—C17—C16119.89 (16)C10—C9—H9108.3
C18—C17—H17120.1C11—C9—H9108.3
C16—C17—H17120.1N1—C9—H9108.3
C18—C13—C14118.20 (15)C15—C14—C13120.90 (17)
C18—C13—C12120.69 (14)C15—C14—H14119.5
C14—C13—C12121.09 (15)C13—C14—H14119.5
C1—C6—C5117.18 (16)C16—C15—C14120.15 (16)
C1—C6—C7123.76 (16)C16—C15—H15119.9
C5—C6—C7118.97 (16)C14—C15—H15119.9
O1—C7—C6109.57 (14)C3—C4—C5120.2 (2)
O1—C7—C8110.94 (14)C3—C4—H4119.9
C6—C7—C8107.68 (13)C5—C4—H4119.9
O1—C7—H7109.5C3—C2—C1119.1 (2)
C6—C7—H7109.5C3—C2—H2120.5
C8—C7—H7109.5C1—C2—H2120.5
N1—C8—C7111.22 (13)C4—C3—C2120.11 (19)
N1—C8—H8A109.4C4—C3—H3119.9
C7—C8—H8A109.4C2—C3—H3119.9
N1—C8—H8B109.4C9—C10—H10A109.5
C7—C8—H8B109.4C9—C10—H10B109.5
H8A—C8—H8B108.0H10A—C10—H10B109.5
O2—C12—O3122.88 (15)C9—C10—H10C109.5
O2—C12—C13119.43 (14)H10A—C10—H10C109.5
O3—C12—C13117.69 (15)H10B—C10—H10C109.5
C17—C18—C13121.13 (15)C9—C11—H11A109.5
C17—C18—H18119.4C9—C11—H11B109.5
C13—C18—H18119.4H11A—C11—H11B109.5
O4—C16—C15118.57 (15)C9—C11—H11C109.5
O4—C16—C17121.75 (17)H11A—C11—H11C109.5
C15—C16—C17119.67 (15)H11B—C11—H11C109.5
C6—C1—C2122.05 (19)
C1—C6—C7—O1143.52 (17)C7—C6—C1—C2178.28 (18)
C5—C6—C7—O140.1 (2)C5—C6—C1—Cl1176.36 (14)
C1—C6—C7—C895.72 (19)C7—C6—C1—Cl10.1 (2)
C5—C6—C7—C880.64 (19)C1—C6—C5—C40.3 (3)
C9—N1—C8—C7157.85 (14)C7—C6—C5—C4176.88 (17)
O1—C7—C8—N152.93 (18)C8—N1—C9—C1062.5 (2)
C6—C7—C8—N1172.83 (14)C8—N1—C9—C11173.03 (18)
C18—C13—C12—O2155.55 (16)C18—C13—C14—C151.2 (3)
C14—C13—C12—O223.4 (3)C12—C13—C14—C15179.77 (17)
C18—C13—C12—O324.7 (2)O4—C16—C15—C14178.98 (18)
C14—C13—C12—O3156.32 (17)C17—C16—C15—C141.9 (3)
C16—C17—C18—C130.9 (3)C13—C14—C15—C160.2 (3)
C14—C13—C18—C170.9 (3)C6—C5—C4—C31.3 (3)
C12—C13—C18—C17179.87 (15)C6—C1—C2—C31.8 (3)
C18—C17—C16—O4178.65 (17)Cl1—C1—C2—C3176.45 (17)
C18—C17—C16—C152.3 (3)C5—C4—C3—C21.4 (3)
C5—C6—C1—C21.9 (3)C1—C2—C3—C40.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.901.912.8090 (18)177
N1—H1A···O3i0.901.872.7671 (18)178
O1—H101···O2i0.821.942.7568 (16)174
O4—H401···O3ii0.821.862.6601 (18)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H17ClNO+·C7H5O3
Mr351.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.4033 (4), 12.2591 (4), 15.9290 (7)
β (°) 96.144 (1)
V3)1825.68 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.38 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.894, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
17614, 4131, 2891
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.110, 1.00
No. of reflections4131
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.48

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2006), PROCESS-AUTO (Rigaku/MSC, 2006), CrystalStructure (Rigaku/MSC, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O20.901.912.8090 (18)177
N1—H1A···O3i0.901.872.7671 (18)178
O1—H101···O2i0.821.942.7568 (16)174
O4—H401···O3ii0.821.862.6601 (18)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+3/2.
 

Acknowledgements

This project was supported by the Zhejiang Science and Technology Department Foundation of China (grant No. 2007 C21127) and the Key Scientific and Technological Research Project of Science and Technology Department of Zhejiang Province of China (grant No. 2008 C12051).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFeng, H., Xing, B. T., Huang, X., Zhou, Y. J. & Song, Y. (2010). Acta Cryst. E66, o2605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). PROCESS-AUTO. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku/MSC (2007). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakwale, M. G. & Pant, L. M. (1971). Acta Cryst. B27, 1152–1158.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009). Acta Cryst. E65, o1501.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds