supplementary materials


ds2077 scheme

Acta Cryst. (2011). E67, o104    [ doi:10.1107/S1600536810051305 ]

N-(3,4-Dichlorophenyl)-4-methylbenzenesulfonamide

K. Shakuntala, S. Foro and B. T. Gowda

Abstract top

In the title compound, C13H11Cl2NO2S, the conformation of the N-C bond in the C-SO2-NH-C segment has gauche torsions with respect to the S=O bonds. The molecule is bent at the S atom with a C-SO2-NH-C torsion angle of 64.3 (4)°. Furthermore, the conformation of the N-H bond and the meta-chloro group in the adjacent benzene ring are anti to each other. The two benzene rings are tilted relative to each other by 82.5 (1)°. In the crystal, molecules are linked by pairs of N-H...O(S) hydrogen bonds, forming inversion dimers.

Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2009; Shakuntala et al., 2010; 2011), in the present work, the structure of N-(3,4-dichlorophenyl)-4-methylbenzenesulfonamide (I) has been determined. In (I), the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds (Fig. 1). The conformation of the N—H bond and the meta-chloro groups in the adjacent benzene ring are anti to each other.

The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of 64.3 (4)°, compared to the values of 65.4 (2)° (molecule 1) and -61.7 (2)° (molecule 2) in N-(2,3-dichlorophenyl)-4- methylbenzenesulfonamide (II) (Shakuntala et al., 2010), 62.1 (2)° in N-(2,5-dichlorophenyl)-4-methylbenzenesulfonamide (III) (Shakuntala et al., 2011) and 69.3 (4)° in N-(3,5-dichlorophenyl)-4-methylbenzenesulfonamide (IV) (Gowda et al., 2009).

The benzene rings in the title compound are tilted relative to each other by 82.5 (1)°, compared to the values of 76.0 (1)° (molecule 1) and 79.9 (1)° (molecule 2) in (II), 67.8 (1)° in (III) and 79.6 (1)° in (IV).

The other bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

Related literature top

For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009); Shakuntala et al. (2010, 2011); For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of toluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-methylbenzenesulfonylchloride was treated with 3,4-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant N-(3,4-dichlorophenyl)-4-methylbenzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra.

Prism like light brown single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to the distance N—H = 0.86 (3) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å A l l H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
N-(3,4-Dichlorophenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H11Cl2NO2SF(000) = 648
Mr = 316.19Dx = 1.488 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.543 (1) Åθ = 5.7–18.6°
b = 13.628 (2) ŵ = 5.50 mm1
c = 10.893 (1) ÅT = 299 K
β = 94.85 (1)°Prism, light brown
V = 1411.6 (3) Å30.40 × 0.28 × 0.18 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1791 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.117
graphiteθmax = 66.9°, θmin = 4.7°
ω/2θ scansh = 112
Absorption correction: ψ scan
(North et al., 1968)
k = 160
Tmin = 0.217, Tmax = 0.438l = 1313
2927 measured reflections3 standard reflections every 120 min
2462 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1697P)2 + 0.0915P]
where P = (Fo2 + 2Fc2)/3
2462 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.38 e Å3
1 restraintΔρmin = 0.97 e Å3
Crystal data top
C13H11Cl2NO2SV = 1411.6 (3) Å3
Mr = 316.19Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.543 (1) ŵ = 5.50 mm1
b = 13.628 (2) ÅT = 299 K
c = 10.893 (1) Å0.40 × 0.28 × 0.18 mm
β = 94.85 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1791 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.117
Tmin = 0.217, Tmax = 0.438θmax = 66.9°
2927 measured reflections3 standard reflections every 120 min
2462 independent reflections intensity decay: 1.0%
Refinement top
R[F2 > 2σ(F2)] = 0.086H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.236Δρmax = 0.38 e Å3
S = 1.03Δρmin = 0.97 e Å3
2462 reflectionsAbsolute structure: ?
176 parametersFlack parameter: ?
1 restraintRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8141 (4)0.4519 (3)0.0796 (4)0.0606 (10)
C20.7845 (5)0.3933 (4)0.0224 (5)0.0831 (15)
H20.70440.40490.07510.100*
C30.8723 (6)0.3186 (4)0.0457 (6)0.0875 (15)
H30.85190.28010.11540.105*
C40.9909 (5)0.2983 (4)0.0311 (5)0.0800 (14)
C51.0181 (6)0.3562 (6)0.1314 (6)0.103 (2)
H51.09700.34330.18510.124*
C60.9322 (5)0.4336 (5)0.1561 (6)0.0953 (18)
H60.95440.47330.22450.114*
C70.5844 (4)0.4522 (3)0.2993 (4)0.0572 (9)
C80.6858 (5)0.4779 (3)0.3929 (4)0.0654 (11)
H80.75060.52710.38060.079*
C90.6891 (5)0.4292 (3)0.5048 (4)0.0640 (10)
C100.5946 (5)0.3574 (4)0.5250 (4)0.0684 (11)
C110.4920 (5)0.3339 (4)0.4311 (5)0.0769 (13)
H110.42560.28590.44380.092*
C120.4885 (4)0.3809 (3)0.3209 (4)0.0648 (11)
H120.41950.36440.25890.078*
C131.0877 (7)0.2150 (5)0.0040 (8)0.118 (3)
H13A1.11150.21960.07960.142*
H13B1.04140.15360.01580.142*
H13C1.17190.21870.05870.142*
N10.5735 (4)0.4999 (3)0.1825 (4)0.0644 (9)
H1N0.515 (4)0.467 (3)0.139 (4)0.077*
O10.7751 (4)0.6143 (3)0.1958 (3)0.0814 (10)
O20.6338 (3)0.5836 (2)0.0009 (3)0.0746 (9)
Cl10.81491 (16)0.46318 (12)0.61972 (13)0.0981 (6)
Cl20.59783 (18)0.29657 (12)0.66355 (13)0.1038 (6)
S10.70098 (11)0.54753 (8)0.11309 (10)0.0632 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.051 (2)0.076 (3)0.053 (2)0.0054 (18)0.0029 (16)0.0103 (19)
C20.075 (3)0.095 (3)0.075 (3)0.018 (3)0.019 (2)0.017 (3)
C30.090 (3)0.088 (3)0.084 (4)0.013 (3)0.000 (3)0.011 (3)
C40.069 (3)0.083 (3)0.090 (4)0.009 (2)0.018 (2)0.023 (3)
C50.069 (3)0.149 (6)0.088 (4)0.034 (3)0.016 (3)0.001 (4)
C60.063 (3)0.141 (5)0.077 (4)0.017 (3)0.018 (2)0.019 (3)
C70.054 (2)0.065 (2)0.053 (2)0.0078 (17)0.0068 (16)0.0095 (18)
C80.062 (2)0.071 (3)0.062 (3)0.0084 (19)0.0018 (18)0.002 (2)
C90.064 (2)0.070 (3)0.057 (2)0.004 (2)0.0003 (18)0.008 (2)
C100.078 (3)0.072 (3)0.057 (2)0.003 (2)0.018 (2)0.005 (2)
C110.072 (3)0.086 (3)0.076 (3)0.016 (2)0.020 (2)0.012 (3)
C120.055 (2)0.083 (3)0.057 (2)0.004 (2)0.0075 (17)0.015 (2)
C130.102 (4)0.108 (5)0.151 (7)0.037 (4)0.043 (4)0.032 (4)
N10.0579 (19)0.073 (2)0.061 (2)0.0018 (16)0.0008 (15)0.0013 (18)
O10.094 (2)0.078 (2)0.072 (2)0.0218 (17)0.0003 (17)0.0074 (17)
O20.0768 (19)0.077 (2)0.068 (2)0.0037 (15)0.0080 (15)0.0107 (16)
Cl10.0977 (10)0.1188 (12)0.0725 (9)0.0217 (8)0.0235 (7)0.0056 (7)
Cl20.1393 (13)0.1090 (11)0.0655 (8)0.0192 (9)0.0224 (8)0.0143 (7)
S10.0652 (6)0.0664 (7)0.0567 (6)0.0025 (4)0.0028 (4)0.0024 (5)
Geometric parameters (Å, °) top
C1—C61.366 (6)C8—H80.9300
C1—C21.378 (7)C9—C101.361 (6)
C1—S11.751 (5)C9—Cl11.723 (4)
C2—C31.356 (7)C10—C111.392 (7)
C2—H20.9300C10—Cl21.720 (5)
C3—C41.377 (8)C11—C121.359 (7)
C3—H30.9300C11—H110.9300
C4—C51.355 (8)C12—H120.9300
C4—C131.509 (7)C13—H13A0.9600
C5—C61.377 (8)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300N1—S11.621 (4)
C7—C121.368 (6)N1—H1N0.83 (3)
C7—C81.390 (6)O1—S11.426 (3)
C7—N11.425 (6)O2—S11.435 (3)
C8—C91.385 (6)
C6—C1—C2119.3 (5)C8—C9—Cl1118.2 (4)
C6—C1—S1120.0 (4)C9—C10—C11118.7 (4)
C2—C1—S1120.7 (3)C9—C10—Cl2121.7 (4)
C3—C2—C1119.9 (5)C11—C10—Cl2119.6 (4)
C3—C2—H2120.1C12—C11—C10120.3 (4)
C1—C2—H2120.1C12—C11—H11119.9
C2—C3—C4121.7 (6)C10—C11—H11119.9
C2—C3—H3119.1C11—C12—C7121.3 (4)
C4—C3—H3119.1C11—C12—H12119.4
C5—C4—C3117.7 (5)C7—C12—H12119.4
C5—C4—C13121.1 (6)C4—C13—H13A109.5
C3—C4—C13121.2 (6)C4—C13—H13B109.5
C4—C5—C6121.8 (5)H13A—C13—H13B109.5
C4—C5—H5119.1C4—C13—H13C109.5
C6—C5—H5119.1H13A—C13—H13C109.5
C1—C6—C5119.6 (5)H13B—C13—H13C109.5
C1—C6—H6120.2C7—N1—S1126.8 (3)
C5—C6—H6120.2C7—N1—H1N105 (4)
C12—C7—C8119.1 (4)S1—N1—H1N116 (4)
C12—C7—N1118.5 (4)O1—S1—O2119.3 (2)
C8—C7—N1122.3 (4)O1—S1—N1108.2 (2)
C9—C8—C7119.2 (4)O2—S1—N1104.04 (19)
C9—C8—H8120.4O1—S1—C1109.0 (2)
C7—C8—H8120.4O2—S1—C1108.3 (2)
C10—C9—C8121.4 (4)N1—S1—C1107.4 (2)
C10—C9—Cl1120.4 (4)
C6—C1—C2—C30.1 (9)Cl1—C9—C10—Cl21.0 (6)
S1—C1—C2—C3179.0 (5)C9—C10—C11—C121.2 (7)
C1—C2—C3—C40.9 (10)Cl2—C10—C11—C12179.7 (4)
C2—C3—C4—C50.4 (9)C10—C11—C12—C70.2 (7)
C2—C3—C4—C13180.0 (6)C8—C7—C12—C111.1 (6)
C3—C4—C5—C60.8 (9)N1—C7—C12—C11179.0 (4)
C13—C4—C5—C6178.8 (6)C12—C7—N1—S1151.4 (3)
C2—C1—C6—C51.1 (9)C8—C7—N1—S130.8 (6)
S1—C1—C6—C5177.8 (5)C7—N1—S1—O153.2 (4)
C4—C5—C6—C11.6 (10)C7—N1—S1—O2178.9 (4)
C12—C7—C8—C91.4 (6)C7—N1—S1—C164.3 (4)
N1—C7—C8—C9179.2 (4)C6—C1—S1—O119.7 (5)
C7—C8—C9—C100.4 (7)C2—C1—S1—O1161.4 (4)
C7—C8—C9—Cl1179.4 (3)C6—C1—S1—O2150.9 (4)
C8—C9—C10—C110.8 (7)C2—C1—S1—O230.2 (5)
Cl1—C9—C10—C11178.2 (4)C6—C1—S1—N197.4 (5)
C8—C9—C10—Cl2180.0 (4)C2—C1—S1—N181.6 (4)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (3)2.10 (3)2.908 (5)166 (5)
Symmetry codes: (i) −x+1, −y+1, −z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (3)2.10 (3)2.908 (5)166 (5)
Symmetry codes: (i) −x+1, −y+1, −z.
Acknowledgements top

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

references
References top

Enraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.

Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.

Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2334.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.

Shakuntala, K., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o40.

Shakuntala, K., Foro, S., Gowda, B. T., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o3062.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.