organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[4-(Hex­yl­oxy)phen­yl]-3-(4-hy­dr­oxy­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, bDepartment of Molecular Biology, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 15 November 2010; accepted 12 December 2010; online 18 December 2010)

In the title compound, C21H24O3, inter­molecular O—H⋯O and C—H⋯O inter­actions form bifurcated acceptor bonds, generating R21(6) ring motifs. These ring motifs link the mol­ecules into extended chains along [010]. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For the biological properties of chalcone derivatives, see: Bhat et al. (2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]); Xue et al. (2004[Xue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745-753.]); Zhao et al. (2005[Zhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027-5029.]); Lee et al. (2006[Lee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028-1031.]). For related structures, see: Razak et al. (2009[Razak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092-o1093.], 2009a[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881-o882.],b[Razak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133-o1134.]); Ngaini, Fadzillah et al. (2009[Ngaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879-o880.]); Ngaini, Rahman et al. (2009[Ngaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889-o890.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C21H24O3

  • Mr = 324.40

  • Monoclinic, P 21 /c

  • a = 10.2807 (2) Å

  • b = 16.6322 (2) Å

  • c = 11.4736 (2) Å

  • β = 113.439 (1)°

  • V = 1799.99 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.53 × 0.46 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.993

  • 35735 measured reflections

  • 5839 independent reflections

  • 4743 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.03

  • 5839 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.86 2.694 (1) 175
C4—H4A⋯O1i 0.95 2.54 3.213 (1) 128
C16—H16ACg2ii 0.99 2.77 3.666 (1) 151
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+3.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The biological properties of chalcones derivatives have been extensively reported (Bhat et al., 2005; Xue et al., 2004; Lee et al., 2006; Zhao et al., 2005). Synthetic and naturally occurring chalcones have been widely studied and developed as one of the pharmaceutically important molecules. We have synthesized the title chalcone derivative, (I) which showed antimicrobial activity when tested against E. coli ATCC 8739 In this paper, we report the crystal structure of the title compound.

The bond lengths observed in the title compound (Fig.1) are comparable with previously reported values (Allen et al., 1987). The conformation of the enone moiety (O1/C7—C9) is s-cis as shown by the value of -6.3 (2)° for O1—C9—C8—C7 torsion angle. The enone (O1/C7—C9) moiety adopts s-cis conformation with O2—C7—C8—C9 torsion angle being -6.3 (2)°. The dihedral angle between the mean plane through the enone moiety and the benzene rings is 5.1 (1)° for C1—C6 ring and 5.6 (1)° for C10—C15 ring. The two benzene rings make a dihedral angle of 7.8 (1)° between them.

The widening of C1—C6—C7 and C6—C7—C8 angles to 123.0 (1)° and 126.9 (1)° respectively, are the consequences of the close interatomic contact between H1A and H8A which is 2.20 Å. Similarly, the strain induced by short H8A···H11A contact, which is 2.09Å resulted in the opening of C9—C10—C11 angle to 123.8 (1)°. The distortion of angles, which is relative to what is predicted in terms of hybidization principles can also be observed in the related structures previously reported by Razak, Fun, Ngaini, Rahman et al. (2009), Razak, Fun, Ngaini, Fadzillah et al. (2009a,b), Ngaini, Fadzillah et al. (2009) and Ngaini, Rahman et al. (2009).

The conformation assumed by the zigzag alkoxyl tail is trans. Even though the torsion angle of C12—C13—O3—C16 is -1.3 (2)°, which shows that it is roughly coplanar with the attached benzene ring, the alkoxyl tail is actually twisted about the C18—C19 bond. Within the aliphatic chain, the C17—C18—C19—C20 torsion angle shows the value of -167.0 (1)°

In the crystal structure, intermolecular O2—H2···O1(-x,y - 1/2,-z + 3/2) and C4—H4A···O1(-x,y - 1/2,-z + 3/2) interactions form bifurcated acceptor bonds generating R12(6) ring motifs (Bernstein et al., 1995). These intermolecular interactions link the molecules into extended chains along the [0 1 0] direction. The crystal structure is further stabilized by C—H···π interactions (Table 1).

Related literature top

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Lee et al. (2006). For related structures, see: Razak et al. (2009, 2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of temperature controller, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-hydroxybenzaldehyde (1.22 g, 10 mmol), 4-hexyloxyacetophenone (2.20 g, 10 mmol) and KOH (2.02 g, 36 mmol) in 30 ml of methanol was heated at reflux for 24 h. The reaction was cooled to room temperature and acidified with cold diluted HCl (2 N). The resulting precipitate was filtered, washed and dried. After redissolving in hexane-ethanol mixture, followed by few days of slow evaporation, suitable crystals were collected for X-ray analysis.

Refinement top

All the C– and O-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97Å and O—H = 0.84 Å. The Uiso values were constrained to be -1.5Uequ (methyl H and O atoms) and -1.2Uequ (other H atoms). The rotating model group was applied for the methyl group.

Structure description top

The biological properties of chalcones derivatives have been extensively reported (Bhat et al., 2005; Xue et al., 2004; Lee et al., 2006; Zhao et al., 2005). Synthetic and naturally occurring chalcones have been widely studied and developed as one of the pharmaceutically important molecules. We have synthesized the title chalcone derivative, (I) which showed antimicrobial activity when tested against E. coli ATCC 8739 In this paper, we report the crystal structure of the title compound.

The bond lengths observed in the title compound (Fig.1) are comparable with previously reported values (Allen et al., 1987). The conformation of the enone moiety (O1/C7—C9) is s-cis as shown by the value of -6.3 (2)° for O1—C9—C8—C7 torsion angle. The enone (O1/C7—C9) moiety adopts s-cis conformation with O2—C7—C8—C9 torsion angle being -6.3 (2)°. The dihedral angle between the mean plane through the enone moiety and the benzene rings is 5.1 (1)° for C1—C6 ring and 5.6 (1)° for C10—C15 ring. The two benzene rings make a dihedral angle of 7.8 (1)° between them.

The widening of C1—C6—C7 and C6—C7—C8 angles to 123.0 (1)° and 126.9 (1)° respectively, are the consequences of the close interatomic contact between H1A and H8A which is 2.20 Å. Similarly, the strain induced by short H8A···H11A contact, which is 2.09Å resulted in the opening of C9—C10—C11 angle to 123.8 (1)°. The distortion of angles, which is relative to what is predicted in terms of hybidization principles can also be observed in the related structures previously reported by Razak, Fun, Ngaini, Rahman et al. (2009), Razak, Fun, Ngaini, Fadzillah et al. (2009a,b), Ngaini, Fadzillah et al. (2009) and Ngaini, Rahman et al. (2009).

The conformation assumed by the zigzag alkoxyl tail is trans. Even though the torsion angle of C12—C13—O3—C16 is -1.3 (2)°, which shows that it is roughly coplanar with the attached benzene ring, the alkoxyl tail is actually twisted about the C18—C19 bond. Within the aliphatic chain, the C17—C18—C19—C20 torsion angle shows the value of -167.0 (1)°

In the crystal structure, intermolecular O2—H2···O1(-x,y - 1/2,-z + 3/2) and C4—H4A···O1(-x,y - 1/2,-z + 3/2) interactions form bifurcated acceptor bonds generating R12(6) ring motifs (Bernstein et al., 1995). These intermolecular interactions link the molecules into extended chains along the [0 1 0] direction. The crystal structure is further stabilized by C—H···π interactions (Table 1).

For the biological properties of chalcone derivatives, see: Bhat et al. (2005); Xue et al. (2004); Zhao et al. (2005); Lee et al. (2006). For related structures, see: Razak et al. (2009, 2009a,b); Ngaini, Fadzillah et al. (2009); Ngaini, Rahman et al. (2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For stability of temperature controller, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A molecular chain of the title compound along the b axis.
(E)-1-[4-(hexyloxy)phenyl]-3-(4-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C21H24O3F(000) = 696
Mr = 324.40Dx = 1.197 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9960 reflections
a = 10.2807 (2) Åθ = 2.3–31.1°
b = 16.6322 (2) ŵ = 0.08 mm1
c = 11.4736 (2) ÅT = 100 K
β = 113.439 (1)°Plate, yellow
V = 1799.99 (5) Å30.53 × 0.46 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5839 independent reflections
Radiation source: sealed tube4743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
π and ω scansθmax = 31.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1514
Tmin = 0.960, Tmax = 0.993k = 2424
35735 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.4086P]
where P = (Fo2 + 2Fc2)/3
5839 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H24O3V = 1799.99 (5) Å3
Mr = 324.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2807 (2) ŵ = 0.08 mm1
b = 16.6322 (2) ÅT = 100 K
c = 11.4736 (2) Å0.53 × 0.46 × 0.09 mm
β = 113.439 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5839 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4743 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.993Rint = 0.034
35735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
5839 reflectionsΔρmin = 0.20 e Å3
219 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15448 (9)0.50631 (5)0.96314 (7)0.02611 (17)
O20.08883 (8)0.02224 (4)0.78756 (7)0.02446 (16)
H20.11150.01460.70950.037*
O30.37607 (9)0.61122 (5)1.53438 (7)0.02772 (18)
C10.03955 (11)0.20205 (6)0.97710 (9)0.0226 (2)
H1A0.08050.21631.06450.027*
C20.00156 (11)0.12297 (6)0.94356 (9)0.0231 (2)
H2A0.01550.08361.00740.028*
C30.05759 (10)0.10104 (6)0.81509 (9)0.02014 (19)
C40.08238 (10)0.15987 (6)0.72177 (9)0.02078 (19)
H4A0.12510.14570.63440.025*
C50.04439 (11)0.23904 (6)0.75716 (9)0.02089 (19)
H5A0.06180.27870.69310.025*
C60.01911 (10)0.26189 (6)0.88518 (9)0.01983 (18)
C70.06282 (10)0.34531 (6)0.91739 (9)0.02114 (19)
H7A0.04320.38140.84830.025*
C80.12779 (10)0.37647 (6)1.03444 (9)0.02112 (19)
H8A0.14820.34261.10620.025*
C90.16801 (10)0.46172 (6)1.05398 (9)0.01995 (18)
C100.22628 (10)0.49587 (6)1.18407 (9)0.01980 (19)
C110.24298 (10)0.45194 (6)1.29304 (9)0.02125 (19)
H11A0.21920.39641.28530.025*
C120.29373 (11)0.48771 (6)1.41261 (10)0.0228 (2)
H12A0.30430.45701.48560.027*
C130.32897 (11)0.56930 (6)1.42408 (10)0.0227 (2)
C140.31631 (11)0.61369 (6)1.31623 (10)0.0256 (2)
H14A0.34320.66871.32440.031*
C150.26496 (11)0.57768 (6)1.19849 (10)0.0239 (2)
H15A0.25550.60851.12580.029*
C160.38894 (11)0.57030 (7)1.64912 (10)0.0251 (2)
H16A0.45940.52631.66880.030*
H16B0.29660.54721.63990.030*
C170.43689 (12)0.63306 (7)1.75310 (10)0.0281 (2)
H17A0.36220.67451.73400.034*
H17B0.52340.65971.75390.034*
C180.46809 (12)0.59804 (7)1.88375 (10)0.0269 (2)
H18A0.53920.55461.90070.032*
H18B0.38030.57371.88380.032*
C190.52330 (13)0.65975 (7)1.99042 (11)0.0298 (2)
H19A0.44490.69591.98560.036*
H19B0.59750.69281.97920.036*
C200.58473 (13)0.61976 (7)2.12078 (11)0.0321 (2)
H20A0.51030.58622.13080.038*
H20B0.66280.58362.12470.038*
C210.64050 (18)0.67832 (10)2.23034 (13)0.0502 (4)
H21A0.68520.64852.31020.075*
H21B0.56190.71052.23300.075*
H21C0.71050.71392.21890.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0332 (4)0.0223 (3)0.0210 (4)0.0006 (3)0.0089 (3)0.0028 (3)
O20.0315 (4)0.0194 (3)0.0214 (4)0.0027 (3)0.0093 (3)0.0019 (3)
O30.0343 (4)0.0242 (4)0.0233 (4)0.0042 (3)0.0100 (3)0.0070 (3)
C10.0279 (5)0.0224 (4)0.0164 (4)0.0004 (4)0.0076 (4)0.0011 (3)
C20.0293 (5)0.0217 (4)0.0179 (4)0.0000 (4)0.0091 (4)0.0016 (3)
C30.0213 (4)0.0196 (4)0.0199 (4)0.0004 (3)0.0086 (4)0.0015 (3)
C40.0230 (4)0.0220 (4)0.0167 (4)0.0003 (4)0.0073 (4)0.0018 (3)
C50.0243 (4)0.0214 (4)0.0164 (4)0.0012 (4)0.0075 (4)0.0011 (3)
C60.0220 (4)0.0200 (4)0.0177 (4)0.0002 (3)0.0081 (3)0.0011 (3)
C70.0225 (4)0.0205 (4)0.0202 (4)0.0008 (3)0.0083 (4)0.0004 (3)
C80.0233 (4)0.0191 (4)0.0201 (4)0.0002 (3)0.0076 (4)0.0002 (3)
C90.0185 (4)0.0201 (4)0.0201 (4)0.0016 (3)0.0064 (3)0.0002 (3)
C100.0179 (4)0.0193 (4)0.0205 (4)0.0007 (3)0.0058 (3)0.0008 (3)
C110.0214 (4)0.0202 (4)0.0213 (5)0.0028 (3)0.0077 (4)0.0016 (3)
C120.0229 (4)0.0239 (5)0.0207 (5)0.0029 (4)0.0078 (4)0.0017 (4)
C130.0209 (4)0.0231 (5)0.0226 (5)0.0015 (4)0.0071 (4)0.0049 (4)
C140.0283 (5)0.0183 (4)0.0274 (5)0.0006 (4)0.0082 (4)0.0025 (4)
C150.0265 (5)0.0197 (4)0.0234 (5)0.0011 (4)0.0076 (4)0.0015 (4)
C160.0247 (5)0.0269 (5)0.0234 (5)0.0025 (4)0.0093 (4)0.0054 (4)
C170.0294 (5)0.0276 (5)0.0256 (5)0.0027 (4)0.0091 (4)0.0088 (4)
C180.0260 (5)0.0267 (5)0.0257 (5)0.0008 (4)0.0077 (4)0.0071 (4)
C190.0310 (5)0.0274 (5)0.0271 (5)0.0000 (4)0.0074 (4)0.0078 (4)
C200.0324 (6)0.0314 (6)0.0295 (6)0.0017 (5)0.0093 (5)0.0061 (4)
C210.0633 (10)0.0464 (8)0.0306 (7)0.0042 (7)0.0078 (6)0.0100 (6)
Geometric parameters (Å, º) top
O1—C91.2410 (12)C12—C131.3971 (14)
O2—C31.3563 (12)C12—H12A0.9500
O2—H20.8400C13—C141.4018 (15)
O3—C131.3545 (12)C14—C151.3766 (15)
O3—C161.4406 (13)C14—H14A0.9500
C1—C21.3824 (14)C15—H15A0.9500
C1—C61.4039 (14)C16—C171.5127 (14)
C1—H1A0.9500C16—H16A0.9900
C2—C31.4009 (14)C16—H16B0.9900
C2—H2A0.9500C17—C181.5187 (16)
C3—C41.3971 (13)C17—H17A0.9900
C4—C51.3874 (14)C17—H17B0.9900
C4—H4A0.9500C18—C191.5235 (15)
C5—C61.4019 (13)C18—H18A0.9900
C5—H5A0.9500C18—H18B0.9900
C6—C71.4598 (14)C19—C201.5253 (17)
C7—C81.3435 (14)C19—H19A0.9900
C7—H7A0.9500C19—H19B0.9900
C8—C91.4690 (13)C20—C211.5113 (18)
C8—H8A0.9500C20—H20A0.9900
C9—C101.4826 (14)C20—H20B0.9900
C10—C111.3985 (14)C21—H21A0.9800
C10—C151.4088 (14)C21—H21B0.9800
C11—C121.3925 (14)C21—H21C0.9800
C11—H11A0.9500
C3—O2—H2109.5C15—C14—H14A119.9
C13—O3—C16118.65 (8)C13—C14—H14A119.9
C2—C1—C6121.61 (9)C14—C15—C10121.04 (10)
C2—C1—H1A119.2C14—C15—H15A119.5
C6—C1—H1A119.2C10—C15—H15A119.5
C1—C2—C3119.80 (9)O3—C16—C17106.11 (9)
C1—C2—H2A120.1O3—C16—H16A110.5
C3—C2—H2A120.1C17—C16—H16A110.5
O2—C3—C4122.97 (9)O3—C16—H16B110.5
O2—C3—C2117.40 (9)C17—C16—H16B110.5
C4—C3—C2119.64 (9)H16A—C16—H16B108.7
C5—C4—C3119.74 (9)C16—C17—C18112.85 (9)
C5—C4—H4A120.1C16—C17—H17A109.0
C3—C4—H4A120.1C18—C17—H17A109.0
C4—C5—C6121.57 (9)C16—C17—H17B109.0
C4—C5—H5A119.2C18—C17—H17B109.0
C6—C5—H5A119.2H17A—C17—H17B107.8
C5—C6—C1117.59 (9)C17—C18—C19113.55 (9)
C5—C6—C7119.41 (9)C17—C18—H18A108.9
C1—C6—C7122.99 (9)C19—C18—H18A108.9
C8—C7—C6126.90 (9)C17—C18—H18B108.9
C8—C7—H7A116.6C19—C18—H18B108.9
C6—C7—H7A116.6H18A—C18—H18B107.7
C7—C8—C9121.52 (9)C18—C19—C20111.76 (10)
C7—C8—H8A119.2C18—C19—H19A109.3
C9—C8—H8A119.2C20—C19—H19A109.3
O1—C9—C8121.19 (9)C18—C19—H19B109.3
O1—C9—C10118.82 (9)C20—C19—H19B109.3
C8—C9—C10119.99 (9)H19A—C19—H19B107.9
C11—C10—C15118.10 (9)C21—C20—C19114.00 (11)
C11—C10—C9123.83 (9)C21—C20—H20A108.8
C15—C10—C9118.06 (9)C19—C20—H20A108.8
C12—C11—C10121.48 (9)C21—C20—H20B108.8
C12—C11—H11A119.3C19—C20—H20B108.8
C10—C11—H11A119.3H20A—C20—H20B107.6
C11—C12—C13119.29 (10)C20—C21—H21A109.5
C11—C12—H12A120.4C20—C21—H21B109.5
C13—C12—H12A120.4H21A—C21—H21B109.5
O3—C13—C12124.81 (10)C20—C21—H21C109.5
O3—C13—C14115.26 (9)H21A—C21—H21C109.5
C12—C13—C14119.93 (9)H21B—C21—H21C109.5
C15—C14—C13120.12 (10)
C6—C1—C2—C30.63 (16)C8—C9—C10—C15179.28 (9)
C1—C2—C3—O2177.98 (9)C15—C10—C11—C121.21 (15)
C1—C2—C3—C42.28 (15)C9—C10—C11—C12177.74 (9)
O2—C3—C4—C5178.39 (9)C10—C11—C12—C130.09 (15)
C2—C3—C4—C51.89 (15)C16—O3—C13—C121.30 (15)
C3—C4—C5—C60.16 (15)C16—O3—C13—C14178.63 (9)
C4—C5—C6—C11.76 (15)C11—C12—C13—O3178.38 (9)
C4—C5—C6—C7177.29 (9)C11—C12—C13—C141.55 (15)
C2—C1—C6—C51.36 (15)O3—C13—C14—C15177.87 (9)
C2—C1—C6—C7177.65 (10)C12—C13—C14—C152.07 (16)
C5—C6—C7—C8178.26 (10)C13—C14—C15—C100.93 (16)
C1—C6—C7—C80.73 (16)C11—C10—C15—C140.70 (15)
C6—C7—C8—C9179.19 (9)C9—C10—C15—C14178.32 (9)
C7—C8—C9—O16.32 (15)C13—O3—C16—C17177.53 (9)
C7—C8—C9—C10173.83 (9)O3—C16—C17—C18175.01 (9)
O1—C9—C10—C11178.37 (9)C16—C17—C18—C19177.23 (9)
C8—C9—C10—C111.77 (14)C17—C18—C19—C20166.95 (10)
O1—C9—C10—C150.58 (14)C18—C19—C20—C21179.71 (11)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.862.694 (1)175
C4—H4A···O1i0.952.543.213 (1)128
C16—H16A···Cg2ii0.992.773.666 (1)151
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1, z+3.

Experimental details

Crystal data
Chemical formulaC21H24O3
Mr324.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2807 (2), 16.6322 (2), 11.4736 (2)
β (°) 113.439 (1)
V3)1799.99 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.53 × 0.46 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.960, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
35735, 5839, 4743
Rint0.034
(sin θ/λ)max1)0.730
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.03
No. of reflections5839
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.862.694 (1)175
C4—H4A···O1i0.952.543.213 (1)128
C16—H16A···Cg2ii0.992.773.666 (1)151
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1, z+3.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No.1001/PFIZIK/811151. ZN and HH thank Universiti Malaysia Sarawak for the Geran Penyelidikan Dana Khas Inovasi, grant No. DI/01/2007 (01). SMHF thanks the Malaysian Government and Universiti Malaysia Sarawak for providing a scholarship for her postgraduate studies.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 , SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLee, Y. S., Lim, S. S., Shin, K. H., Kim, Y. S., Ohuchi, K. & Jung, S. H. (2006). Biol. Pharm. Bull. 29, 1028–1031.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNgaini, Z., Fadzillah, S. M. H., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o879–o880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNgaini, Z., Rahman, N. I. A., Hussain, H., Razak, I. A. & Fun, H.-K. (2009). Acta Cryst. E65, o889–o890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009a). Acta Cryst. E65, o881–o882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Fadzillah, S. M. H. & Hussain, H. (2009b). Acta Cryst. E65, o1133–o1134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRazak, I. A., Fun, H.-K., Ngaini, Z., Rahman, N. I. A. & Hussain, H. (2009). Acta Cryst. E65, o1092–o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, C. X., Cui, S. Y., Liu, M. C., Hu, Z. D. & Fan, B. T. (2004). Eur. J. Med. Chem. 39, 745–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L. M., Jin, H. S., Sun, L. P., Piao, H. R. & Quan, Z. S. (2005). Chem. Lett. 15, 5027–5029.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds