organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-((Z)-2-{4-[Bis(2-chloro­eth­yl)amino]­phen­yl}ethen­yl)-5,5-di­methyl­cyclo­hex-2-en-1-yl­­idene]propane­di­nitrile

aState Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 Jiangsu, People's Republic of China, and bKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164 Jiangsu, People's Republic of China
*Correspondence e-mail: lugyuan@yahoo.com.cn

(Received 1 September 2010; accepted 6 December 2010; online 15 December 2010)

The highly conjugated title compound, C23H25Cl2N3, is nearly planar (the mean deviation from the plane being 0.049 Å), except for the –C(CH3)2 group on the cyclo­hexene ring and the two CH2Cl groups. The cyclo­hexene ring has an envelope configuration. In the crystal, the packing is stabilized by C—H⋯Cl inter­actions and C—H⋯π inter­actions involving the benzene ring.

Related literature

The title compound was prepared by the Knoevenagel reaction, see: Bai et al. (2006[Bai, Z., Zhang, C.-Z., Lu, G.-Y. & Liu, F. (2006). Chin. J. Chem. 24, 124-128.]); Samyn et al. (2001[Samyn, C., Ballet, W., Verbiest, T., Beylen, M. & Persoons, A. (2001). Polymer, 42, 8511-8516.]). It is an inter­mediate for the preparation of non-linear optical materials, see: Kwon et al. (2006[Kwon, O.-P., Ruiz, B., Choubey, A., Mutter, L., Schneider, A., Jazbinsek, M., Gramlich, V. & Gunter, P. (2006). Chem. Mater. 18, 4049-4054.]); Shu et al. (1998[Shu, C.-F., Shu, Y.-C. & Gong, Z.-H. (1998). Chem. Mater. 10, 3284-3286.]); Chun et al. (2001[Chun, H., Moon, I. K., Shin, D. H. & Kim, N. (2001). Chem. Mater. 13, 2813-2817.]); Zheng et al. (2000[Zheng, Q. D., Yao, Z. G., Cheng, J. Q., Shen, Y. C. & Lu, Z. H. (2000). Chem. Lett. 12, 1426-1427.]). For a related structure, see Kolev et al. (2005[Kolev, T., Yancheva, D., Shivachev, B., Petrova, R. & Spiteller, M. (2005). Acta Cryst. E61, o550-o552.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25Cl2N3

  • Mr = 414.36

  • Triclinic, [P \overline 1]

  • a = 9.106 (7) Å

  • b = 10.819 (9) Å

  • c = 13.325 (4) Å

  • α = 70.052 (6)°

  • β = 70.02 (1)°

  • γ = 65.11 (1)°

  • V = 1088.8 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.926, Tmax = 0.955

  • 5376 measured reflections

  • 3695 independent reflections

  • 3130 reflections with I > 2σ(I)

  • Rint = 0.108

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.149

  • S = 1.08

  • 3695 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18B⋯Cl1Bi 0.97 2.91 3.822 (2) 158
C4—H4ACg1ii 0.97 2.55 3.459 (2) 156
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), was prepared by the Knoevenagel reaction (Bai et al., 2006; Samyn et al., 2001). With a donor-π-acceptor (D-π-A) structure, it is one of the important intermediates used in nonlinear optical materials (Kwon et al., 2006; Shu et al., 1998; Chun et al., 2001; Zheng et al., 2000). We now report the structure (I) (Fig. 1). The C—N1 bond length is shorter than a normal single C—N bond (1.47–1.50 Å) and longer than a double C=N bond distance (1.34–1.38 Å) which is due to the p-π conjugation in the phenyl amine group. Because of the extended conjugation, almost all atoms in the molecule are roughly coplanar, except for the C(CH3)2 and CH2Cl groups. The cyclohexene ring adopts an envelope configuration due to its ring tension, with atom C3 deviating by 0.635 (2) Å from the mean plane through the remaining atoms. The CH2Cl groups are on opposite sides of the plane, the N—C—C—Cl torsion angles are 64.5 (2)° for Cl1—C18—C17—N1 and 173.0 (1)° for Cl2—C20—C19—N1. The structure of a related compound having a diphenyl group instead of the chloroethyl moiety has been reported (Kolev et al., 2005). In the crystal structure of (I), no hydrogen bonding is found. The crystal packing is stabilized by C—H···Cl interactions and C—H···π interactions involving the benzene ring (Table 1, Fig. 2). For the C—H···π interactions, the relevant distances and angles are: C···Cg[i] = 3.459 (4) Å, H···Cg[i] =2.548 (2)Å and C—H···Cg[i]= 156 (1)° [symmetry code: (i) 2 - x, 2 - y, 1 - z].

Related literature top

The title compound was prepared by the Knoevenagel reaction, see: Bai et al. (2006); Samyn et al. (2001). It is an intermediate for non-linear optical materials, see: Kwon et al. (2006); Shu et al. (1998); Chun et al. (2001); Zheng et al. (2000). For a related structure, see Kolev et al. (2005).

Experimental top

To a solution of 4-(bis(2-chloroethyl)amino)benzaldehyde (1.0 g, 4.1 mmol) in 10 ml anhydrous DMF, 2-(3,5,5-trimethylcyclohex-2-enylidene)malononitrile (0.93 g, 5.0 mmol), 0.5 ml acetic acid, 1 ml piperidine were added, respectively. The reaction mixture was stirred for 2 days at room temperature. Then, the mixture was poured into 50 ml of water and filtered. The resulting solid was purified by column chromatography (petroleum ether/acetic ester, 5:1). Red product 0.24 g was obtained. Yield: 14.2%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the eluate.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, (I), was prepared by the Knoevenagel reaction (Bai et al., 2006; Samyn et al., 2001). With a donor-π-acceptor (D-π-A) structure, it is one of the important intermediates used in nonlinear optical materials (Kwon et al., 2006; Shu et al., 1998; Chun et al., 2001; Zheng et al., 2000). We now report the structure (I) (Fig. 1). The C—N1 bond length is shorter than a normal single C—N bond (1.47–1.50 Å) and longer than a double C=N bond distance (1.34–1.38 Å) which is due to the p-π conjugation in the phenyl amine group. Because of the extended conjugation, almost all atoms in the molecule are roughly coplanar, except for the C(CH3)2 and CH2Cl groups. The cyclohexene ring adopts an envelope configuration due to its ring tension, with atom C3 deviating by 0.635 (2) Å from the mean plane through the remaining atoms. The CH2Cl groups are on opposite sides of the plane, the N—C—C—Cl torsion angles are 64.5 (2)° for Cl1—C18—C17—N1 and 173.0 (1)° for Cl2—C20—C19—N1. The structure of a related compound having a diphenyl group instead of the chloroethyl moiety has been reported (Kolev et al., 2005). In the crystal structure of (I), no hydrogen bonding is found. The crystal packing is stabilized by C—H···Cl interactions and C—H···π interactions involving the benzene ring (Table 1, Fig. 2). For the C—H···π interactions, the relevant distances and angles are: C···Cg[i] = 3.459 (4) Å, H···Cg[i] =2.548 (2)Å and C—H···Cg[i]= 156 (1)° [symmetry code: (i) 2 - x, 2 - y, 1 - z].

The title compound was prepared by the Knoevenagel reaction, see: Bai et al. (2006); Samyn et al. (2001). It is an intermediate for non-linear optical materials, see: Kwon et al. (2006); Shu et al. (1998); Chun et al. (2001); Zheng et al. (2000). For a related structure, see Kolev et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound, showing the labeling of the non-H atoms and 50% probability ellipsoids.
[Figure 2] Fig. 2. Tetrameric subunits linked by C—H···Cl and C—H···π interactions in the title compound. H atoms not involved in short contacts have been omitted for clarity.
2-[3-((Z)-2-{4-[Bis(2-chloroethyl)amino]phenyl}ethenyl)-5,5- dimethylcyclohex-2-en-1-ylidene]propanedinitrile top
Crystal data top
C23H25Cl2N3Z = 2
Mr = 414.36F(000) = 436
Triclinic, P1Dx = 1.264 Mg m3
Hall symbol: -P 1Melting point: 462(2) K
a = 9.106 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.819 (9) ÅCell parameters from 3172 reflections
c = 13.325 (4) Åθ = 2.4–28.3°
α = 70.052 (6)°µ = 0.31 mm1
β = 70.02 (1)°T = 295 K
γ = 65.11 (1)°Block, red
V = 1088.8 (13) Å30.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3695 independent reflections
Radiation source: fine-focus sealed tube3130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 109
Tmin = 0.926, Tmax = 0.955k = 1212
5376 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0923P)2 + 0.0577P]
where P = (Fo2 + 2Fc2)/3
3695 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H25Cl2N3γ = 65.11 (1)°
Mr = 414.36V = 1088.8 (13) Å3
Triclinic, P1Z = 2
a = 9.106 (7) ÅMo Kα radiation
b = 10.819 (9) ŵ = 0.31 mm1
c = 13.325 (4) ÅT = 295 K
α = 70.052 (6)°0.25 × 0.20 × 0.15 mm
β = 70.02 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3695 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3130 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.955Rint = 0.108
5376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.08Δρmax = 0.40 e Å3
3695 reflectionsΔρmin = 0.45 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.94296 (7)0.45978 (6)0.17603 (5)0.0391 (2)
Cl21.69804 (7)0.19448 (6)0.30464 (5)0.0455 (2)
N11.2573 (2)0.45672 (17)0.23659 (13)0.0238 (4)
C60.8407 (2)0.95499 (19)0.75122 (15)0.0215 (4)
H6A0.92440.87710.77860.026*
C70.8134 (2)0.9638 (2)0.65538 (15)0.0208 (4)
C141.1692 (2)0.55189 (19)0.30229 (15)0.0216 (4)
C50.7456 (2)1.0609 (2)0.81253 (15)0.0210 (4)
C120.9649 (2)0.7739 (2)0.33495 (16)0.0231 (4)
H12A0.88660.85860.30970.028*
C100.9014 (2)0.8540 (2)0.50045 (16)0.0224 (4)
H10A0.82250.93300.46920.027*
C161.1131 (2)0.6197 (2)0.47076 (16)0.0229 (4)
H16A1.13520.59740.53920.027*
C110.9938 (2)0.7485 (2)0.43735 (15)0.0215 (4)
C90.9138 (2)0.8536 (2)0.59796 (16)0.0222 (4)
H9A0.99280.77670.63080.027*
C131.0470 (2)0.6794 (2)0.26958 (15)0.0231 (4)
H131.02110.70030.20260.028*
C210.7696 (2)1.0458 (2)0.91198 (16)0.0240 (4)
C230.6733 (3)1.1514 (2)0.97320 (16)0.0281 (5)
C151.1987 (2)0.5248 (2)0.40534 (16)0.0229 (4)
H15A1.27810.44070.43020.028*
C40.6212 (2)1.1924 (2)0.76371 (16)0.0238 (4)
H4A0.67621.25960.71890.029*
H4B0.53531.23290.82230.029*
C191.3873 (2)0.3277 (2)0.27018 (16)0.0241 (4)
H19A1.40400.25990.23120.029*
H19B1.35310.28940.34810.029*
N30.5935 (3)1.2370 (2)1.02102 (15)0.0399 (5)
C80.6800 (2)1.0893 (2)0.60875 (16)0.0252 (4)
H8A0.63071.05940.57130.030*
H8B0.73121.15480.55440.030*
C30.5410 (2)1.1659 (2)0.69367 (16)0.0236 (4)
C171.2492 (3)0.4899 (2)0.12292 (16)0.0261 (5)
H17A1.36140.46750.07720.031*
H17B1.19210.58980.10000.031*
C181.1606 (3)0.4119 (2)0.10506 (18)0.0323 (5)
H18A1.21520.31210.13040.039*
H18B1.16910.43080.02710.039*
N20.9835 (3)0.8257 (2)0.99930 (16)0.0436 (5)
C220.8897 (3)0.9239 (2)0.96049 (16)0.0290 (5)
C201.5502 (2)0.3513 (2)0.24686 (18)0.0286 (5)
H20A1.53160.42670.27850.034*
H20B1.59260.37780.16820.034*
C10.4348 (3)1.3060 (2)0.63482 (18)0.0342 (5)
H1A0.50361.36080.58910.051*
H1B0.34981.35530.68800.051*
H1C0.38391.29010.59020.051*
C20.4306 (3)1.0779 (2)0.76748 (19)0.0338 (5)
H2A0.34491.12780.82000.051*
H2B0.49750.99020.80530.051*
H2C0.38071.06070.72310.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0324 (3)0.0429 (4)0.0442 (4)0.0126 (3)0.0161 (3)0.0062 (3)
Cl20.0276 (3)0.0419 (4)0.0561 (4)0.0014 (3)0.0205 (3)0.0012 (3)
N10.0230 (9)0.0203 (8)0.0260 (9)0.0007 (7)0.0093 (7)0.0077 (7)
C60.0148 (9)0.0188 (9)0.0262 (10)0.0013 (8)0.0050 (8)0.0051 (8)
C70.0155 (9)0.0237 (10)0.0215 (10)0.0078 (8)0.0010 (8)0.0052 (8)
C140.0192 (10)0.0201 (10)0.0264 (11)0.0076 (8)0.0039 (8)0.0066 (8)
C50.0155 (9)0.0218 (10)0.0230 (10)0.0066 (8)0.0007 (8)0.0054 (8)
C120.0176 (9)0.0205 (10)0.0306 (11)0.0027 (8)0.0090 (8)0.0068 (8)
C100.0168 (9)0.0211 (10)0.0279 (11)0.0054 (8)0.0036 (8)0.0069 (8)
C160.0228 (10)0.0234 (10)0.0207 (10)0.0066 (8)0.0051 (8)0.0048 (8)
C110.0166 (9)0.0226 (10)0.0245 (10)0.0068 (8)0.0030 (8)0.0062 (8)
C90.0144 (9)0.0228 (10)0.0251 (10)0.0034 (8)0.0035 (8)0.0055 (8)
C130.0203 (10)0.0258 (10)0.0229 (10)0.0040 (8)0.0089 (8)0.0066 (8)
C210.0236 (10)0.0220 (10)0.0227 (10)0.0050 (8)0.0049 (8)0.0049 (8)
C230.0296 (11)0.0281 (11)0.0225 (10)0.0079 (9)0.0051 (9)0.0048 (9)
C150.0199 (10)0.0184 (10)0.0255 (10)0.0037 (8)0.0084 (8)0.0002 (8)
C40.0214 (10)0.0216 (10)0.0242 (10)0.0032 (8)0.0037 (8)0.0072 (8)
C190.0236 (10)0.0188 (10)0.0275 (10)0.0040 (8)0.0065 (8)0.0064 (8)
N30.0463 (12)0.0337 (11)0.0319 (10)0.0050 (9)0.0035 (9)0.0153 (9)
C80.0226 (10)0.0261 (10)0.0257 (10)0.0040 (9)0.0081 (8)0.0076 (8)
C30.0169 (9)0.0238 (10)0.0255 (10)0.0028 (8)0.0058 (8)0.0047 (8)
C170.0270 (10)0.0221 (10)0.0248 (10)0.0039 (9)0.0059 (9)0.0060 (8)
C180.0338 (12)0.0320 (11)0.0313 (11)0.0044 (10)0.0137 (10)0.0105 (9)
N20.0468 (12)0.0374 (11)0.0357 (11)0.0032 (10)0.0214 (10)0.0062 (9)
C220.0338 (12)0.0310 (12)0.0206 (10)0.0080 (10)0.0058 (9)0.0085 (9)
C200.0230 (10)0.0258 (11)0.0326 (11)0.0032 (9)0.0097 (9)0.0048 (9)
C10.0275 (11)0.0303 (12)0.0360 (12)0.0020 (9)0.0116 (10)0.0081 (10)
C20.0190 (10)0.0352 (12)0.0431 (13)0.0079 (9)0.0035 (9)0.0097 (10)
Geometric parameters (Å, º) top
Cl1—C181.811 (3)C23—N31.146 (3)
Cl2—C201.783 (2)C15—H15A0.9300
N1—C141.382 (3)C4—C31.520 (3)
N1—C191.448 (2)C4—H4A0.9700
N1—C171.453 (2)C4—H4B0.9700
C6—C71.347 (3)C19—C201.520 (3)
C6—C51.432 (3)C19—H19A0.9700
C6—H6A0.9300C19—H19B0.9700
C7—C91.438 (3)C8—C31.532 (3)
C7—C81.503 (3)C8—H8A0.9700
C14—C151.398 (3)C8—H8B0.9700
C14—C131.400 (3)C3—C11.523 (3)
C5—C211.360 (3)C3—C21.542 (3)
C5—C41.499 (3)C17—C181.504 (3)
C12—C131.372 (3)C17—H17A0.9700
C12—C111.391 (3)C17—H17B0.9700
C12—H12A0.9300C18—H18A0.9700
C10—C91.340 (3)C18—H18B0.9700
C10—C111.442 (3)N2—C221.135 (3)
C10—H10A0.9300C20—H20A0.9700
C16—C151.376 (3)C20—H20B0.9700
C16—C111.398 (3)C1—H1A0.9600
C16—H16A0.9300C1—H1B0.9600
C9—H9A0.9300C1—H1C0.9600
C13—H130.9300C2—H2A0.9600
C21—C221.428 (3)C2—H2B0.9600
C21—C231.430 (3)C2—H2C0.9600
C14—N1—C19121.33 (16)C20—C19—H19A109.3
C14—N1—C17122.58 (16)N1—C19—H19B109.3
C19—N1—C17115.10 (15)C20—C19—H19B109.3
C7—C6—C5122.55 (17)H19A—C19—H19B108.0
C7—C6—H6A118.7C7—C8—C3114.66 (16)
C5—C6—H6A118.7C7—C8—H8A108.6
C6—C7—C9119.65 (17)C3—C8—H8A108.6
C6—C7—C8119.76 (17)C7—C8—H8B108.6
C9—C7—C8120.58 (16)C3—C8—H8B108.6
N1—C14—C15121.12 (17)H8A—C8—H8B107.6
N1—C14—C13122.14 (17)C4—C3—C1108.99 (17)
C15—C14—C13116.74 (17)C4—C3—C8108.14 (16)
C21—C5—C6121.30 (18)C1—C3—C8109.44 (16)
C21—C5—C4119.90 (17)C4—C3—C2109.59 (17)
C6—C5—C4118.78 (16)C1—C3—C2109.60 (17)
C13—C12—C11122.83 (18)C8—C3—C2111.03 (17)
C13—C12—H12A118.6N1—C17—C18112.94 (17)
C11—C12—H12A118.6N1—C17—H17A109.0
C9—C10—C11128.83 (18)C18—C17—H17A109.0
C9—C10—H10A115.6N1—C17—H17B109.0
C11—C10—H10A115.6C18—C17—H17B109.0
C15—C16—C11121.91 (18)H17A—C17—H17B107.8
C15—C16—H16A119.0C17—C18—Cl1112.66 (15)
C11—C16—H16A119.0C17—C18—H18A109.1
C12—C11—C16115.97 (17)Cl1—C18—H18A109.1
C12—C11—C10118.97 (17)C17—C18—H18B109.1
C16—C11—C10125.06 (17)Cl1—C18—H18B109.1
C10—C9—C7124.63 (18)H18A—C18—H18B107.8
C10—C9—H9A117.7N2—C22—C21178.7 (2)
C7—C9—H9A117.7C19—C20—Cl2109.49 (15)
C12—C13—C14120.96 (17)C19—C20—H20A109.8
C12—C13—H13119.5Cl2—C20—H20A109.8
C14—C13—H13119.5C19—C20—H20B109.8
C5—C21—C22121.90 (18)Cl2—C20—H20B109.8
C5—C21—C23121.02 (18)H20A—C20—H20B108.2
C22—C21—C23117.08 (17)C3—C1—H1A109.5
N3—C23—C21178.5 (2)C3—C1—H1B109.5
C16—C15—C14121.56 (17)H1A—C1—H1B109.5
C16—C15—H15A119.2C3—C1—H1C109.5
C14—C15—H15A119.2H1A—C1—H1C109.5
C5—C4—C3112.19 (16)H1B—C1—H1C109.5
C5—C4—H4A109.2C3—C2—H2A109.5
C3—C4—H4A109.2C3—C2—H2B109.5
C5—C4—H4B109.2H2A—C2—H2B109.5
C3—C4—H4B109.2C3—C2—H2C109.5
H4A—C4—H4B107.9H2A—C2—H2C109.5
N1—C19—C20111.41 (16)H2B—C2—H2C109.5
N1—C19—H19A109.3
C5—C6—C7—C9179.91 (16)C6—C5—C21—C23179.48 (17)
C5—C6—C7—C80.6 (3)C4—C5—C21—C232.4 (3)
C19—N1—C14—C152.1 (3)C11—C16—C15—C140.8 (3)
C17—N1—C14—C15170.09 (17)N1—C14—C15—C16179.16 (17)
C19—N1—C14—C13177.77 (17)C13—C14—C15—C160.7 (3)
C17—N1—C14—C139.8 (3)C21—C5—C4—C3148.39 (18)
C7—C6—C5—C21176.34 (18)C6—C5—C4—C333.4 (2)
C7—C6—C5—C45.5 (3)C14—N1—C19—C2081.3 (2)
C13—C12—C11—C160.1 (3)C17—N1—C19—C2087.5 (2)
C13—C12—C11—C10179.90 (17)C6—C7—C8—C324.2 (3)
C15—C16—C11—C121.1 (3)C9—C7—C8—C3156.51 (17)
C15—C16—C11—C10178.87 (18)C5—C4—C3—C1172.37 (16)
C9—C10—C11—C12177.25 (19)C5—C4—C3—C853.5 (2)
C9—C10—C11—C162.7 (3)C5—C4—C3—C267.7 (2)
C11—C10—C9—C7179.01 (17)C7—C8—C3—C449.7 (2)
C6—C7—C9—C10177.52 (18)C7—C8—C3—C1168.33 (16)
C8—C7—C9—C101.8 (3)C7—C8—C3—C270.5 (2)
C11—C12—C13—C141.7 (3)C14—N1—C17—C18110.7 (2)
N1—C14—C13—C12177.95 (18)C19—N1—C17—C1880.6 (2)
C15—C14—C13—C121.9 (3)N1—C17—C18—Cl164.6 (2)
C6—C5—C21—C220.2 (3)N1—C19—C20—Cl2172.98 (13)
C4—C5—C21—C22178.39 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cl1Bi0.972.913.822 (2)158
C4—H4A···Cg1ii0.972.553.459 (2)156
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC23H25Cl2N3
Mr414.36
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.106 (7), 10.819 (9), 13.325 (4)
α, β, γ (°)70.052 (6), 70.02 (1), 65.11 (1)
V3)1088.8 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.926, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
5376, 3695, 3130
Rint0.108
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.08
No. of reflections3695
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.45

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cl1Bi0.972.913.822 (2)158
C4—H4A···Cg1ii0.972.553.459 (2)156
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (research grant No. 20774039).

References

First citationBai, Z., Zhang, C.-Z., Lu, G.-Y. & Liu, F. (2006). Chin. J. Chem. 24, 124–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, H., Moon, I. K., Shin, D. H. & Kim, N. (2001). Chem. Mater. 13, 2813–2817.  Web of Science CrossRef CAS Google Scholar
First citationKolev, T., Yancheva, D., Shivachev, B., Petrova, R. & Spiteller, M. (2005). Acta Cryst. E61, o550–o552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKwon, O.-P., Ruiz, B., Choubey, A., Mutter, L., Schneider, A., Jazbinsek, M., Gramlich, V. & Gunter, P. (2006). Chem. Mater. 18, 4049–4054.  Web of Science CSD CrossRef CAS Google Scholar
First citationSamyn, C., Ballet, W., Verbiest, T., Beylen, M. & Persoons, A. (2001). Polymer, 42, 8511–8516.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShu, C.-F., Shu, Y.-C. & Gong, Z.-H. (1998). Chem. Mater. 10, 3284–3286.  Web of Science CrossRef CAS Google Scholar
First citationZheng, Q. D., Yao, Z. G., Cheng, J. Q., Shen, Y. C. & Lu, Z. H. (2000). Chem. Lett. 12, 1426–1427.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds