organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl indolizine-1,3-di­carboxyl­ate

aDepartment of Applied Chemistry, Nanjing Normal University, Nanjing 210097, People's Republic of China
*Correspondence e-mail: wang.bingxiang@yahoo.com

(Received 6 November 2010; accepted 4 December 2010; online 15 December 2010)

The title compound, C14H15NO4, was prepared by a 1,3-dipolar cyclo­addition from N-(eth­oxy­carbonyl­methy)pyridinium bromide and ethyl acrylate. The –CO2 side chains form dihedral angles of 0.2 (3) and 2.4 (3)° with respect to the ring system. In the crystal, two neighbouring mol­ecules form a dimer through weak C—H⋯O interactions. The dimers form a three-dimensional structure via further weak C—H⋯O inter­actions.

Related literature

For synthetic procedures, see: Teklu et al. (2005[Teklu, S., Gundersen, L.-L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127-3139.]), Wang et al. (2000[Wang, B., Hu, J., Zhang, X., Hu, Y. & Hu, H. (2000). J. Heterocycl. Chem. 37, 1533-1537.]). For the pharmaceutical use of related compounds, see: James et al. (2008[James, D. A., Koya, K., Li, H., Liang, G., Xia, Z., Ying, W., Wu, Y. & Sun, L. (2008). Bioorg. Med. Chem. Lett. 18, 1784-1787.]), Tukulula et al. (2010[Tukulula, M., Klein, R. & Kaye, P. T. (2010). Synth. Commun. 40, 2018-2028.]). For the use of related compounds as organic fluorescence probes, see: Shen et al. (2006[Shen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651-653.], 2008[Shen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916-918.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO4

  • Mr = 261.27

  • Monoclinic, P 21 /c

  • a = 7.941 (2) Å

  • b = 19.700 (4) Å

  • c = 8.622 (2) Å

  • β = 101.770 (3)°

  • V = 1320.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.977

  • 7930 measured reflections

  • 2400 independent reflections

  • 1567 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.116

  • S = 1.05

  • 2400 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O4i 0.93 2.59 3.257 (3) 129
C3—H3⋯O2ii 0.93 2.55 3.272 (3) 135
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Indolizine and their derivatives have been comprehensively applied in biology and medicine due to their particular structures and pharmaceutical properties (Tukulula et al., 2010; James et al., 2008; Teklu et al., 2005). They can also be used as organic fluorescence probes (Shen et al., 2008; Shen et al., 2006). In our continuing studies on organic fluorescence probes, we synthesized diethyl indolizine-1,3-dicarboxylate, the title compound, (I).

The crystal structure of the title compound, C14H15NO4, reveals that all the bond lengths and angles have normal values. As shown in Fig. 1, the molecule is essentially planar. All atoms of the molecule locate on the same least-squares plane (6.9517(0.0017)X + 8.0272(0.0048)Y - 3.7352(0.0022)Z = 3.8065 (0.0031)), and the r.m.s. deviation of fitted atoms is 0.0479 (3) Å. The crystal packing is established by weak C—H···O interactions. Two neighbouring molecules form a dimer via the weak hydrogen bond C2—H2···O4i (i: 1 - x,1 - y,2 - z) (Fig. 2) with a distance between C2 and O4 of 3.257 (3) Å. Furthermore, the dimers are interconnected to form a 3-D structure by the weak interaction C3—H3···O2ii (ii: x,1.5 - y,1/2 + z) (Fig. 3) with a distance of 3.272 (3)Å between C3 and O2.

Related literature top

For synthetic procedures, see: Teklu et al. (2005), Wang et al. (2000). For the pharmaceutical use of related compounds, see: James et al. (2008), Tukulula et al. (2010). For the use of related compounds as organic fluorescence probes, see: Shen et al. (2006, 2008).

Experimental top

Diethyl indolizine-1,3-dicarboxylate was prepared in 24% yield by a 1,3-dipolar cycloaddition from N-(ethoxycarbonylmethy)pyridinium bromide and ethyl acrylate in the presence of NEt3 and CrO3 in DMF according to a procedure described in the literature (Wang, et al., 2000). Colorless crystals were obtained by recrystallization of the crude product from ethyl acetate at room temperature.

1H-NMR (CDCl3, 400 MHz) δ: 1.41 (2xt, 6H, 2x-COOCH2CH3), 4.38 (2xq, 4H, 2x-COOCH2CH3), 6.97 (ddd, 1H, H6), 7.31 (ddd, 1H, H7), 8.00 (s, 1H, H2), 8.34 (dd, 1H, H8), 9.53 (dd, 1H, H5).

Refinement top

H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethyl C—C bond), with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Indolizine and their derivatives have been comprehensively applied in biology and medicine due to their particular structures and pharmaceutical properties (Tukulula et al., 2010; James et al., 2008; Teklu et al., 2005). They can also be used as organic fluorescence probes (Shen et al., 2008; Shen et al., 2006). In our continuing studies on organic fluorescence probes, we synthesized diethyl indolizine-1,3-dicarboxylate, the title compound, (I).

The crystal structure of the title compound, C14H15NO4, reveals that all the bond lengths and angles have normal values. As shown in Fig. 1, the molecule is essentially planar. All atoms of the molecule locate on the same least-squares plane (6.9517(0.0017)X + 8.0272(0.0048)Y - 3.7352(0.0022)Z = 3.8065 (0.0031)), and the r.m.s. deviation of fitted atoms is 0.0479 (3) Å. The crystal packing is established by weak C—H···O interactions. Two neighbouring molecules form a dimer via the weak hydrogen bond C2—H2···O4i (i: 1 - x,1 - y,2 - z) (Fig. 2) with a distance between C2 and O4 of 3.257 (3) Å. Furthermore, the dimers are interconnected to form a 3-D structure by the weak interaction C3—H3···O2ii (ii: x,1.5 - y,1/2 + z) (Fig. 3) with a distance of 3.272 (3)Å between C3 and O2.

For synthetic procedures, see: Teklu et al. (2005), Wang et al. (2000). For the pharmaceutical use of related compounds, see: James et al. (2008), Tukulula et al. (2010). For the use of related compounds as organic fluorescence probes, see: Shen et al. (2006, 2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. A view of the dimer. Dashed lines indicate weak C—H···O interactions and all H atoms except H2 have been omitted for clarity (i: 1 - x,1 - y,2 - z).
[Figure 3] Fig. 3. A view of the 3-D packing. Dashed lines indicate weqk C—H···O interaction and all H atoms except H2 and H3 have been omitted for clarity (i: 1 - x,1 - y,2 - z; ii: x,1.5 - y,1/2 + z).
Diethyl indolizine-1,3-dicarboxylate top
Crystal data top
C14H15NO4F(000) = 552
Mr = 261.27Dx = 1.314 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1756 reflections
a = 7.941 (2) Åθ = 2.6–22.7°
b = 19.700 (4) ŵ = 0.10 mm1
c = 8.622 (2) ÅT = 291 K
β = 101.770 (3)°Block, colorless
V = 1320.5 (5) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2400 independent reflections
Radiation source: sealed tube1567 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.972, Tmax = 0.977k = 2323
7930 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.04P)2 + 0.33P]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H15NO4V = 1320.5 (5) Å3
Mr = 261.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.941 (2) ŵ = 0.10 mm1
b = 19.700 (4) ÅT = 291 K
c = 8.622 (2) Å0.30 × 0.26 × 0.24 mm
β = 101.770 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1567 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.039
7930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.17 e Å3
2400 reflectionsΔρmin = 0.24 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.9517 (0.0017) x + 8.0272 (0.0048) y - 3.7352 (0.0022) z = 3.8065 (0.0031)

* 0.0092 (0.0021) C1 * -0.0460 (0.0022) C2 * -0.0746 (0.0022) C3 * -0.0551 (0.0020) C4 * -0.0046 (0.0019) C5 * 0.0272 (0.0020) C6 * 0.0632 (0.0020) C7 * 0.0674 (0.0020) C8 * 0.0094 (0.0021) C9 * -0.0124 (0.0023) C10 * -0.0150 (0.0021) C11 * 0.0555 (0.0020) C12 * -0.0638 (0.0022) C13 * -0.0916 (0.0022) C14 * 0.0286 (0.0017) N1 * -0.0164 (0.0017) O1 * 0.0319 (0.0017) O2 * 0.0148 (0.0016) O3 * 0.0723 (0.0017) O4

Rms deviation of fitted atoms = 0.0479

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3394 (3)0.57688 (11)0.8498 (3)0.0612 (6)
H10.41110.54410.90620.073*
C20.3039 (3)0.63422 (12)0.9219 (3)0.0693 (7)
H20.35080.64091.02880.083*
C30.1963 (3)0.68414 (12)0.8365 (3)0.0690 (7)
H30.17320.72370.88710.083*
C40.1266 (3)0.67502 (11)0.6820 (3)0.0599 (6)
H40.05550.70820.62630.072*
C50.1613 (3)0.61567 (9)0.6055 (3)0.0468 (5)
C60.1093 (3)0.59243 (10)0.4502 (3)0.0524 (6)
C70.1841 (3)0.52881 (10)0.4431 (3)0.0552 (6)
H70.17010.50150.35340.066*
C80.2815 (3)0.51264 (10)0.5885 (3)0.0526 (6)
C90.0036 (3)0.62911 (11)0.3236 (3)0.0579 (6)
C100.1463 (3)0.62404 (12)0.0531 (3)0.0710 (7)
H10A0.09540.66620.02680.085*
H10B0.25870.63390.07520.085*
C110.1616 (4)0.57481 (13)0.0806 (3)0.0770 (8)
H11A0.04910.56400.09820.116*
H11B0.22910.59460.17480.116*
H11C0.21660.53410.05490.116*
C120.3783 (3)0.45130 (11)0.6400 (3)0.0573 (6)
C130.4462 (3)0.34094 (11)0.5611 (3)0.0698 (7)
H13A0.40100.31880.64450.084*
H13B0.56890.34760.59790.084*
C140.4129 (4)0.29840 (12)0.4151 (4)0.0864 (9)
H14A0.29110.29260.37910.130*
H14B0.46620.25480.43820.130*
H14C0.45980.32040.33400.130*
N10.2678 (2)0.56704 (9)0.6903 (2)0.0575 (5)
O10.0371 (2)0.59243 (8)0.1895 (2)0.0692 (5)
O20.0599 (2)0.68564 (8)0.3343 (2)0.0728 (5)
O30.3616 (2)0.40572 (7)0.52177 (19)0.0630 (5)
O40.4634 (2)0.44071 (8)0.7710 (2)0.0758 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0625 (16)0.0608 (14)0.0556 (16)0.0007 (12)0.0013 (13)0.0057 (12)
C20.0755 (18)0.0710 (15)0.0570 (16)0.0005 (13)0.0032 (14)0.0028 (13)
C30.0789 (19)0.0591 (14)0.0676 (19)0.0047 (13)0.0114 (15)0.0030 (13)
C40.0610 (15)0.0529 (12)0.0648 (17)0.0031 (11)0.0105 (13)0.0059 (11)
C50.0422 (12)0.0446 (11)0.0532 (14)0.0059 (9)0.0090 (11)0.0060 (10)
C60.0486 (14)0.0472 (11)0.0598 (16)0.0025 (10)0.0070 (12)0.0078 (10)
C70.0547 (14)0.0504 (12)0.0578 (16)0.0045 (10)0.0052 (12)0.0025 (11)
C80.0512 (14)0.0471 (11)0.0569 (15)0.0010 (10)0.0050 (12)0.0060 (10)
C90.0558 (15)0.0535 (13)0.0628 (17)0.0068 (11)0.0080 (13)0.0096 (12)
C100.0721 (18)0.0696 (15)0.0657 (18)0.0119 (13)0.0011 (14)0.0191 (13)
C110.0823 (19)0.0765 (16)0.0643 (18)0.0001 (14)0.0039 (14)0.0078 (14)
C120.0528 (15)0.0543 (13)0.0637 (17)0.0017 (11)0.0097 (13)0.0081 (12)
C130.0644 (16)0.0550 (13)0.089 (2)0.0107 (12)0.0126 (15)0.0112 (13)
C140.084 (2)0.0547 (14)0.115 (3)0.0083 (13)0.0095 (18)0.0047 (15)
N10.0557 (12)0.0539 (10)0.0606 (13)0.0007 (9)0.0066 (10)0.0058 (10)
O10.0786 (12)0.0619 (9)0.0586 (11)0.0126 (8)0.0062 (9)0.0075 (8)
O20.0819 (12)0.0518 (9)0.0797 (13)0.0090 (8)0.0048 (10)0.0100 (8)
O30.0681 (11)0.0469 (8)0.0696 (11)0.0067 (7)0.0036 (9)0.0061 (8)
O40.0801 (13)0.0756 (11)0.0644 (12)0.0177 (9)0.0023 (10)0.0116 (9)
Geometric parameters (Å, º) top
C1—C21.346 (3)C9—O11.344 (3)
C1—N11.390 (3)C10—O11.451 (3)
C1—H10.9300C10—C111.492 (3)
C2—C31.408 (3)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—C41.346 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.397 (3)C11—H11C0.9600
C4—H40.9300C12—O41.210 (3)
C5—N11.384 (3)C12—O31.344 (3)
C5—C61.395 (3)C13—O31.450 (2)
C6—C71.394 (3)C13—C141.490 (3)
C6—C91.455 (3)C13—H13A0.9700
C7—C81.369 (3)C13—H13B0.9700
C7—H70.9300C14—H14A0.9600
C8—N11.404 (3)C14—H14B0.9600
C8—C121.452 (3)C14—H14C0.9600
C9—O21.211 (3)
C2—C1—N1119.5 (2)O1—C10—H10B110.4
C2—C1—H1120.3C11—C10—H10B110.4
N1—C1—H1120.3H10A—C10—H10B108.6
C1—C2—C3120.4 (2)C10—C11—H11A109.5
C1—C2—H2119.8C10—C11—H11B109.5
C3—C2—H2119.8H11A—C11—H11B109.5
C4—C3—C2120.5 (2)C10—C11—H11C109.5
C4—C3—H3119.8H11A—C11—H11C109.5
C2—C3—H3119.8H11B—C11—H11C109.5
C3—C4—C5119.9 (2)O4—C12—O3122.9 (2)
C3—C4—H4120.1O4—C12—C8126.1 (2)
C5—C4—H4120.1O3—C12—C8111.1 (2)
N1—C5—C6108.02 (18)O3—C13—C14107.7 (2)
N1—C5—C4119.2 (2)O3—C13—H13A110.2
C6—C5—C4132.8 (2)C14—C13—H13A110.2
C7—C6—C5107.0 (2)O3—C13—H13B110.2
C7—C6—C9128.1 (2)C14—C13—H13B110.2
C5—C6—C9125.0 (2)H13A—C13—H13B108.5
C8—C7—C6109.6 (2)C13—C14—H14A109.5
C8—C7—H7125.2C13—C14—H14B109.5
C6—C7—H7125.2H14A—C14—H14B109.5
C7—C8—N1107.08 (18)C13—C14—H14C109.5
C7—C8—C12129.7 (2)H14A—C14—H14C109.5
N1—C8—C12123.2 (2)H14B—C14—H14C109.5
O2—C9—O1123.3 (2)C5—N1—C1120.57 (19)
O2—C9—C6125.5 (2)C5—N1—C8108.35 (18)
O1—C9—C6111.2 (2)C1—N1—C8131.08 (19)
O1—C10—C11106.8 (2)C9—O1—C10116.56 (18)
O1—C10—H10A110.4C12—O3—C13116.16 (19)
C11—C10—H10A110.4
N1—C1—C2—C30.4 (4)C7—C8—C12—O31.1 (3)
C1—C2—C3—C40.4 (4)N1—C8—C12—O3176.12 (18)
C2—C3—C4—C50.1 (4)C6—C5—N1—C1179.92 (18)
C3—C4—C5—N10.2 (3)C4—C5—N1—C10.1 (3)
C3—C4—C5—C6179.9 (2)C6—C5—N1—C80.6 (2)
N1—C5—C6—C70.7 (2)C4—C5—N1—C8179.61 (18)
C4—C5—C6—C7179.5 (2)C2—C1—N1—C50.2 (3)
N1—C5—C6—C9179.89 (19)C2—C1—N1—C8179.2 (2)
C4—C5—C6—C90.2 (4)C7—C8—N1—C50.3 (2)
C5—C6—C7—C80.6 (2)C12—C8—N1—C5177.48 (19)
C9—C6—C7—C8179.9 (2)C7—C8—N1—C1179.6 (2)
C6—C7—C8—N10.2 (2)C12—C8—N1—C11.9 (3)
C6—C7—C8—C12177.7 (2)O2—C9—O1—C100.2 (3)
C7—C6—C9—O2176.9 (2)C6—C9—O1—C10178.95 (19)
C5—C6—C9—O23.9 (4)C11—C10—O1—C9178.84 (19)
C7—C6—C9—O12.2 (3)O4—C12—O3—C132.4 (3)
C5—C6—C9—O1177.01 (19)C8—C12—O3—C13177.22 (18)
C7—C8—C12—O4179.3 (2)C14—C13—O3—C12179.72 (19)
N1—C8—C12—O43.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.593.257 (3)129
C3—H3···O2ii0.932.553.272 (3)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15NO4
Mr261.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)7.941 (2), 19.700 (4), 8.622 (2)
β (°) 101.770 (3)
V3)1320.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.972, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7930, 2400, 1567
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.116, 1.05
No. of reflections2400
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.24

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O4i0.932.593.257 (3)129
C3—H3···O2ii0.932.553.272 (3)135
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Jiangsu Province of China (grant No. BK2008435) and the National Natural Science Foundation of China (grant No. 20771060) for financial support.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJames, D. A., Koya, K., Li, H., Liang, G., Xia, Z., Ying, W., Wu, Y. & Sun, L. (2008). Bioorg. Med. Chem. Lett. 18, 1784–1787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-M., Wang, B.-X., Feng, Y.-Y., Shen, Z.-Y., Shen, J., Li, C. & Hu, H.-W. (2006). Chem. J. Chin. Univ. 27, 651–653.  CAS Google Scholar
First citationShen, Z.-Y., Wang, B.-X., Shen, J. & Hu, H.-W. (2008). Chem. J. Chin. Univ. 29, 916–918.  CAS Google Scholar
First citationTeklu, S., Gundersen, L.-L., Larsen, T., Malterud, K. E. & Rise, F. (2005). Bioorg. Med. Chem. 13, 3127–3139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTukulula, M., Klein, R. & Kaye, P. T. (2010). Synth. Commun. 40, 2018–2028.  Web of Science CrossRef CAS Google Scholar
First citationWang, B., Hu, J., Zhang, X., Hu, Y. & Hu, H. (2000). J. Heterocycl. Chem. 37, 1533–1537.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds