organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Bromo­phen­yl)-3-butano­ylthio­urea

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan
*Correspondence e-mail: sohail262001@yahoo.com

(Received 8 November 2010; accepted 1 December 2010; online 8 December 2010)

In the title compound, C11H13BrN2OS, there are two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the benzene ring and the carbamothioyl group is 63.66 (mol­ecule A) and 80.3 (0)° (mol­ecule B). The butanamide group in mol­ecule A is disordered [0.532 (6) and 0.468 (6) occupancy]. The carbamothioyl group is twisted by 63.6 (6) (mol­ecule A) and 80.3 (0)° (mol­ecule B) from the respective benzene ring. A strong intra­molecular N—H⋯O hydrogen bond occurs in each mol­ecule. The crystal packing is stabilized by weak inter­molecular N—H⋯O and N—H⋯S hydrogen-bond inter­actions, the latter forming an infinite co-operative hydrogen-bonded two-dimensional network along [110].

Related literature

For general background to the chemistry of thio­urea derivatives, see: Zhang et al. (2004[Zhang, Y.-M., Wei, T.-B., Xian, L. & &Gao, L.-M. (2004). Phosphorus Sulphur Silicon Relat. Elem. 179, 2007-2013.]); For related structures, see: Saeed et al. (2008a[Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.],b[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1566.], 2009[Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870-o1871.]). For an ep­oxy resin curing agent, see: Saeed et al. (2009[Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870-o1871.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13BrN2OS

  • Mr = 301.20

  • Triclinic, [P \overline 1]

  • a = 6.1746 (3) Å

  • b = 10.7883 (4) Å

  • c = 19.6450 (8) Å

  • α = 87.719 (3)°

  • β = 81.557 (4)°

  • γ = 76.047 (4)°

  • V = 1256.23 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.42 mm−1

  • T = 123 K

  • 0.53 × 0.24 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.187, Tmax = 1.000

  • 13276 measured reflections

  • 5362 independent reflections

  • 3535 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.095

  • S = 0.92

  • 5362 reflections

  • 307 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1A 0.88 1.97 2.666 (5) 135
N1A—H1AA⋯O1Ai 0.88 2.36 3.083 (6) 140
N2A—H2AB⋯S1Aii 0.88 2.54 3.382 (4) 160
N1B—H1BA⋯O1B 0.88 1.98 2.662 (4) 134
N2B—H2BB⋯S1Biii 0.88 2.50 3.370 (3) 169
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z; (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The background to this study has been set in our previous work on the structural chemistry of N, N'-disubstituted thiourea (Saeed et al., 2008a,b). Herein, as a continuation of these studies, the structure of the title compound, (I), C11H13BrN2OS, is described. With two molecules in the asymmetric unit, the dihedral angle between the mean planes of the benzene ring and carbamothioyl group is 63.66° (A) Fig. 1) and 80.3 (0)° (B) (Fig. 2), respectively. The butanamide group in A is disordered (0.532 (6) & 0.4686 occupancy). The carbamothioyl group is twisted by 63.6 (6)° (A) and 80.3 (0)° (B) from the mean plane of the respective benzene ring. Bond distances and angles are in normal ranges (Allen et al. , 1987). Crystal packing is stabilized by strong intramolecular N—H···O and weak intermolecular N—H···O and N—H···S hydrogen bond interactions, the latter forming an infinite cooperative hydrogen bonded 2-D network along 110. (Fig. 3).

Related literature top

For general background to the chemistry of thiourea derivatives, see: Zhang et al. (2004); For related structures, see: Saeed et al. (2008a,b, 2009). For an epoxy resin curing agent, see: Saeed et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

A solution of butanoyl chloride (0.01 mol) in anhydrous acetone (75 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added dropwise to a suspension of dry potassium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 50 min. After cooling to room temperature, a solution of p-bromoaniline (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 3 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethyl acetate (yield: 92%).

Refinement top

N-H bond lengths were set to 0.88Å. All other H atoms were placed in calculated positions and then refined using the riding model approximation with atom–H lengths of 0.95 Å (CH), 0.99 Å (CH2), or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.50 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of C11H13BrN2OS, (A) showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lined indicate intramolecular N—H···O hydrogen bonding. Only the predominate butanamide component (0.532 (6) occupancy) is displayed.
[Figure 2] Fig. 2. Molecular structure of C11H13BrN2OS, (B) showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lined indicate intramolecular N—H···O hydrogen bonding.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the c axis. Dashed lines indicate strong N—H···O, weak N—H···O and N—H···S hydrogen bonds and are also displaying an R22(8) graph set motif betwen adjacent A–B molecules.
1-(4-Bromophenyl)-3-butanoylthiourea top
Crystal data top
C11H13BrN2OSZ = 4
Mr = 301.20F(000) = 608
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Melting point: 409 K
a = 6.1746 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7883 (4) ÅCell parameters from 6019 reflections
c = 19.6450 (8) Åθ = 5.1–28.4°
α = 87.719 (3)°µ = 3.42 mm1
β = 81.557 (4)°T = 123 K
γ = 76.047 (4)°Prism, colorless
V = 1256.23 (9) Å30.53 × 0.24 × 0.11 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5362 independent reflections
Radiation source: Enhance (Mo) X-ray Source3535 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.5081 pixels mm-1θmax = 28.5°, θmin = 5.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1314
Tmin = 0.187, Tmax = 1.000l = 2426
13276 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0504P)2]
where P = (Fo2 + 2Fc2)/3
5362 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.83 e Å3
18 restraintsΔρmin = 0.74 e Å3
Crystal data top
C11H13BrN2OSγ = 76.047 (4)°
Mr = 301.20V = 1256.23 (9) Å3
Triclinic, P1Z = 4
a = 6.1746 (3) ÅMo Kα radiation
b = 10.7883 (4) ŵ = 3.42 mm1
c = 19.6450 (8) ÅT = 123 K
α = 87.719 (3)°0.53 × 0.24 × 0.11 mm
β = 81.557 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5362 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3535 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 1.000Rint = 0.054
13276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04318 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 0.92Δρmax = 0.83 e Å3
5362 reflectionsΔρmin = 0.74 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A1.12197 (6)0.33692 (3)0.30413 (2)0.02775 (12)
S1A0.6977 (2)0.04500 (13)0.07060 (6)0.0486 (3)
O1A0.3799 (6)0.4183 (4)0.03038 (17)0.0751 (13)
N1A0.6368 (5)0.2974 (4)0.06119 (16)0.0360 (8)
H1AA0.58350.36900.03980.043*
N2A0.4761 (6)0.2029 (4)0.01539 (17)0.0454 (10)0.468 (6)
H2AB0.46920.13110.03370.054*0.468 (6)
N2C0.4761 (6)0.2029 (4)0.01539 (17)0.0454 (10)0.532 (6)
H2CA0.45770.13120.03080.054*0.532 (6)
C1A0.7542 (6)0.3041 (4)0.11839 (19)0.0267 (9)
C2A0.9809 (6)0.2465 (4)0.11540 (19)0.0276 (9)
H2AA1.06080.19970.07580.033*
C3A1.0908 (6)0.2578 (4)0.17075 (19)0.0256 (9)
H3AA1.24700.21950.16940.031*
C4A0.9692 (6)0.3256 (3)0.22803 (19)0.0239 (8)
C5A0.7432 (6)0.3813 (3)0.23116 (19)0.0252 (9)
H5AA0.66210.42710.27100.030*
C6A0.6355 (6)0.3701 (3)0.1759 (2)0.0264 (9)
H6AA0.47910.40800.17750.032*
C7A0.6030 (6)0.1894 (5)0.0382 (2)0.0380 (11)
C8A0.359 (8)0.3127 (6)0.044 (2)0.066 (3)0.468 (6)
C9A0.1864 (14)0.2620 (8)0.0861 (4)0.0248 (13)0.468 (6)
H9AA0.27270.20120.12250.030*0.468 (6)
H9AB0.08920.21790.05430.030*0.468 (6)
C10A0.047 (4)0.375 (3)0.1171 (9)0.045 (3)0.468 (6)
H10A0.14730.42700.14150.054*0.468 (6)
H10B0.05410.42860.07990.054*0.468 (6)
C11A0.095 (6)0.340 (4)0.1676 (15)0.044 (5)0.468 (6)
H11A0.15110.41510.19540.066*0.468 (6)
H11B0.22210.31130.14190.066*0.468 (6)
H11C0.00140.27140.19770.066*0.468 (6)
C8C0.375 (7)0.3120 (5)0.0481 (19)0.066 (3)0.532 (6)
C9C0.2633 (12)0.3155 (7)0.1089 (4)0.0248 (13)0.532 (6)
H9CA0.29770.22880.12870.030*0.532 (6)
H9CB0.32000.37270.14410.030*0.532 (6)
C10C0.008 (4)0.364 (2)0.0892 (8)0.045 (3)0.532 (6)
H10C0.04070.32180.04600.054*0.532 (6)
H10D0.02800.45700.08090.054*0.532 (6)
C11C0.119 (5)0.338 (3)0.1444 (11)0.044 (5)0.532 (6)
H11D0.27940.37900.13250.066*0.532 (6)
H11E0.10060.24540.14840.066*0.532 (6)
H11F0.06040.37180.18850.066*0.532 (6)
Br1B0.29893 (6)0.08278 (4)0.22800 (2)0.03337 (13)
S1B0.40894 (16)0.38143 (8)0.43013 (5)0.0282 (2)
O1B0.9939 (4)0.1368 (2)0.52752 (12)0.0214 (5)
N1B0.7056 (5)0.1586 (3)0.43688 (15)0.0199 (7)
H1BA0.82140.11060.45430.024*
N2B0.7405 (5)0.3202 (3)0.50548 (14)0.0214 (7)
H2BB0.69380.40150.51660.026*
C1B0.6082 (5)0.1031 (3)0.38714 (17)0.0170 (8)
C2B0.7103 (6)0.0919 (3)0.31965 (18)0.0199 (8)
H2BA0.84300.12170.30620.024*
C3B0.6197 (6)0.0373 (3)0.27136 (19)0.0223 (8)
H3BA0.68850.02970.22470.027*
C4B0.4275 (6)0.0060 (3)0.29247 (19)0.0214 (8)
C5B0.3250 (6)0.0038 (3)0.35972 (19)0.0222 (8)
H5BA0.19280.02660.37320.027*
C6B0.4171 (6)0.0584 (3)0.40740 (19)0.0217 (8)
H6BA0.34890.06520.45410.026*
C7B0.6293 (6)0.2788 (3)0.45781 (17)0.0196 (8)
C8B0.9147 (5)0.2507 (3)0.53771 (17)0.0188 (8)
C9B0.9965 (6)0.3278 (3)0.58645 (19)0.0227 (8)
H9BA0.87480.35700.62520.027*
H9BB1.03030.40450.56200.027*
C10B1.2057 (6)0.2531 (3)0.6150 (2)0.0286 (9)
H10E1.32260.21620.57630.034*
H10F1.16800.18170.64370.034*
C11B1.2993 (7)0.3366 (4)0.6579 (2)0.0366 (10)
H11G1.43830.28620.67320.055*
H11H1.18810.36820.69810.055*
H11I1.33190.40900.63010.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0310 (2)0.0221 (2)0.0329 (2)0.00409 (16)0.01694 (17)0.00039 (17)
S1A0.0591 (8)0.0681 (8)0.0314 (6)0.0304 (7)0.0239 (5)0.0060 (6)
O1A0.079 (3)0.080 (3)0.047 (2)0.038 (2)0.039 (2)0.024 (2)
N1A0.0339 (19)0.055 (2)0.0200 (18)0.0100 (17)0.0101 (15)0.0062 (17)
N2A0.033 (2)0.071 (3)0.026 (2)0.0062 (19)0.0118 (16)0.0179 (19)
N2C0.033 (2)0.071 (3)0.026 (2)0.0062 (19)0.0118 (16)0.0179 (19)
C1A0.030 (2)0.035 (2)0.017 (2)0.0117 (18)0.0078 (16)0.0106 (17)
C2A0.028 (2)0.038 (2)0.018 (2)0.0102 (18)0.0037 (16)0.0027 (18)
C3A0.0193 (19)0.030 (2)0.029 (2)0.0085 (17)0.0036 (16)0.0036 (18)
C4A0.030 (2)0.0193 (19)0.029 (2)0.0116 (17)0.0162 (17)0.0082 (16)
C5A0.027 (2)0.0217 (19)0.028 (2)0.0061 (17)0.0066 (17)0.0009 (16)
C6A0.021 (2)0.025 (2)0.034 (2)0.0037 (16)0.0096 (17)0.0024 (18)
C7A0.024 (2)0.070 (3)0.020 (2)0.010 (2)0.0043 (17)0.003 (2)
C8A0.050 (5)0.091 (4)0.038 (4)0.037 (3)0.022 (4)0.034 (3)
C9A0.032 (4)0.025 (3)0.022 (3)0.014 (2)0.007 (3)0.002 (3)
C10A0.033 (8)0.056 (6)0.049 (11)0.013 (4)0.010 (8)0.004 (10)
C11A0.036 (6)0.049 (3)0.055 (15)0.014 (4)0.024 (9)0.009 (10)
C8C0.050 (5)0.091 (4)0.038 (4)0.037 (3)0.022 (4)0.034 (3)
C9C0.032 (4)0.025 (3)0.022 (3)0.014 (2)0.007 (3)0.002 (3)
C10C0.033 (8)0.056 (6)0.049 (11)0.013 (4)0.010 (8)0.004 (10)
C11C0.036 (6)0.049 (3)0.055 (15)0.014 (4)0.024 (9)0.009 (10)
Br1B0.0354 (2)0.0344 (2)0.0352 (3)0.01105 (19)0.01454 (18)0.00672 (19)
S1B0.0362 (6)0.0152 (5)0.0327 (6)0.0040 (4)0.0195 (4)0.0041 (4)
O1B0.0235 (13)0.0133 (12)0.0262 (14)0.0003 (11)0.0065 (11)0.0011 (11)
N1B0.0211 (15)0.0125 (15)0.0247 (17)0.0024 (12)0.0080 (13)0.0045 (13)
N2B0.0286 (17)0.0113 (14)0.0233 (17)0.0020 (13)0.0105 (13)0.0025 (13)
C1B0.0212 (18)0.0084 (16)0.021 (2)0.0001 (14)0.0076 (15)0.0001 (14)
C2B0.0202 (18)0.0138 (17)0.026 (2)0.0039 (15)0.0037 (15)0.0014 (15)
C3B0.026 (2)0.0197 (19)0.0192 (19)0.0004 (16)0.0036 (15)0.0008 (15)
C4B0.027 (2)0.0111 (17)0.028 (2)0.0042 (15)0.0118 (16)0.0013 (15)
C5B0.0173 (18)0.0152 (18)0.033 (2)0.0018 (15)0.0053 (16)0.0019 (16)
C6B0.0193 (19)0.0188 (18)0.023 (2)0.0026 (15)0.0012 (15)0.0010 (16)
C7B0.026 (2)0.0151 (18)0.0185 (19)0.0039 (16)0.0065 (16)0.0019 (15)
C8B0.0199 (18)0.0179 (18)0.0180 (19)0.0033 (16)0.0037 (15)0.0029 (15)
C9B0.0237 (19)0.0149 (18)0.028 (2)0.0022 (15)0.0087 (16)0.0027 (15)
C10B0.030 (2)0.0149 (19)0.041 (2)0.0011 (16)0.0171 (18)0.0005 (17)
C11B0.031 (2)0.023 (2)0.058 (3)0.0008 (18)0.022 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1A—C4A1.904 (3)C10C—H10C0.9900
S1A—C7A1.663 (5)C10C—H10D0.9900
O1A—C8C1.220 (4)C11C—H11D0.9800
O1A—C8A1.220 (4)C11C—H11E0.9800
N1A—C7A1.338 (5)C11C—H11F0.9800
N1A—C1A1.437 (4)Br1B—C4B1.902 (3)
N1A—H1AA0.8800S1B—C7B1.678 (3)
N2A—C8A1.376 (4)O1B—C8B1.221 (3)
N2A—C7A1.385 (5)N1B—C7B1.328 (4)
N2A—H2AB0.8800N1B—C1B1.438 (4)
C1A—C6A1.374 (5)N1B—H1BA0.8800
C1A—C2A1.382 (5)N2B—C8B1.376 (4)
C2A—C3A1.387 (5)N2B—C7B1.386 (4)
C2A—H2AA0.9500N2B—H2BB0.8800
C3A—C4A1.385 (5)C1B—C2B1.378 (5)
C3A—H3AA0.9500C1B—C6B1.380 (5)
C4A—C5A1.373 (5)C2B—C3B1.385 (5)
C5A—C6A1.377 (5)C2B—H2BA0.9500
C5A—H5AA0.9500C3B—C4B1.381 (5)
C6A—H6AA0.9500C3B—H3BA0.9500
C8A—C9A1.644 (14)C4B—C5B1.375 (5)
C9A—C10A1.48 (3)C5B—C6B1.382 (5)
C9A—H9AA0.9900C5B—H5BA0.9500
C9A—H9AB0.9900C6B—H6BA0.9500
C10A—C11A1.53 (5)C8B—C9B1.508 (4)
C10A—H10A0.9900C9B—C10B1.518 (5)
C10A—H10B0.9900C9B—H9BA0.9900
C11A—H11A0.9800C9B—H9BB0.9900
C11A—H11B0.9800C10B—C11B1.521 (5)
C11A—H11C0.9800C10B—H10E0.9900
C8C—C9C1.459 (11)C10B—H10F0.9900
C9C—C10C1.53 (2)C11B—H11G0.9800
C9C—H9CA0.9900C11B—H11H0.9800
C9C—H9CB0.9900C11B—H11I0.9800
C10C—C11C1.50 (4)
C8C—O1A—C8A5 (6)H10C—C10C—H10D107.9
C7A—N1A—C1A124.4 (4)C10C—C11C—H11D109.5
C7A—N1A—H1AA117.8C10C—C11C—H11E109.5
C1A—N1A—H1AA117.8H11D—C11C—H11E109.5
C8A—N2A—C7A129.2 (5)C10C—C11C—H11F109.5
C8A—N2A—H2AB115.4H11D—C11C—H11F109.5
C7A—N2A—H2AB115.4H11E—C11C—H11F109.5
C6A—C1A—C2A120.9 (3)C7B—N1B—C1B123.1 (3)
C6A—C1A—N1A118.3 (3)C7B—N1B—H1BA118.4
C2A—C1A—N1A120.8 (3)C1B—N1B—H1BA118.4
C1A—C2A—C3A119.4 (3)C8B—N2B—C7B128.4 (3)
C1A—C2A—H2AA120.3C8B—N2B—H2BB115.8
C3A—C2A—H2AA120.3C7B—N2B—H2BB115.8
C4A—C3A—C2A118.9 (3)C2B—C1B—C6B120.4 (3)
C4A—C3A—H3AA120.5C2B—C1B—N1B119.6 (3)
C2A—C3A—H3AA120.5C6B—C1B—N1B120.0 (3)
C5A—C4A—C3A121.5 (3)C1B—C2B—C3B120.2 (3)
C5A—C4A—Br1A120.3 (3)C1B—C2B—H2BA119.9
C3A—C4A—Br1A118.2 (3)C3B—C2B—H2BA119.9
C4A—C5A—C6A119.2 (3)C4B—C3B—C2B118.6 (3)
C4A—C5A—H5AA120.4C4B—C3B—H3BA120.7
C6A—C5A—H5AA120.4C2B—C3B—H3BA120.7
C1A—C6A—C5A120.0 (3)C5B—C4B—C3B121.8 (3)
C1A—C6A—H6AA120.0C5B—C4B—Br1B118.3 (3)
C5A—C6A—H6AA120.0C3B—C4B—Br1B120.0 (3)
N1A—C7A—N2A116.0 (4)C4B—C5B—C6B119.0 (3)
N1A—C7A—S1A124.5 (3)C4B—C5B—H5BA120.5
N2A—C7A—S1A119.5 (3)C6B—C5B—H5BA120.5
O1A—C8A—N2A122.2 (5)C1B—C6B—C5B120.0 (3)
O1A—C8A—C9A133.9 (10)C1B—C6B—H6BA120.0
N2A—C8A—C9A103.4 (6)C5B—C6B—H6BA120.0
C10A—C9A—C8A107.3 (12)N1B—C7B—N2B117.1 (3)
C10A—C9A—H9AA110.3N1B—C7B—S1B124.1 (3)
C8A—C9A—H9AA110.3N2B—C7B—S1B118.9 (2)
C10A—C9A—H9AB110.3O1B—C8B—N2B122.5 (3)
C8A—C9A—H9AB110.3O1B—C8B—C9B123.6 (3)
H9AA—C9A—H9AB108.5N2B—C8B—C9B113.9 (3)
C9A—C10A—C11A113 (2)C8B—C9B—C10B112.9 (3)
C9A—C10A—H10A109.0C8B—C9B—H9BA109.0
C11A—C10A—H10A109.0C10B—C9B—H9BA109.0
C9A—C10A—H10B109.0C8B—C9B—H9BB109.0
C11A—C10A—H10B109.0C10B—C9B—H9BB109.0
H10A—C10A—H10B107.8H9BA—C9B—H9BB107.8
O1A—C8C—C9C112.4 (6)C9B—C10B—C11B111.9 (3)
C8C—C9C—C10C110 (2)C9B—C10B—H10E109.2
C8C—C9C—H9CA109.7C11B—C10B—H10E109.2
C10C—C9C—H9CA109.7C9B—C10B—H10F109.2
C8C—C9C—H9CB109.7C11B—C10B—H10F109.2
C10C—C9C—H9CB109.7H10E—C10B—H10F107.9
H9CA—C9C—H9CB108.2C10B—C11B—H11G109.5
C11C—C10C—C9C111.9 (16)C10B—C11B—H11H109.5
C11C—C10C—H10C109.2H11G—C11B—H11H109.5
C9C—C10C—H10C109.2C10B—C11B—H11I109.5
C11C—C10C—H10D109.2H11G—C11B—H11I109.5
C9C—C10C—H10D109.2H11H—C11B—H11I109.5
C7A—N1A—C1A—C6A115.5 (4)O1A—C8C—C9C—C10C74 (4)
C7A—N1A—C1A—C2A65.0 (5)C8C—C9C—C10C—C11C165.1 (18)
C6A—C1A—C2A—C3A1.3 (6)C7B—N1B—C1B—C2B100.1 (4)
N1A—C1A—C2A—C3A178.2 (3)C7B—N1B—C1B—C6B81.5 (4)
C1A—C2A—C3A—C4A0.7 (5)C6B—C1B—C2B—C3B0.9 (5)
C2A—C3A—C4A—C5A0.2 (5)N1B—C1B—C2B—C3B179.2 (3)
C2A—C3A—C4A—Br1A178.8 (3)C1B—C2B—C3B—C4B0.4 (5)
C3A—C4A—C5A—C6A0.4 (6)C2B—C3B—C4B—C5B0.0 (5)
Br1A—C4A—C5A—C6A179.0 (3)C2B—C3B—C4B—Br1B179.5 (2)
C2A—C1A—C6A—C5A1.1 (6)C3B—C4B—C5B—C6B0.0 (5)
N1A—C1A—C6A—C5A178.5 (3)Br1B—C4B—C5B—C6B179.5 (2)
C4A—C5A—C6A—C1A0.2 (5)C2B—C1B—C6B—C5B1.0 (5)
C1A—N1A—C7A—N2A176.9 (3)N1B—C1B—C6B—C5B179.3 (3)
C1A—N1A—C7A—S1A1.9 (5)C4B—C5B—C6B—C1B0.5 (5)
C8A—N2A—C7A—N1A8 (3)C1B—N1B—C7B—N2B179.4 (3)
C8A—N2A—C7A—S1A171 (3)C1B—N1B—C7B—S1B0.7 (5)
C8C—O1A—C8A—N2A85 (4)C8B—N2B—C7B—N1B4.1 (5)
C8C—O1A—C8A—C9A104 (7)C8B—N2B—C7B—S1B175.8 (3)
C7A—N2A—C8A—O1A11 (7)C7B—N2B—C8B—O1B0.8 (6)
C7A—N2A—C8A—C9A162.5 (8)C7B—N2B—C8B—C9B179.5 (3)
O1A—C8A—C9A—C10A6 (7)O1B—C8B—C9B—C10B6.9 (5)
N2A—C8A—C9A—C10A178 (3)N2B—C8B—C9B—C10B173.3 (3)
C8A—C9A—C10A—C11A171 (3)C8B—C9B—C10B—C11B174.0 (3)
C8A—O1A—C8C—C9C98 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1A0.881.972.666 (5)135
N1A—H1AA···O1Ai0.882.363.083 (6)140
N2A—H2AB···S1Aii0.882.543.382 (4)160
N1B—H1BA···O1B0.881.982.662 (4)134
N2B—H2BB···S1Biii0.882.503.370 (3)169
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H13BrN2OS
Mr301.20
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.1746 (3), 10.7883 (4), 19.6450 (8)
α, β, γ (°)87.719 (3), 81.557 (4), 76.047 (4)
V3)1256.23 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.42
Crystal size (mm)0.53 × 0.24 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.187, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13276, 5362, 3535
Rint0.054
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.095, 0.92
No. of reflections5362
No. of parameters307
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.74

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1A0.881.972.666 (5)134.6
N1A—H1AA···O1Ai0.882.363.083 (6)140.0
N2A—H2AB···S1Aii0.882.543.382 (4)159.5
N1B—H1BA···O1B0.881.982.662 (4)133.6
N2B—H2BB···S1Biii0.882.503.370 (3)168.7
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
First citationSaeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.  Web of Science CSD CrossRef IUCr Journals
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1566.  Web of Science CSD CrossRef IUCr Journals
First citationSaeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, Y.-M., Wei, T.-B., Xian, L. & &Gao, L.-M. (2004). Phosphorus Sulphur Silicon Relat. Elem. 179, 2007–2013.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds