metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-3,5-di­nitro­benzoato-κ2O1:O1′)bis­­(μ-3,5-di­nitro­benzoato)-κ3O1,O1′:O1;κ3O1:O1,O1′-bis­­[(3,5-di­nitro­benzoato-κ2O1,O1′)(1,10-phenanthroline-κ2N,N)dysprosium(III)]

aDepartment of Chemistry, Handan College, Handan, Hebei 056005, People's Republic of China
*Correspondence e-mail: dong_chunhua@126.com

(Received 16 November 2010; accepted 11 December 2010; online 18 December 2010)

In the binuclear title complex, [Dy2(C7H3N2O6)6(C12H8N2)2], the DyIII ions exhibit a distorted monocapped square-anti­prismatic geometry and are coordinated by seven O atoms of four 3,5-dinitrobenzoate (DNBA) anions and two N atoms of a phenanthroline ligand. The carboxylate groups of the DNBA anions exhibit three coordination modes: bidentate chelating, bidentate chelating–bridging and tridentate chelating–bridging. The center of the mol­ecule is located on a crystallographic center of inversion.

Related literature

For related structures, see: Wang et al. (2004[Wang, R. F., Wang, S. P., Shi, S. K. & Zhang, J. J. (2004). Rare Metals, 23, 103-108.]); Ren et al. (2006[Ren, N., Zhang, J. J., Xu, S. L., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2006). Chin. J. Inorg. Chem. 10, 1905-1907.]); Zhang et al. (2007[Zhang, J. J., Xu, S. L., Ren, N. & Zhang, H. Y. (2007). Russ. J. Coord. Chem. 8, 611-615.]); Xu et al. (2008a[Xu, S. L., Zhang, J. J., Ren, N., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2008a). Chin. J. Struct. Chem. 2, 233-237.],b[Xu, S. L., Zhang, J. J., Ren, N., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2008b). S. Afr. J. Chem. 61, 1-4.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy2(C7H3N2O6)6(C12H8N2)2]

  • Mr = 1952.09

  • Triclinic, [P \overline 1]

  • a = 11.9569 (4) Å

  • b = 12.8636 (4) Å

  • c = 13.1187 (4) Å

  • α = 104.24 (5)°

  • β = 113.96 (5)°

  • γ = 100.46 (5)°

  • V = 1694.6 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 296 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997)[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.] Tmin = 0.724, Tmax = 0.769

  • 8296 measured reflections

  • 5771 independent reflections

  • 5624 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.03

  • 5771 reflections

  • 541 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.78 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Coordination compounds of rare earth metals with various carboxylic acids are of high interest because of their special structures and fascinating properties. Nowadays, they have wide applications to many fields as e.g. new materials (Wang, et al., 2004). Therefore, benzoic acid derivatives and 1,10-phenanthroline were chosen to prepare complexes with a mixed ligand set. As an extention of our previous studies (Ren, et al., 2006; Zhang, et al., 2007; Xu, et al., 2008a,b), we now report the synthesis and molecular structure of the title dysprosium complex with 3,5-dinitrobenzoic acid and 1,10-phenanthroline.

The binuclear molecular structure of [Dy(3,5-DNBA)3(phen)]2 is shown in Fig. 1. Fig.2 shows the coordination geometry about the DyIII ions. Two DyIII ions are linked by two bidentate chelating-bridging and tridentate chelating-bridging carboxylate groups. Each DyIII ion is ninefold coordinated to two nitrogen atoms (N1, N2) from one 1,10-phenanthroline molecule, two oxygen atoms (O1, O2) from one bidentate chelating carboxylate group, two oxygen atoms (O13, O14A) from bidentate chelating-bridging carboxylate groups and three oxygen atoms (O7, O7A, O8) from tridentate chelating-bridging carboxylate groups. The coordination polyhedron adopts a distorted mono-capped square antiprismatic geometry. The oxygen atom (O7) from the tridentate chelating-bridging carboxylate adopts the capped position. The coordination mode is similar to that of [Dy(p-MOBA)3phen]2 (Zhang, et al., 2007) but different from that of [Dy(BA)3phen]2 (Xu, et al., 2008a) and [Dy(m-MBA)3phen]2.H2O (Xu, et al., 2008b).

In the coordination polyhedron of DyIII ion, Dy—O distances are in the range of 2.3257 (13) to 2.7576 (14) Å, and the mean bond length of Dy—O is 2.4341 Å. The average Dy—N distance is 2.5242 Å. It can be easily seen that the bond of Dy—O is stronger than that of Dy—N in the complex corresponding to HSAB concept. Since carboxylate units are negatively charged the corresponding oxygen atoms are the by far harder ligands and therefore establish stronger bonds towards the hard Lewis acid Dy(III) as compared to neutral nitrogen donor atoms. At the same time, the average Dy—O distance of the title complex (2.4341 Å) is slightly longer than the corresponding average distances of the complexes [Dy(BA)3phen]2 (Xu, et al., 2008a) (2.364 Å); and [Dy(m-MBA)3phen]2.H2O (Xu, et al., 2008b) (2.346 Å). This effect can be explained by electronic effects of different substituents at the benzoate ligands.

Related literature top

For related structures, see: Wang et al. (2004); Ren et al. (2006); Zhang et al. (2007); Xu et al. (2008a,b).

Experimental top

DyCl3.6H2O was obtained by a reaction of Dy2O3 (99.95%) and HCl (6.0 mol.L-1) followed by water bath evaporation. DyCl3.6H2O (0.06 mmol), 3,5-dinitrobenzoic acid (0.18 mmol), 1,10-phenanthroline(0.06 mmol) and water (1 ml) were mixed in a Parr Teflon-lined stainless vessel (25 ml). After the solution was heated at 150°C for 5 d and cooled to room temperature, yellow block crystals of the title complex were obtained in 30% yield.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Coordination compounds of rare earth metals with various carboxylic acids are of high interest because of their special structures and fascinating properties. Nowadays, they have wide applications to many fields as e.g. new materials (Wang, et al., 2004). Therefore, benzoic acid derivatives and 1,10-phenanthroline were chosen to prepare complexes with a mixed ligand set. As an extention of our previous studies (Ren, et al., 2006; Zhang, et al., 2007; Xu, et al., 2008a,b), we now report the synthesis and molecular structure of the title dysprosium complex with 3,5-dinitrobenzoic acid and 1,10-phenanthroline.

The binuclear molecular structure of [Dy(3,5-DNBA)3(phen)]2 is shown in Fig. 1. Fig.2 shows the coordination geometry about the DyIII ions. Two DyIII ions are linked by two bidentate chelating-bridging and tridentate chelating-bridging carboxylate groups. Each DyIII ion is ninefold coordinated to two nitrogen atoms (N1, N2) from one 1,10-phenanthroline molecule, two oxygen atoms (O1, O2) from one bidentate chelating carboxylate group, two oxygen atoms (O13, O14A) from bidentate chelating-bridging carboxylate groups and three oxygen atoms (O7, O7A, O8) from tridentate chelating-bridging carboxylate groups. The coordination polyhedron adopts a distorted mono-capped square antiprismatic geometry. The oxygen atom (O7) from the tridentate chelating-bridging carboxylate adopts the capped position. The coordination mode is similar to that of [Dy(p-MOBA)3phen]2 (Zhang, et al., 2007) but different from that of [Dy(BA)3phen]2 (Xu, et al., 2008a) and [Dy(m-MBA)3phen]2.H2O (Xu, et al., 2008b).

In the coordination polyhedron of DyIII ion, Dy—O distances are in the range of 2.3257 (13) to 2.7576 (14) Å, and the mean bond length of Dy—O is 2.4341 Å. The average Dy—N distance is 2.5242 Å. It can be easily seen that the bond of Dy—O is stronger than that of Dy—N in the complex corresponding to HSAB concept. Since carboxylate units are negatively charged the corresponding oxygen atoms are the by far harder ligands and therefore establish stronger bonds towards the hard Lewis acid Dy(III) as compared to neutral nitrogen donor atoms. At the same time, the average Dy—O distance of the title complex (2.4341 Å) is slightly longer than the corresponding average distances of the complexes [Dy(BA)3phen]2 (Xu, et al., 2008a) (2.364 Å); and [Dy(m-MBA)3phen]2.H2O (Xu, et al., 2008b) (2.346 Å). This effect can be explained by electronic effects of different substituents at the benzoate ligands.

For related structures, see: Wang et al. (2004); Ren et al. (2006); Zhang et al. (2007); Xu et al. (2008a,b).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme.
[Figure 2] Fig. 2. Coordination environment of DyIII ions.
Bis(µ-3,5-dinitrobenzoato-κ2O1:O1')bis(µ-3,5- dinitrobenzoato)-κ3O1,O1':O1; κ3O1:O1,O1'-bis[(3,5-dinitrobenzoato- κ2O1,O1')(1,10-phenanthroline- κ2N,N)dysprosium(III)] top
Crystal data top
[Dy2(C7H3N2O6)6(C12H8N2)2]Z = 1
Mr = 1952.09F(000) = 962
Triclinic, P1Dx = 1.913 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.9569 (4) ÅCell parameters from 9404 reflections
b = 12.8636 (4) Åθ = 2.9–31.0°
c = 13.1187 (4) ŵ = 2.31 mm1
α = 104.24 (5)°T = 296 K
β = 113.96 (5)°Block, yellow
γ = 100.46 (5)°0.15 × 0.13 × 0.12 mm
V = 1694.6 (12) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5771 independent reflections
Radiation source: fine-focus sealed tube5624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
φ and ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.724, Tmax = 0.769k = 1415
8296 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0218P)2 + 1.1919P]
where P = (Fo2 + 2Fc2)/3
5771 reflections(Δ/σ)max = 0.002
541 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Dy2(C7H3N2O6)6(C12H8N2)2]γ = 100.46 (5)°
Mr = 1952.09V = 1694.6 (12) Å3
Triclinic, P1Z = 1
a = 11.9569 (4) ÅMo Kα radiation
b = 12.8636 (4) ŵ = 2.31 mm1
c = 13.1187 (4) ÅT = 296 K
α = 104.24 (5)°0.15 × 0.13 × 0.12 mm
β = 113.96 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
5771 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
5624 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.769Rint = 0.011
8296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.03Δρmax = 0.43 e Å3
5771 reflectionsΔρmin = 0.78 e Å3
541 parameters
Special details top

Geometry. All e.s.d.s (except the e.s.d in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.s are taken into account individually in the estimation of e.s.d.s in distances, angles and torsion angles; correlations between e.s.d.s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.s is used for estimating e.s.d.s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.871683 (8)0.052102 (7)0.823196 (7)0.01272 (4)
O10.74648 (14)0.24750 (12)0.72351 (13)0.0227 (3)
O20.64232 (13)0.13350 (11)0.76732 (12)0.0191 (3)
O30.19645 (18)0.30876 (16)0.6887 (2)0.0513 (5)
O40.11452 (15)0.49005 (15)0.62444 (16)0.0358 (4)
O50.39257 (16)0.72017 (13)0.60925 (18)0.0385 (4)
O60.52990 (16)0.65952 (13)0.55170 (14)0.0284 (3)
O71.11237 (13)0.08515 (12)1.00543 (12)0.0187 (3)
O81.03333 (13)0.09536 (12)0.82564 (12)0.0204 (3)
O91.31759 (17)0.43985 (14)0.83671 (16)0.0362 (4)
O101.51618 (16)0.44826 (14)0.88585 (15)0.0348 (4)
O111.67069 (17)0.15932 (18)1.0302 (2)0.0497 (5)
O121.57894 (15)0.08509 (13)1.11887 (14)0.0274 (3)
O130.85945 (13)0.11215 (11)0.93722 (12)0.0177 (3)
O140.97802 (13)0.14829 (12)1.13307 (12)0.0189 (3)
O150.71846 (17)0.41054 (14)0.80972 (14)0.0334 (4)
O160.79596 (16)0.58264 (13)0.93352 (15)0.0301 (4)
O171.09372 (17)0.66977 (14)1.34595 (15)0.0354 (4)
O181.17536 (17)0.54349 (15)1.39998 (14)0.0380 (4)
N10.88628 (16)0.11343 (14)0.62924 (15)0.0186 (4)
N20.74346 (15)0.01781 (14)0.66740 (14)0.0176 (3)
N30.20251 (18)0.40429 (16)0.65720 (17)0.0270 (4)
N40.45681 (17)0.64570 (15)0.59303 (16)0.0238 (4)
N51.41001 (19)0.40570 (16)0.87562 (17)0.0274 (4)
N61.58388 (17)0.14053 (16)1.05651 (17)0.0267 (4)
N70.78537 (17)0.48234 (15)0.90981 (16)0.0220 (4)
N81.10119 (18)0.57440 (16)1.32688 (16)0.0257 (4)
C10.83068 (19)0.06731 (16)0.54593 (18)0.0194 (4)
C20.9514 (2)0.18157 (18)0.60723 (19)0.0230 (4)
H20.98900.21420.66300.028*
C30.9665 (2)0.20684 (19)0.5046 (2)0.0275 (5)
H3A1.01230.25570.49250.033*
C40.9133 (2)0.15888 (19)0.4223 (2)0.0279 (5)
H40.92410.17350.35450.034*
C50.8422 (2)0.08754 (18)0.44056 (18)0.0244 (5)
C60.7806 (3)0.0350 (2)0.3580 (2)0.0334 (6)
H6A0.78860.04740.28880.040*
C70.7115 (3)0.0315 (2)0.3782 (2)0.0340 (6)
H70.67270.06410.32280.041*
C80.6966 (2)0.05305 (18)0.48356 (19)0.0252 (5)
C90.6240 (2)0.12042 (18)0.5079 (2)0.0284 (5)
H9A0.58560.15650.45620.034*
C100.6100 (2)0.13266 (18)0.6084 (2)0.0262 (5)
H10A0.56120.17620.62520.031*
C110.6701 (2)0.07880 (17)0.68493 (18)0.0203 (4)
H110.65810.08590.75180.024*
C120.75638 (19)0.00351 (16)0.56704 (18)0.0191 (4)
C130.53694 (19)0.33303 (16)0.69398 (17)0.0166 (4)
C140.4237 (2)0.32036 (17)0.69359 (17)0.0184 (4)
H140.41580.24880.71640.022*
C150.32329 (19)0.41601 (18)0.65875 (18)0.0201 (4)
C160.3310 (2)0.52422 (17)0.62553 (18)0.0210 (4)
H16A0.26310.58780.60350.025*
C170.4446 (2)0.53255 (17)0.62684 (17)0.0192 (4)
C180.54786 (19)0.43994 (17)0.65935 (17)0.0181 (4)
H180.62270.44920.65800.022*
C190.64844 (19)0.23132 (17)0.72999 (17)0.0174 (4)
C201.25799 (19)0.17446 (16)0.94754 (17)0.0160 (4)
C211.27380 (19)0.26101 (17)0.90393 (17)0.0183 (4)
H211.20480.28590.86710.022*
C221.3936 (2)0.30966 (17)0.91613 (18)0.0216 (4)
C231.4972 (2)0.27179 (18)0.96526 (19)0.0239 (5)
H231.57650.30300.97000.029*
C241.4771 (2)0.18532 (18)1.00693 (18)0.0215 (4)
C251.36097 (19)0.13684 (17)1.00183 (17)0.0184 (4)
H251.35200.08071.03380.022*
C261.12560 (19)0.11572 (16)0.92589 (18)0.0155 (4)
C270.92602 (18)0.29805 (17)1.07147 (17)0.0167 (4)
C280.85225 (18)0.33263 (17)0.98083 (18)0.0175 (4)
H280.79830.28050.90390.021*
C290.86033 (19)0.44536 (17)1.00666 (18)0.0189 (4)
C300.9405 (2)0.52645 (17)1.11932 (19)0.0204 (4)
H300.94490.60211.13550.024*
C311.01314 (19)0.48924 (17)1.20606 (18)0.0200 (4)
C321.00898 (19)0.37735 (17)1.18544 (18)0.0188 (4)
H321.06040.35571.24630.023*
C330.92031 (18)0.17556 (17)1.04534 (17)0.0161 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01184 (6)0.01290 (6)0.01367 (6)0.00395 (4)0.00583 (4)0.00544 (4)
O10.0192 (7)0.0182 (7)0.0302 (8)0.0036 (6)0.0139 (7)0.0055 (6)
O20.0177 (7)0.0146 (7)0.0228 (7)0.0037 (6)0.0084 (6)0.0061 (6)
O30.0317 (10)0.0325 (10)0.0843 (16)0.0094 (8)0.0328 (11)0.0032 (10)
O40.0200 (8)0.0350 (9)0.0456 (10)0.0006 (7)0.0161 (8)0.0094 (8)
O50.0296 (9)0.0190 (8)0.0611 (12)0.0026 (7)0.0168 (9)0.0167 (8)
O60.0358 (9)0.0256 (8)0.0245 (8)0.0157 (7)0.0124 (7)0.0088 (7)
O70.0205 (7)0.0210 (7)0.0218 (7)0.0085 (6)0.0135 (6)0.0117 (6)
O80.0151 (7)0.0235 (7)0.0176 (7)0.0012 (6)0.0053 (6)0.0074 (6)
O90.0382 (10)0.0351 (9)0.0442 (10)0.0120 (8)0.0206 (8)0.0261 (8)
O100.0319 (9)0.0325 (9)0.0376 (9)0.0037 (7)0.0192 (8)0.0137 (8)
O110.0291 (10)0.0643 (13)0.0799 (15)0.0235 (9)0.0360 (10)0.0402 (12)
O120.0256 (8)0.0304 (8)0.0245 (8)0.0127 (7)0.0092 (7)0.0088 (7)
O130.0174 (7)0.0177 (7)0.0162 (7)0.0068 (6)0.0066 (6)0.0045 (6)
O140.0183 (7)0.0230 (7)0.0182 (7)0.0109 (6)0.0088 (6)0.0085 (6)
O150.0382 (9)0.0293 (9)0.0217 (8)0.0133 (7)0.0039 (7)0.0075 (7)
O160.0403 (9)0.0223 (8)0.0333 (9)0.0152 (7)0.0181 (8)0.0140 (7)
O170.0392 (10)0.0231 (9)0.0305 (9)0.0028 (7)0.0149 (8)0.0042 (7)
O180.0345 (10)0.0388 (10)0.0200 (8)0.0059 (8)0.0005 (7)0.0031 (7)
N10.0192 (8)0.0160 (8)0.0184 (8)0.0026 (7)0.0084 (7)0.0057 (7)
N20.0145 (8)0.0154 (8)0.0168 (8)0.0014 (7)0.0037 (7)0.0053 (7)
N30.0202 (9)0.0280 (10)0.0295 (10)0.0046 (8)0.0123 (8)0.0062 (8)
N40.0210 (9)0.0167 (9)0.0221 (9)0.0027 (7)0.0015 (8)0.0059 (7)
N50.0306 (11)0.0232 (9)0.0257 (10)0.0001 (8)0.0144 (8)0.0088 (8)
N60.0174 (9)0.0303 (10)0.0314 (10)0.0075 (8)0.0118 (8)0.0089 (9)
N70.0239 (9)0.0215 (9)0.0241 (10)0.0103 (8)0.0119 (8)0.0103 (8)
N80.0242 (10)0.0245 (10)0.0209 (9)0.0006 (8)0.0112 (8)0.0003 (8)
C10.0193 (10)0.0136 (9)0.0166 (10)0.0027 (8)0.0051 (8)0.0035 (8)
C20.0247 (11)0.0211 (10)0.0234 (11)0.0067 (9)0.0130 (9)0.0059 (9)
C30.0296 (12)0.0234 (11)0.0281 (12)0.0051 (9)0.0175 (10)0.0027 (9)
C40.0312 (12)0.0268 (11)0.0189 (11)0.0020 (10)0.0148 (10)0.0001 (9)
C50.0268 (11)0.0189 (10)0.0168 (10)0.0047 (9)0.0082 (9)0.0020 (8)
C60.0458 (15)0.0292 (12)0.0175 (11)0.0011 (11)0.0128 (11)0.0074 (9)
C70.0452 (15)0.0291 (12)0.0204 (11)0.0062 (11)0.0088 (11)0.0131 (10)
C80.0275 (11)0.0185 (10)0.0194 (10)0.0012 (9)0.0039 (9)0.0075 (8)
C90.0309 (12)0.0205 (11)0.0255 (11)0.0068 (9)0.0035 (10)0.0128 (9)
C100.0229 (11)0.0187 (10)0.0280 (12)0.0073 (9)0.0039 (9)0.0076 (9)
C110.0167 (10)0.0182 (10)0.0189 (10)0.0038 (8)0.0039 (8)0.0047 (8)
C120.0173 (10)0.0144 (9)0.0162 (10)0.0017 (8)0.0031 (8)0.0038 (8)
C130.0172 (10)0.0166 (10)0.0125 (9)0.0030 (8)0.0042 (8)0.0061 (8)
C140.0203 (10)0.0177 (10)0.0158 (10)0.0049 (8)0.0076 (8)0.0061 (8)
C150.0170 (10)0.0248 (11)0.0184 (10)0.0056 (8)0.0080 (8)0.0089 (8)
C160.0178 (10)0.0201 (10)0.0185 (10)0.0009 (8)0.0049 (8)0.0078 (8)
C170.0204 (10)0.0162 (10)0.0155 (9)0.0042 (8)0.0037 (8)0.0063 (8)
C180.0165 (10)0.0206 (10)0.0157 (9)0.0052 (8)0.0056 (8)0.0082 (8)
C190.0167 (10)0.0187 (10)0.0147 (9)0.0034 (8)0.0058 (8)0.0072 (8)
C200.0173 (10)0.0155 (9)0.0136 (9)0.0032 (8)0.0085 (8)0.0019 (8)
C210.0194 (10)0.0179 (10)0.0164 (10)0.0043 (8)0.0088 (8)0.0047 (8)
C220.0252 (11)0.0187 (10)0.0202 (10)0.0018 (8)0.0124 (9)0.0067 (8)
C230.0186 (10)0.0253 (11)0.0256 (11)0.0010 (9)0.0130 (9)0.0056 (9)
C240.0174 (10)0.0248 (11)0.0200 (10)0.0059 (8)0.0085 (8)0.0051 (9)
C250.0191 (10)0.0203 (10)0.0163 (10)0.0056 (8)0.0096 (8)0.0056 (8)
C260.0166 (10)0.0117 (9)0.0206 (10)0.0053 (7)0.0109 (8)0.0054 (8)
C270.0130 (9)0.0204 (10)0.0182 (10)0.0054 (8)0.0091 (8)0.0063 (8)
C280.0144 (9)0.0192 (10)0.0173 (10)0.0038 (8)0.0079 (8)0.0041 (8)
C290.0185 (10)0.0205 (10)0.0201 (10)0.0073 (8)0.0105 (8)0.0079 (8)
C300.0203 (10)0.0176 (10)0.0253 (11)0.0057 (8)0.0143 (9)0.0052 (8)
C310.0174 (10)0.0216 (10)0.0170 (10)0.0015 (8)0.0094 (8)0.0018 (8)
C320.0161 (10)0.0232 (10)0.0170 (10)0.0052 (8)0.0081 (8)0.0075 (8)
C330.0117 (9)0.0199 (10)0.0179 (10)0.0055 (8)0.0082 (8)0.0058 (8)
Geometric parameters (Å, º) top
Dy1—O14i2.3257 (13)C3—H3A0.9300
Dy1—O7i2.3288 (14)C4—C51.400 (3)
Dy1—O132.3362 (13)C4—H40.9300
Dy1—O12.3865 (14)C5—C61.437 (3)
Dy1—O82.4339 (14)C6—C71.345 (4)
Dy1—O22.4702 (14)C6—H6A0.9300
Dy1—N22.4891 (16)C7—C81.430 (3)
Dy1—N12.5593 (17)C7—H70.9300
Dy1—O72.7576 (14)C8—C91.404 (3)
Dy1—C192.768 (2)C8—C121.410 (3)
Dy1—C262.9258 (19)C9—C101.370 (3)
O1—C191.259 (3)C9—H9A0.9300
O2—C191.260 (2)C10—C111.394 (3)
O3—N31.222 (3)C10—H10A0.9300
O4—N31.219 (2)C11—H110.9300
O5—N41.232 (2)C13—C181.386 (3)
O6—N41.218 (3)C13—C141.390 (3)
O7—C261.258 (2)C13—C191.504 (3)
O7—Dy1i2.3287 (14)C14—C151.381 (3)
O8—C261.250 (2)C14—H140.9300
O9—N51.226 (3)C15—C161.384 (3)
O10—N51.226 (3)C16—C171.376 (3)
O11—N61.223 (3)C16—H16A0.9300
O12—N61.222 (3)C17—C181.383 (3)
O13—C331.258 (2)C18—H180.9300
O14—C331.251 (2)C20—C211.388 (3)
O14—Dy1i2.3256 (13)C20—C251.390 (3)
O15—N71.224 (2)C20—C261.501 (3)
O16—N71.220 (2)C21—C221.382 (3)
O17—N81.218 (3)C21—H210.9300
O18—N81.220 (3)C22—C231.383 (3)
N1—C21.328 (3)C23—C241.379 (3)
N1—C11.364 (3)C23—H230.9300
N2—C111.328 (3)C24—C251.383 (3)
N2—C121.359 (3)C25—H250.9300
N3—C151.472 (3)C27—C321.392 (3)
N4—C171.466 (3)C27—C281.393 (3)
N5—C221.472 (3)C27—C331.510 (3)
N6—C241.470 (3)C28—C291.381 (3)
N7—C291.473 (3)C28—H280.9300
N8—C311.481 (3)C29—C301.385 (3)
C1—C51.410 (3)C30—C311.377 (3)
C1—C121.437 (3)C30—H300.9300
C2—C31.398 (3)C31—C321.385 (3)
C2—H20.9300C32—H320.9300
C3—C41.365 (3)
O14i—Dy1—O7i75.04 (5)C3—C4—C5119.7 (2)
O14i—Dy1—O13132.09 (5)C3—C4—H4120.1
O7i—Dy1—O1375.54 (5)C5—C4—H4120.1
O14i—Dy1—O175.25 (5)C4—C5—C1117.5 (2)
O7i—Dy1—O184.47 (5)C4—C5—C6123.7 (2)
O13—Dy1—O1137.40 (5)C1—C5—C6118.8 (2)
O14i—Dy1—O887.69 (5)C7—C6—C5121.7 (2)
O7i—Dy1—O8123.10 (5)C7—C6—H6A119.1
O13—Dy1—O877.86 (5)C5—C6—H6A119.1
O1—Dy1—O8142.85 (5)C6—C7—C8121.1 (2)
O14i—Dy1—O2124.20 (5)C6—C7—H7119.5
O7i—Dy1—O278.34 (5)C8—C7—H7119.5
O13—Dy1—O284.98 (5)C9—C8—C12117.9 (2)
O1—Dy1—O253.97 (5)C9—C8—C7123.3 (2)
O8—Dy1—O2146.92 (5)C12—C8—C7118.9 (2)
O14i—Dy1—N2142.26 (5)C10—C9—C8119.5 (2)
O7i—Dy1—N2142.06 (5)C10—C9—H9A120.2
O13—Dy1—N277.89 (5)C8—C9—H9A120.2
O1—Dy1—N297.54 (5)C9—C10—C11118.9 (2)
O8—Dy1—N276.05 (5)C9—C10—H10A120.6
O2—Dy1—N272.78 (5)C11—C10—H10A120.6
O14i—Dy1—N177.58 (5)N2—C11—C10123.4 (2)
O7i—Dy1—N1148.90 (5)N2—C11—H11118.3
O13—Dy1—N1135.04 (5)C10—C11—H11118.3
O1—Dy1—N174.49 (5)N2—C12—C8122.0 (2)
O8—Dy1—N169.67 (5)N2—C12—C1117.75 (18)
O2—Dy1—N1105.85 (5)C8—C12—C1120.21 (19)
N2—Dy1—N164.90 (6)C18—C13—C14120.33 (18)
O14i—Dy1—O767.13 (4)C18—C13—C19119.01 (18)
O7i—Dy1—O773.78 (5)C14—C13—C19120.65 (18)
O13—Dy1—O768.80 (4)C15—C14—C13118.76 (19)
O1—Dy1—O7140.13 (5)C15—C14—H14120.6
O8—Dy1—O749.78 (4)C13—C14—H14120.6
O2—Dy1—O7145.50 (4)C14—C15—C16122.8 (2)
N2—Dy1—O7120.20 (5)C14—C15—N3119.53 (19)
N1—Dy1—O7108.53 (5)C16—C15—N3117.71 (18)
O14i—Dy1—C1999.17 (5)C17—C16—C15116.38 (19)
O7i—Dy1—C1978.59 (5)C17—C16—H16A121.8
O13—Dy1—C19110.97 (5)C15—C16—H16A121.8
O1—Dy1—C1927.00 (6)C16—C17—C18123.46 (19)
O8—Dy1—C19158.31 (5)C16—C17—N4117.99 (18)
O2—Dy1—C1927.08 (5)C18—C17—N4118.54 (19)
N2—Dy1—C1986.28 (5)C17—C18—C13118.28 (19)
N1—Dy1—C1991.60 (6)C17—C18—H18120.9
O7—Dy1—C19151.49 (5)C13—C18—H18120.9
O14i—Dy1—C2673.35 (5)O1—C19—O2122.14 (18)
O7i—Dy1—C2699.12 (5)O1—C19—C13118.19 (18)
O13—Dy1—C2675.02 (5)O2—C19—C13119.66 (18)
O1—Dy1—C26146.20 (5)O1—C19—Dy159.36 (10)
O8—Dy1—C2624.86 (5)O2—C19—Dy163.16 (10)
O2—Dy1—C26159.78 (5)C13—C19—Dy1172.09 (13)
N2—Dy1—C2699.60 (5)C21—C20—C25120.43 (18)
N1—Dy1—C2686.78 (5)C21—C20—C26118.89 (18)
O7—Dy1—C2625.35 (5)C25—C20—C26120.47 (18)
C19—Dy1—C26172.52 (6)C22—C21—C20119.00 (19)
C19—O1—Dy193.64 (12)C22—C21—H21120.5
C19—O2—Dy189.76 (11)C20—C21—H21120.5
C26—O7—Dy1i168.95 (13)C21—C22—C23122.4 (2)
C26—O7—Dy184.82 (11)C21—C22—N5118.0 (2)
Dy1i—O7—Dy1106.22 (5)C23—C22—N5119.59 (19)
C26—O8—Dy1100.17 (12)C24—C23—C22116.61 (19)
C33—O13—Dy1135.20 (12)C24—C23—H23121.7
C33—O14—Dy1i133.49 (13)C22—C23—H23121.7
C2—N1—C1117.54 (18)C23—C24—C25123.4 (2)
C2—N1—Dy1124.43 (14)C23—C24—N6118.17 (19)
C1—N1—Dy1117.88 (13)C25—C24—N6118.37 (19)
C11—N2—C12118.20 (18)C24—C25—C20118.00 (19)
C11—N2—Dy1120.97 (13)C24—C25—H25121.0
C12—N2—Dy1120.55 (13)C20—C25—H25121.0
O4—N3—O3123.91 (19)O8—C26—O7123.07 (18)
O4—N3—C15118.31 (19)O8—C26—C20117.14 (17)
O3—N3—C15117.78 (18)O7—C26—C20119.71 (17)
O6—N4—O5124.60 (19)O8—C26—Dy154.96 (10)
O6—N4—C17118.01 (17)O7—C26—Dy169.83 (10)
O5—N4—C17117.39 (19)C20—C26—Dy1161.56 (13)
O9—N5—O10124.19 (19)C32—C27—C28119.90 (18)
O9—N5—C22117.89 (18)C32—C27—C33119.84 (18)
O10—N5—C22117.9 (2)C28—C27—C33120.22 (17)
O12—N6—O11124.3 (2)C29—C28—C27119.12 (18)
O12—N6—C24118.18 (17)C29—C28—H28120.4
O11—N6—C24117.53 (19)C27—C28—H28120.4
O16—N7—O15124.06 (18)C28—C29—C30122.62 (19)
O16—N7—C29118.20 (17)C28—C29—N7119.01 (18)
O15—N7—C29117.72 (17)C30—C29—N7118.31 (18)
O17—N8—O18124.96 (19)C31—C30—C29116.52 (19)
O17—N8—C31117.57 (19)C31—C30—H30121.7
O18—N8—C31117.47 (18)C29—C30—H30121.7
N1—C1—C5122.7 (2)C30—C31—C32123.41 (19)
N1—C1—C12117.96 (18)C30—C31—N8117.68 (19)
C5—C1—C12119.38 (19)C32—C31—N8118.90 (19)
N1—C2—C3123.4 (2)C31—C32—C27118.40 (19)
N1—C2—H2118.3C31—C32—H32120.8
C3—C2—H2118.3C27—C32—H32120.8
C4—C3—C2119.1 (2)O14—C33—O13126.95 (19)
C4—C3—H3A120.4O14—C33—C27116.68 (17)
C2—C3—H3A120.4O13—C33—C27116.36 (17)
O14i—Dy1—O1—C19151.62 (13)C5—C1—C12—C80.6 (3)
O7i—Dy1—O1—C1975.66 (12)C18—C13—C14—C150.3 (3)
O13—Dy1—O1—C1914.09 (15)C19—C13—C14—C15179.34 (18)
O8—Dy1—O1—C19143.01 (11)C13—C14—C15—C160.8 (3)
O2—Dy1—O1—C193.93 (11)C13—C14—C15—N3179.69 (18)
N2—Dy1—O1—C1966.19 (12)O4—N3—C15—C14179.0 (2)
N1—Dy1—O1—C19127.46 (13)O3—N3—C15—C140.8 (3)
O7—Dy1—O1—C19132.03 (11)O4—N3—C15—C161.6 (3)
C26—Dy1—O1—C19173.81 (11)O3—N3—C15—C16178.6 (2)
O14i—Dy1—O2—C1925.03 (13)C14—C15—C16—C171.1 (3)
O7i—Dy1—O2—C1987.70 (11)N3—C15—C16—C17179.44 (18)
O13—Dy1—O2—C19163.95 (12)C15—C16—C17—C180.2 (3)
O1—Dy1—O2—C193.92 (11)C15—C16—C17—N4179.58 (18)
O8—Dy1—O2—C19137.48 (12)O6—N4—C17—C16153.44 (19)
N2—Dy1—O2—C19117.20 (12)O5—N4—C17—C1627.0 (3)
N1—Dy1—O2—C1960.54 (12)O6—N4—C17—C1827.1 (3)
O7—Dy1—O2—C19124.20 (11)O5—N4—C17—C18152.43 (19)
C26—Dy1—O2—C19172.44 (14)C16—C17—C18—C130.9 (3)
O14i—Dy1—O7—C2699.42 (11)N4—C17—C18—C13178.48 (17)
O7i—Dy1—O7—C26179.69 (13)C14—C13—C18—C171.2 (3)
O13—Dy1—O7—C2699.87 (11)C19—C13—C18—C17179.82 (17)
O1—Dy1—O7—C26120.03 (11)Dy1—O1—C19—O27.4 (2)
O8—Dy1—O7—C267.99 (10)Dy1—O1—C19—C13171.36 (15)
O2—Dy1—O7—C26142.97 (11)Dy1—O2—C19—O17.11 (19)
N2—Dy1—O7—C2638.96 (12)Dy1—O2—C19—C13171.61 (16)
N1—Dy1—O7—C2632.23 (12)C18—C13—C19—O12.3 (3)
C19—Dy1—O7—C26164.97 (12)C14—C13—C19—O1176.74 (18)
O14i—Dy1—O7—Dy1i80.26 (6)C18—C13—C19—O2176.48 (18)
O7i—Dy1—O7—Dy1i0.0C14—C13—C19—O24.5 (3)
O13—Dy1—O7—Dy1i80.44 (6)O14i—Dy1—C19—O127.75 (12)
O1—Dy1—O7—Dy1i59.66 (9)O7i—Dy1—C19—O1100.33 (12)
O8—Dy1—O7—Dy1i172.32 (8)O13—Dy1—C19—O1169.84 (11)
O2—Dy1—O7—Dy1i37.35 (10)O8—Dy1—C19—O179.41 (19)
N2—Dy1—O7—Dy1i141.36 (6)O2—Dy1—C19—O1173.01 (19)
N1—Dy1—O7—Dy1i147.46 (5)N2—Dy1—C19—O1114.64 (12)
C19—Dy1—O7—Dy1i14.72 (13)N1—Dy1—C19—O149.92 (12)
C26—Dy1—O7—Dy1i179.69 (13)O7—Dy1—C19—O185.92 (15)
O14i—Dy1—O8—C2653.49 (12)O14i—Dy1—C19—O2159.24 (11)
O7i—Dy1—O8—C2616.95 (14)O7i—Dy1—C19—O286.66 (11)
O13—Dy1—O8—C2680.52 (12)O13—Dy1—C19—O217.15 (12)
O1—Dy1—O8—C26115.11 (13)O1—Dy1—C19—O2173.01 (19)
O2—Dy1—O8—C26140.91 (12)O8—Dy1—C19—O293.60 (18)
N2—Dy1—O8—C26160.86 (13)N2—Dy1—C19—O258.36 (11)
N1—Dy1—O8—C26131.10 (13)N1—Dy1—C19—O2123.08 (11)
O7—Dy1—O8—C268.14 (11)O7—Dy1—C19—O2101.07 (14)
C19—Dy1—O8—C26162.75 (14)C25—C20—C21—C220.5 (3)
O14i—Dy1—O13—C338.6 (2)C26—C20—C21—C22175.35 (18)
O7i—Dy1—O13—C3345.06 (18)C20—C21—C22—C233.1 (3)
O1—Dy1—O13—C33109.74 (18)C20—C21—C22—N5176.46 (18)
O8—Dy1—O13—C3384.17 (18)O9—N5—C22—C212.3 (3)
O2—Dy1—O13—C33124.29 (18)O10—N5—C22—C21179.54 (19)
N2—Dy1—O13—C33162.27 (19)O9—N5—C22—C23177.3 (2)
N1—Dy1—O13—C33128.25 (17)O10—N5—C22—C230.9 (3)
O7—Dy1—O13—C3332.85 (17)C21—C22—C23—C242.8 (3)
C19—Dy1—O13—C33116.54 (18)N5—C22—C23—C24176.79 (19)
C26—Dy1—O13—C3358.74 (18)C22—C23—C24—C250.2 (3)
O14i—Dy1—N1—C27.15 (15)C22—C23—C24—N6178.21 (19)
O7i—Dy1—N1—C221.6 (2)O12—N6—C24—C23162.5 (2)
O13—Dy1—N1—C2145.80 (14)O11—N6—C24—C2319.1 (3)
O1—Dy1—N1—C270.76 (16)O12—N6—C24—C2519.1 (3)
O8—Dy1—N1—C299.30 (16)O11—N6—C24—C25159.4 (2)
O2—Dy1—N1—C2115.25 (16)C23—C24—C25—C202.6 (3)
N2—Dy1—N1—C2177.03 (17)N6—C24—C25—C20175.74 (18)
O7—Dy1—N1—C267.58 (16)C21—C20—C25—C242.3 (3)
C19—Dy1—N1—C291.89 (16)C26—C20—C25—C24172.53 (18)
C26—Dy1—N1—C280.80 (16)Dy1—O8—C26—O716.4 (2)
O14i—Dy1—N1—C1168.30 (14)Dy1—O8—C26—C20160.48 (14)
O7i—Dy1—N1—C1162.97 (12)Dy1i—O7—C26—O8167.3 (5)
O13—Dy1—N1—C129.65 (17)Dy1—O7—C26—O814.28 (18)
O1—Dy1—N1—C1113.79 (14)Dy1i—O7—C26—C2015.9 (8)
O8—Dy1—N1—C176.15 (14)Dy1—O7—C26—C20162.55 (16)
O2—Dy1—N1—C169.30 (14)Dy1i—O7—C26—Dy1178.4 (7)
N2—Dy1—N1—C17.52 (13)C21—C20—C26—O840.1 (3)
O7—Dy1—N1—C1107.87 (13)C25—C20—C26—O8134.8 (2)
C19—Dy1—N1—C192.66 (14)C21—C20—C26—O7142.91 (19)
C26—Dy1—N1—C194.65 (14)C25—C20—C26—O742.2 (3)
O14i—Dy1—N2—C11175.70 (13)C21—C20—C26—Dy199.9 (4)
O7i—Dy1—N2—C1118.05 (19)C25—C20—C26—Dy174.9 (5)
O13—Dy1—N2—C1128.27 (14)O14i—Dy1—C26—O8123.04 (12)
O1—Dy1—N2—C11108.70 (15)O7i—Dy1—C26—O8165.68 (12)
O8—Dy1—N2—C11108.59 (15)O13—Dy1—C26—O893.42 (12)
O2—Dy1—N2—C1160.17 (15)O1—Dy1—C26—O8100.63 (14)
N1—Dy1—N2—C11177.62 (16)O2—Dy1—C26—O884.67 (19)
O7—Dy1—N2—C1184.71 (15)N2—Dy1—C26—O818.82 (13)
C19—Dy1—N2—C1184.11 (15)N1—Dy1—C26—O845.05 (12)
C26—Dy1—N2—C11100.55 (15)O7—Dy1—C26—O8165.38 (19)
O14i—Dy1—N2—C121.93 (18)O14i—Dy1—C26—O771.58 (11)
O7i—Dy1—N2—C12168.19 (12)O7i—Dy1—C26—O70.30 (13)
O13—Dy1—N2—C12145.49 (14)O13—Dy1—C26—O771.95 (11)
O1—Dy1—N2—C1277.54 (14)O1—Dy1—C26—O793.99 (13)
O8—Dy1—N2—C1265.18 (14)O8—Dy1—C26—O7165.38 (19)
O2—Dy1—N2—C12126.07 (14)O2—Dy1—C26—O780.71 (18)
N1—Dy1—N2—C128.62 (13)N2—Dy1—C26—O7146.55 (11)
O7—Dy1—N2—C1289.06 (14)N1—Dy1—C26—O7149.57 (11)
C19—Dy1—N2—C12102.13 (14)O14i—Dy1—C26—C2053.0 (4)
C26—Dy1—N2—C1273.21 (14)O7i—Dy1—C26—C20124.3 (4)
C2—N1—C1—C51.3 (3)O13—Dy1—C26—C20163.5 (4)
Dy1—N1—C1—C5174.49 (14)O1—Dy1—C26—C2030.6 (5)
C2—N1—C1—C12177.97 (18)O8—Dy1—C26—C2070.0 (4)
Dy1—N1—C1—C126.3 (2)O2—Dy1—C26—C20154.7 (4)
C1—N1—C2—C30.7 (3)N2—Dy1—C26—C2088.9 (4)
Dy1—N1—C2—C3174.77 (15)N1—Dy1—C26—C2025.0 (4)
N1—C2—C3—C40.7 (3)O7—Dy1—C26—C20124.6 (5)
C2—C3—C4—C51.5 (3)C32—C27—C28—C291.7 (3)
C3—C4—C5—C10.9 (3)C33—C27—C28—C29179.22 (18)
C3—C4—C5—C6178.8 (2)C27—C28—C29—C300.9 (3)
N1—C1—C5—C40.5 (3)C27—C28—C29—N7178.08 (18)
C12—C1—C5—C4178.73 (18)O16—N7—C29—C28178.27 (19)
N1—C1—C5—C6179.83 (19)O15—N7—C29—C280.1 (3)
C12—C1—C5—C60.9 (3)O16—N7—C29—C300.9 (3)
C4—C5—C6—C7178.9 (2)O15—N7—C29—C30177.42 (19)
C1—C5—C6—C70.7 (3)C28—C29—C30—C310.0 (3)
C5—C6—C7—C80.1 (4)N7—C29—C30—C31177.21 (18)
C6—C7—C8—C9179.0 (2)C29—C30—C31—C320.1 (3)
C6—C7—C8—C120.2 (3)C29—C30—C31—N8179.07 (18)
C12—C8—C9—C102.2 (3)O17—N8—C31—C308.0 (3)
C7—C8—C9—C10177.1 (2)O18—N8—C31—C30172.3 (2)
C8—C9—C10—C110.9 (3)O17—N8—C31—C32172.78 (19)
C12—N2—C11—C102.7 (3)O18—N8—C31—C326.9 (3)
Dy1—N2—C11—C10171.18 (15)C30—C31—C32—C270.7 (3)
C9—C10—C11—N21.7 (3)N8—C31—C32—C27179.90 (18)
C11—N2—C12—C81.3 (3)C28—C27—C32—C311.6 (3)
Dy1—N2—C12—C8172.66 (14)C33—C27—C32—C31179.17 (18)
C11—N2—C12—C1176.93 (17)Dy1i—O14—C33—O1350.0 (3)
Dy1—N2—C12—C19.1 (2)Dy1i—O14—C33—C27128.83 (16)
C9—C8—C12—N21.1 (3)Dy1—O13—C33—O1427.4 (3)
C7—C8—C12—N2178.17 (19)Dy1—O13—C33—C27151.46 (13)
C9—C8—C12—C1179.28 (18)C32—C27—C33—O149.9 (3)
C7—C8—C12—C10.0 (3)C28—C27—C33—O14172.54 (18)
N1—C1—C12—N21.6 (3)C32—C27—C33—O13169.07 (18)
C5—C1—C12—N2177.65 (17)C28—C27—C33—O138.5 (3)
N1—C1—C12—C8179.85 (18)
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Dy2(C7H3N2O6)6(C12H8N2)2]
Mr1952.09
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.9569 (4), 12.8636 (4), 13.1187 (4)
α, β, γ (°)104.24 (5), 113.96 (5), 100.46 (5)
V3)1694.6 (12)
Z1
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.724, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
8296, 5771, 5624
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.03
No. of reflections5771
No. of parameters541
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.78

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

 

Acknowledgements

This work was supported financially by the National Science Foundation of Handan College (No. 10003) and the Scientific Research and Development of Hebei Province (No. 09215135). The authors thank Mr Xiu-Guang Wang (Tianjin Normal University) for help with the structure determination.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRen, N., Zhang, J. J., Xu, S. L., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2006). Chin. J. Inorg. Chem. 10, 1905–1907.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, R. F., Wang, S. P., Shi, S. K. & Zhang, J. J. (2004). Rare Metals, 23, 103–108.  CAS Google Scholar
First citationXu, S. L., Zhang, J. J., Ren, N., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2008a). Chin. J. Struct. Chem. 2, 233–237.  Google Scholar
First citationXu, S. L., Zhang, J. J., Ren, N., Zhang, H. Y., Wang, R. F. & Wang, S. P. (2008b). S. Afr. J. Chem. 61, 1–4.  CAS Google Scholar
First citationZhang, J. J., Xu, S. L., Ren, N. & Zhang, H. Y. (2007). Russ. J. Coord. Chem. 8, 611–615.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds