organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S)-2-Benzyl-3-carb­­oxy-1,2,3,4-tetra­hydro­isoquinolinium chloride monohydrate

aSchool of Pharmacy and Pharmacology, University of KwaZulu Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 22 November 2010; accepted 17 December 2010; online 24 December 2010)

In the title compound, C17H18NO2+·Cl·H2O, a precursor to novel asymmetric catalysts, the N-containing six-membered ring of the tetra­hydro­quinolinium unit assumes a half-boat conformation. In the crystal, inter­molecular O—H⋯O, O—H⋯Cl, N—H⋯Cl and C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For related structures of tetra­hydro­isoquinoline derivatives, see: Naicker, Petzold et al. (2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry. In the press. doi:10.1016/j.tetasy.2010.11.010.]); Naicker, Govender et al. (2010[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o3105.], 2011[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o67.]); Peters et al. (2010[Peters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 679-687.]). For related structures with the same chiral centre and conformation of the six-membered ring, see: Naicker et al. (2009[Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.]); Chakka et al. (2010[Chakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o1818.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18NO2+·Cl·H2O

  • Mr = 321.79

  • Monoclinic, P 21

  • a = 8.6159 (8) Å

  • b = 10.0670 (9) Å

  • c = 10.1392 (9) Å

  • β = 108.686 (2)°

  • V = 833.08 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 193 K

  • 0.30 × 0.11 × 0.02 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.995

  • 9083 measured reflections

  • 4158 independent reflections

  • 3414 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.04

  • 4158 reflections

  • 213 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1961 Friedel pairs

  • Flack parameter: −0.01 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.97 (2) 2.09 (2) 3.0521 (15) 176 (1)
O2—H2⋯O3ii 0.96 (2) 1.59 (2) 2.533 (2) 167 (3)
O3—H3A⋯Cl1i 0.96 (2) 2.21 (2) 3.1615 (15) 172 (2)
O3—H3B⋯Cl1 0.96 (2) 2.20 (2) 3.1434 (16) 165 (2)
C9—H9⋯O1iii 1.00 2.30 3.169 (2) 145
C15—H15⋯Cgiii 0.95 2.78 3.386 (3) 122
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x, y, z-1; (iii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tetrahydroisoquinoline (TIQ) molecule and its derivatives have been widely investigated due to their biological and pharmaceutical properties. We have recently had much success with TIQ based ligands for both metal ligand (Peters et al., 2010) and organocatalysis (Naicker, Petzold et al., 2010). Bearing an acid functional group, the title compound is a useful precursor to many of these novel asymmetric catalysts. The neutral form of this compound is commercially available but there has been no report of its single X-ray crystal structure.

The structure has monoclinic (P21) symmetry with a single molecule in the asymmetric unit together with a water molecule (Fig. 1). Various intra- and intermolecular short contact interactions (2.87–3.14 Å) occur but only one C15—H···π (C12—C17 ring) is observed within the crystal packing (Table 1). The most significant feature of the structure is the intermolecular hydrogen bonding array. The carboxylic acid functional group (O2—H) hydrogen bonds to the water molecule which in turn interacts with two chloride ions. These ions interact further with another water molecule but also with the protonated tertiary amine nitrogen. This series of interactions helps to construct the three-dimensional network (Fig. 2 and Table 1).

From the crystal structure it is evident that the N-containing six membered ring assumes a half boat conformation (Fig. 1), this observation is similar to analogous structures that we have recently reported (Naicker et al., 2009; Naicker, Govender et al., 2010).

Related literature top

For related structures of tetrahydroisoquinoline derivatives, see: Naicker, Petzold et al. (2010); Naicker, Govender et al. (2010, 2011); Peters et al. (2010). For related structures with the same chiral centre and conformation of the six-membered ring, see: Naicker et al. (2009); Chakka et al. (2010).

Experimental top

(S)-Methyl 2-benzyl-1,2,3,4-tetrahydroisoquinoline-3-carboxylate was added to a 10% (v/v) solution of HCl in water (5 mL). The mixture was then microwaved for 2 h at 120 °C, thereafter the reaction mixture was evaporated under reduced pressure to afford the title compound as a white solid.

Melting point 205–208 °C. IR (neat): 3339, 2501, 1712, 1224, 754, 701 cm-1. 1H NMR (400 MHz, CDCl3) δ = 3.28 (d, 1H), 3.36 (d, 1H), 4.37 (m, 5H), 7.13 (d, 1H), 7.25 (m, 3H) and 7.39 (m, 5H).

Recrystallization from 10% HCl in water afforded colourless crystals suitable for X-ray analysis.

Refinement top

All H atoms on carbons were positioned geometrically with C—H distances ranging from 0.95 to 1.00 Å and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C). Atoms H1, H2, H3A and H3B were located in a difference Fourier map. The distances of N1—H1, O2—H2, O3—H3A and O3—H3B were restrained to 0.97 (1) Å and the Uiso values of H3A and H3B were assigned as 1.2Ueq(O3).

Structure description top

The tetrahydroisoquinoline (TIQ) molecule and its derivatives have been widely investigated due to their biological and pharmaceutical properties. We have recently had much success with TIQ based ligands for both metal ligand (Peters et al., 2010) and organocatalysis (Naicker, Petzold et al., 2010). Bearing an acid functional group, the title compound is a useful precursor to many of these novel asymmetric catalysts. The neutral form of this compound is commercially available but there has been no report of its single X-ray crystal structure.

The structure has monoclinic (P21) symmetry with a single molecule in the asymmetric unit together with a water molecule (Fig. 1). Various intra- and intermolecular short contact interactions (2.87–3.14 Å) occur but only one C15—H···π (C12—C17 ring) is observed within the crystal packing (Table 1). The most significant feature of the structure is the intermolecular hydrogen bonding array. The carboxylic acid functional group (O2—H) hydrogen bonds to the water molecule which in turn interacts with two chloride ions. These ions interact further with another water molecule but also with the protonated tertiary amine nitrogen. This series of interactions helps to construct the three-dimensional network (Fig. 2 and Table 1).

From the crystal structure it is evident that the N-containing six membered ring assumes a half boat conformation (Fig. 1), this observation is similar to analogous structures that we have recently reported (Naicker et al., 2009; Naicker, Govender et al., 2010).

For related structures of tetrahydroisoquinoline derivatives, see: Naicker, Petzold et al. (2010); Naicker, Govender et al. (2010, 2011); Peters et al. (2010). For related structures with the same chiral centre and conformation of the six-membered ring, see: Naicker et al. (2009); Chakka et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Partial projection viewed along the a axis, depicting hydrogen bonding from the water molecule and chloride ion. Displacement ellipsoids are drawn at the 50% probability level.
(3S)-2-Benzyl-3-carboxy-1,2,3,4-tetrahydroisoquinolinium chloride monohydrate top
Crystal data top
C17H18NO2+·Cl·H2OF(000) = 340
Mr = 321.79Dx = 1.283 Mg m3
Monoclinic, P21Melting point: 479 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 8.6159 (8) ÅCell parameters from 9083 reflections
b = 10.0670 (9) Åθ = 2.1–28.3°
c = 10.1392 (9) ŵ = 0.24 mm1
β = 108.686 (2)°T = 193 K
V = 833.08 (13) Å3Needle, colourless
Z = 20.30 × 0.11 × 0.02 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4158 independent reflections
Radiation source: fine-focus sealed tube3414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a
h = 1111
Tmin = 0.931, Tmax = 0.995k = 1313
9083 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.0675P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4158 reflectionsΔρmax = 0.19 e Å3
213 parametersΔρmin = 0.16 e Å3
5 restraintsAbsolute structure: Flack (1983), 1961 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
C17H18NO2+·Cl·H2OV = 833.08 (13) Å3
Mr = 321.79Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6159 (8) ŵ = 0.24 mm1
b = 10.0670 (9) ÅT = 193 K
c = 10.1392 (9) Å0.30 × 0.11 × 0.02 mm
β = 108.686 (2)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
4158 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a
3414 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.995Rint = 0.024
9083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.16 e Å3
4158 reflectionsAbsolute structure: Flack (1983), 1961 Friedel pairs
213 parametersAbsolute structure parameter: 0.01 (5)
5 restraints
Special details top

Experimental. Half sphere of data collected using the Bruker SAINT software package. Crystal to detector distance = 30 mm; combination of φ and ω scans of 0.5°, 30 s per °, 2 iterations

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49392 (7)0.38386 (5)0.55522 (5)0.04878 (14)
O10.52160 (16)0.58413 (12)0.04364 (13)0.0387 (3)
O20.6338 (2)0.76556 (14)0.10233 (14)0.0490 (4)
H20.629 (4)0.716 (3)0.184 (2)0.090 (9)*
O30.6423 (2)0.66136 (15)0.67265 (14)0.0555 (4)
H3A0.610 (3)0.7278 (19)0.601 (2)0.067*
H3B0.578 (3)0.5841 (17)0.634 (2)0.067*
N10.49861 (17)0.70659 (13)0.19862 (14)0.0280 (3)
H10.501 (2)0.7664 (16)0.2736 (15)0.038 (5)*
C10.6027 (2)0.59202 (17)0.27205 (18)0.0327 (4)
H1A0.56190.56000.34720.039*
H1B0.59250.51820.20520.039*
C20.7801 (2)0.62971 (17)0.33336 (17)0.0310 (4)
C30.8823 (2)0.5464 (2)0.43363 (19)0.0409 (5)
H30.83770.47100.46500.049*
C41.0477 (3)0.5725 (2)0.4878 (2)0.0483 (5)
H41.11700.51440.55500.058*
C51.1130 (2)0.6837 (2)0.4441 (2)0.0441 (5)
H51.22680.70260.48190.053*
C61.0113 (2)0.7668 (2)0.34518 (18)0.0368 (4)
H61.05640.84260.31490.044*
C70.8446 (2)0.74187 (16)0.28922 (17)0.0302 (4)
C80.7346 (2)0.83776 (17)0.18686 (17)0.0305 (4)
H8A0.79200.86860.12210.037*
H8B0.71570.91620.23850.037*
C90.5689 (2)0.77988 (16)0.10185 (16)0.0271 (3)
H90.49460.85680.06380.033*
C100.5722 (2)0.69626 (16)0.02157 (17)0.0292 (3)
C110.3223 (2)0.66112 (18)0.1368 (2)0.0354 (4)
H11A0.32040.57560.08800.043*
H11B0.27650.64520.21330.043*
C120.2151 (2)0.75869 (18)0.03655 (19)0.0343 (4)
C130.1818 (2)0.8829 (2)0.0808 (2)0.0411 (4)
H130.22810.90740.17590.049*
C140.0813 (3)0.9713 (2)0.0132 (3)0.0522 (6)
H140.06031.05660.01730.063*
C150.0118 (3)0.9354 (3)0.1511 (3)0.0551 (6)
H150.05810.99580.21500.066*
C160.0432 (3)0.8130 (2)0.1963 (2)0.0512 (5)
H160.00530.78860.29110.061*
C170.1460 (2)0.7249 (2)0.1032 (2)0.0417 (4)
H170.16940.64080.13510.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0783 (4)0.0361 (2)0.0339 (2)0.0070 (3)0.0209 (2)0.0013 (2)
O10.0530 (8)0.0247 (6)0.0402 (7)0.0058 (6)0.0177 (6)0.0053 (6)
O20.0828 (11)0.0376 (8)0.0353 (7)0.0184 (7)0.0311 (7)0.0053 (6)
O30.0928 (12)0.0438 (9)0.0322 (7)0.0064 (8)0.0231 (8)0.0007 (7)
N10.0354 (7)0.0231 (7)0.0269 (7)0.0014 (6)0.0120 (6)0.0022 (6)
C10.0427 (10)0.0236 (8)0.0313 (9)0.0004 (7)0.0111 (7)0.0065 (7)
C20.0415 (10)0.0274 (8)0.0249 (8)0.0019 (7)0.0116 (7)0.0006 (7)
C30.0514 (12)0.0373 (10)0.0329 (10)0.0028 (9)0.0121 (9)0.0067 (8)
C40.0530 (13)0.0483 (12)0.0370 (10)0.0094 (10)0.0050 (9)0.0085 (10)
C50.0384 (10)0.0502 (12)0.0391 (10)0.0028 (9)0.0061 (8)0.0071 (9)
C60.0408 (10)0.0375 (10)0.0324 (9)0.0053 (8)0.0119 (8)0.0057 (8)
C70.0404 (9)0.0276 (9)0.0231 (8)0.0001 (7)0.0111 (7)0.0032 (7)
C80.0379 (9)0.0232 (8)0.0293 (8)0.0051 (7)0.0092 (7)0.0001 (7)
C90.0351 (9)0.0181 (7)0.0281 (8)0.0011 (7)0.0100 (7)0.0030 (7)
C100.0367 (9)0.0223 (8)0.0274 (8)0.0004 (7)0.0086 (7)0.0015 (7)
C110.0369 (10)0.0309 (9)0.0406 (10)0.0051 (8)0.0154 (8)0.0026 (8)
C120.0312 (9)0.0319 (9)0.0422 (9)0.0031 (7)0.0150 (7)0.0035 (8)
C130.0399 (10)0.0397 (10)0.0492 (10)0.0035 (9)0.0220 (8)0.0013 (11)
C140.0511 (13)0.0396 (11)0.0771 (16)0.0143 (10)0.0360 (12)0.0076 (11)
C150.0482 (13)0.0631 (15)0.0600 (14)0.0194 (11)0.0256 (11)0.0236 (12)
C160.0491 (12)0.0586 (14)0.0448 (12)0.0056 (10)0.0135 (10)0.0106 (11)
C170.0430 (11)0.0393 (11)0.0428 (10)0.0021 (9)0.0138 (9)0.0004 (9)
Geometric parameters (Å, º) top
O1—C101.205 (2)C6—H60.9500
O2—C101.310 (2)C7—C81.509 (2)
O2—H20.961 (10)C8—C91.527 (2)
O3—H3A0.957 (10)C8—H8A0.9900
O3—H3B0.963 (10)C8—H8B0.9900
N1—C91.502 (2)C9—C101.516 (2)
N1—C11.504 (2)C9—H91.0000
N1—C111.516 (2)C11—C121.500 (3)
N1—H10.965 (9)C11—H11A0.9900
C1—C21.502 (3)C11—H11B0.9900
C1—H1A0.9900C12—C131.390 (3)
C1—H1B0.9900C12—C171.392 (3)
C2—C31.392 (2)C13—C141.386 (3)
C2—C71.394 (2)C13—H130.9500
C3—C41.379 (3)C14—C151.382 (3)
C3—H30.9500C14—H140.9500
C4—C51.388 (3)C15—C161.371 (3)
C4—H40.9500C15—H150.9500
C5—C61.382 (3)C16—C171.388 (3)
C5—H50.9500C16—H160.9500
C6—C71.388 (2)C17—H170.9500
C10—O2—H2110.4 (19)C9—C8—H8B108.7
H3A—O3—H3B106 (2)H8A—C8—H8B107.6
C9—N1—C1113.50 (13)N1—C9—C10112.63 (13)
C9—N1—C11116.00 (13)N1—C9—C8108.58 (13)
C1—N1—C11109.44 (13)C10—C9—C8114.61 (14)
C9—N1—H1107.3 (12)N1—C9—H9106.9
C1—N1—H1103.3 (12)C10—C9—H9106.9
C11—N1—H1106.2 (11)C8—C9—H9106.9
C2—C1—N1112.18 (13)O1—C10—O2125.28 (17)
C2—C1—H1A109.2O1—C10—C9124.90 (16)
N1—C1—H1A109.2O2—C10—C9109.79 (14)
C2—C1—H1B109.2C12—C11—N1113.61 (14)
N1—C1—H1B109.2C12—C11—H11A108.8
H1A—C1—H1B107.9N1—C11—H11A108.8
C3—C2—C7119.88 (17)C12—C11—H11B108.8
C3—C2—C1118.13 (15)N1—C11—H11B108.8
C7—C2—C1121.95 (15)H11A—C11—H11B107.7
C4—C3—C2120.48 (18)C13—C12—C17118.93 (18)
C4—C3—H3119.8C13—C12—C11121.11 (17)
C2—C3—H3119.8C17—C12—C11119.95 (17)
C3—C4—C5119.98 (18)C14—C13—C12120.24 (19)
C3—C4—H4120.0C14—C13—H13119.9
C5—C4—H4120.0C12—C13—H13119.9
C6—C5—C4119.49 (18)C15—C14—C13120.1 (2)
C6—C5—H5120.3C15—C14—H14120.0
C4—C5—H5120.3C13—C14—H14120.0
C5—C6—C7121.30 (18)C16—C15—C14120.3 (2)
C5—C6—H6119.4C16—C15—H15119.8
C7—C6—H6119.4C14—C15—H15119.8
C6—C7—C2118.85 (16)C15—C16—C17119.9 (2)
C6—C7—C8120.32 (15)C15—C16—H16120.0
C2—C7—C8120.78 (16)C17—C16—H16120.0
C7—C8—C9114.30 (14)C16—C17—C12120.5 (2)
C7—C8—H8A108.7C16—C17—H17119.8
C9—C8—H8A108.7C12—C17—H17119.8
C7—C8—H8B108.7
C9—N1—C1—C247.47 (18)C11—N1—C9—C8170.53 (14)
C11—N1—C1—C2178.80 (14)C7—C8—C9—N146.10 (19)
N1—C1—C2—C3163.47 (15)C7—C8—C9—C1080.80 (18)
N1—C1—C2—C718.8 (2)N1—C9—C10—O11.5 (2)
C7—C2—C3—C41.3 (3)C8—C9—C10—O1126.28 (19)
C1—C2—C3—C4176.48 (18)N1—C9—C10—O2179.67 (14)
C2—C3—C4—C51.1 (3)C8—C9—C10—O255.54 (19)
C3—C4—C5—C60.7 (3)C9—N1—C11—C1237.9 (2)
C4—C5—C6—C70.5 (3)C1—N1—C11—C12167.86 (14)
C5—C6—C7—C20.7 (3)N1—C11—C12—C1365.2 (2)
C5—C6—C7—C8176.86 (17)N1—C11—C12—C17115.34 (18)
C3—C2—C7—C61.1 (2)C17—C12—C13—C140.0 (3)
C1—C2—C7—C6176.63 (16)C11—C12—C13—C14179.48 (18)
C3—C2—C7—C8176.46 (16)C12—C13—C14—C151.0 (3)
C1—C2—C7—C85.9 (2)C13—C14—C15—C160.8 (3)
C6—C7—C8—C9162.44 (15)C14—C15—C16—C170.3 (3)
C2—C7—C8—C920.1 (2)C15—C16—C17—C121.3 (3)
C1—N1—C9—C1066.57 (17)C13—C12—C17—C161.1 (3)
C11—N1—C9—C1061.44 (18)C11—C12—C17—C16178.37 (18)
C1—N1—C9—C861.46 (17)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.97 (2)2.09 (2)3.0521 (15)176 (1)
O2—H2···O3ii0.96 (2)1.59 (2)2.533 (2)167 (3)
O3—H3A···Cl1i0.96 (2)2.21 (2)3.1615 (15)172 (2)
O3—H3B···Cl10.96 (2)2.20 (2)3.1434 (16)165 (2)
C9—H9···O1iii1.002.303.169 (2)145
C15—H15···Cgiii0.952.783.386 (3)122
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H18NO2+·Cl·H2O
Mr321.79
Crystal system, space groupMonoclinic, P21
Temperature (K)193
a, b, c (Å)8.6159 (8), 10.0670 (9), 10.1392 (9)
β (°) 108.686 (2)
V3)833.08 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.30 × 0.11 × 0.02
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a
Tmin, Tmax0.931, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
9083, 4158, 3414
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.04
No. of reflections4158
No. of parameters213
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 1961 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.965 (15)2.089 (15)3.0521 (15)175.9 (14)
O2—H2···O3ii0.96 (2)1.59 (2)2.533 (2)167 (3)
O3—H3A···Cl1i0.961 (19)2.207 (19)3.1615 (15)172 (2)
O3—H3B···Cl10.963 (19)2.204 (18)3.1434 (16)165 (2)
C9—H9···O1iii1.002.303.169 (2)145
C15—H15···Cgiii0.952.783.386 (3)122
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y, z1; (iii) x+1, y+1/2, z.
 

Acknowledgements

The authors wish to thank Dr Hong Su of the Chemistry Department of the University of Cape Town for her assistance with the crystallographic data collection.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o1818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o3105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o67.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry. In the press. doi:10.1016/j.tetasy.2010.11.010.  Google Scholar
First citationPeters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 679–687.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds