metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(η6-p-cymene)(4-fluoro­aniline-κN)ruthenium(II)

aDepartment of Chemistry, University of South Alabama, Mobile, AL 36688-0002, USA
*Correspondence e-mail: nhoffman@jaguar1.usouthal.edu

(Received 1 December 2010; accepted 11 December 2010; online 18 December 2010)

The title compound, [RuCl2(C10H14)(C6H6FN)], a pseudo-octa­hedral d6 complex, has the expected piano-stool geometry around the Ru(II) atom. The fluoro­aniline ring forms a dihedral angle of 19.3 (2)° with the p-cymene ring. In the crystal, two mol­ecules form an inversion dimer via a pair of N—H⋯Cl hydrogen bonds. Weak inter­molecular C—H⋯Cl inter­actions involving the p-cymene ring consolidate the crystal packing.

Related literature

For applications of (η6-p-cymene)Ru(II) dihalides in organic synthesis, see: Boutadla et al. (2010[Boutadla, Y., Davies, D. L., Al-Duaij, O., Fawcett, J., Jones, R. C. & Singh, K. (2010). Dalton Trans. pp. 10447-10457.]). For studies of (η6-arene)Ru(II) dihalides in bioinorganic chemistry, see: den Heeten et al. (2010[Heeten, R. den, Munoz, B. K., Popa, G., Laan, W. & Kamer, P. C. J. (2010). Dalton Trans. pp. 8477-8483.]). For anti-tumor medical applications of (η6-arene)Ru(II) systems, see: Hanif et al. (2010[Hanif, M., Henke, H., Meier, S. M., Martic, S., Labib, M., Kandioller, W., Jakupec, M. A., Arion, V. B., Kraatz, H.-B., Keppler, B. K. & Hartinger, C. G. (2010). Inorg. Chem. 49, 7953-7963.]). For conversion of [(η6-p-cymene)RuCl2]2 with two molar equivalents of neutral unidentate nitro­gen ligands into monomeric pseudo-octa­hedral piano-stool complexes of general formula (η6-p-cymene)Ru(N-ligand)Cl2, see: Burrell & Steedman (1997[Burrell, A. K. & Steedman, A. J. (1997). Organometallics, 16, 1203-1208.]); Govindaswamy & Kollipara (2006[Govindaswamy, P. & Kollipara, M. R. (2006). J. Coord. Chem. 59, 131-136.]); Begley et al. (1991[Begley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318-320.]). For crystal structures of Ni-triad complexes of 4-fluoro­aniline, see: Randell et al. (2006[Randell, K., Stanford, M. J., Clarkson, G. J. & Rourke, J. P. (2006). J. Organomet. Chem. 691, 3411-3415.]); Fawcett et al. (2005[Fawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256-m1257.]); Padmanabhan et al. (1985[Padmanabhan, V. M., Patel, R. P. & Ranganathan, T. N. (1985). Acta Cryst. C41, 1305-1307.]). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009[Hoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, USA, May 20-23, CRM-213.]); Carter et al. (2004[Carter, E. B., Culver, S. L., Fox, P. A., Goode, R. D., Ntai, I., Tickell, M. D., Traylor, R. K., Hoffman, N. W. & Davis, J. H. Jr (2004). Chem. Commun. pp. 630-631.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C10H14)(C6H6FN)]

  • Mr = 417.30

  • Monoclinic, P 21 /n

  • a = 8.6492 (9) Å

  • b = 12.2458 (13) Å

  • c = 15.6471 (16) Å

  • β = 93.271 (8)°

  • V = 1654.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 290 K

  • 0.26 × 0.25 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.635, Tmax = 0.779

  • 3234 measured reflections

  • 3027 independent reflections

  • 2284 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.00

  • 3027 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl2i 0.90 2.39 3.225 (3) 154
C6—H6⋯Cl1ii 0.93 2.72 3.384 (4) 129
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4-PC (Enraf–Nonius, 1993[Enraf-Nonius (1993). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: XCAD-4PC (Harms & Wocadlo, 1995)[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The (η6-p-cymene)ruthenium(II)-dihalide motif has been used extensively for promotion of organic reactions (Boutadla et al., 2010), bioinorganic studies (den Heeten et al., 2010), and anti-tumor medical trials (Hanif et al., 2010). Treating the commercially available dimer, di-µ-chloridobis-[chlorido(p-cymene)ruthenium(II)], with two molar equivalents of many neutral unidentate ligands (L) generates two moles of (η6-p-cymene)Ru(L)Cl2. The structures of several with aniline ligands (2,6-diisopropylphenyl, Burrell & Steedman, 1997; 4-chloro, Govindaswamy & Kollipara, 2006; 4-methyl, Begley, 1991) have been crystallographically determined. Structures of 4-fluoroaniline complexes have been reported for other late d-transition metals [palladium(II), Randell et al., 2006; Padmanabhan et al., 1985; nickel(II), Fawcett et al., 2005].

Our interest in studying relative binding affinities of soft metal centers for ligands of moderate and weak donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009; Carter et al., 2004) to monitor ligand-substitution equilibria led us to prepare the title complex. Single crystals were grown from vapor diffusion of heptane into a benzene solution of the 4-fluoroaniline complex. The nitrogen atom in the 4-fluoroaniline ligand is essentially coplanar with its aromatic ring, whose plane is oriented slightly down and away from the plane of the p-cymene ring. Structural parameters were similar to those reported for the other (η6-p-cymene)Ru(4—X—C6H4NH2)Cl2 piano-stool complexes above. The Ru—Cl, Ru—N, and Ru—C distances are quite ordinary. Somewhat greater differences exist between structural parameters of interest in the 4-fluoroaniline complexes of the divalent Pd and Ni moieties, likely because of their dissimilar combinations of dn configurations, coordination geometry, and ligand sets.

Our standard ligand-substitution reaction to determine relative affinities of neutral ligands (L) of moderate and weak donor power for (η6-p-cymene)RuCl2 employs the equilibrium below (eq. 1), where P* is the very sterically hindered triaryl phosphite, P(O-2,4-But2-C6H3)3. Equilibrium constants are measured for different L employing

(η6-p-cymene)Ru(L)Cl2 + P* = (η6-p-cymene)Ru(P*)Cl2 + L (1)

(i) the integrals of the respective 31P resonances for free P* and Cl2CymRu-P* and also (ii) the integrals of respective 1H resonances (for either free P*/Ru—P* or Cl2CymRu-L/Cl2CymRu-P*). For L = 4-fluoroaniline, the 31P-NMR spectrum of the equilibrium solution afforded by mixing equimolar amounts of (η6-p-cymene)Ru(4—F—C6H4NH2)Cl2 and P* in CDCl3 displayed just the two signals expected for free P* and Ru—P* (Fig. 2). However, the 19F NMR spectrum (Fig. 3) showed three resonances, a quick indication that our standard Cl2CymRu-L experimental design was invalid for use with anilines.

Related literature top

For applications of (η6-p-cymene)Ru(II) dihalides in organic synthesis, see: Boutadla et al. (2010). For studies of (η6-arene)Ru(II) dihalides in bioinorganic chemistry, see: den Heeten et al. (2010). For anti-tumor medical applications of (η6-arene)Ru(II) systems, see: Hanif et al. (2010). For conversion of [(η6-p-cymene)RuCl2]2 with two molar equivalents of neutral unidentate nitrogen ligands into monomeric pseudo-octahedral piano-stool complexes of general formula (η6-p-cymene)Ru(N-ligand)Cl2, see: Burrell & Steedman (1997); Govindaswamy & Kollipara (2006); Begley et al. (1991). For crystal structures of Ni-triad complexes of 4-fluoroaniline, see: Randell et al. (2006); Fawcett et al. (2005); Padmanabhan et al. (1985). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009); Carter et al. (2004).

Experimental top

All solvents in synthesis were Fisher reagent-grade. To a stirred solution of 0.100 mmol [(η6-p-cymene)RuCl2]2 (Strem Chemicals) in 10 ml benzene in a 100-ml roundbottom flask was added 0.200 mmol neat 4-fluoroaniline (Sigma-Aldrich). Dripped slowly into the resulting dark-orange solution with stirring were 2.0 ml methyl tert-butyl ether and then 50 ml heptane. The yellow-orange crystals afforded were filtered and washed with two 5-ml portions of hexanes and air-dried (88% yield).

NMR analysis of this product in CDCl3 (Cambridge Laboratories) showed the following signals. 1H δ 0.21, 6H (d, 3JH—H=6.9 Hz); δ 2.11, 3H (s); δ 2.82, 1H (sept, 3JH—H=6.9 Hz); δ 4.90, 2H (s); δ 4.97, 2H (d, 3JH—H=6.1 Hz); δ 5.05, 2H (d, 3JH—H=6.0 Hz); δ 7.09, 2H (d of d; 3JF—H ~3JH—H ~ 8.5 Hz); δ 7.40, 2H (d of d; 3JH—H=8.5 Hz, 4JF—H=4.5 Hz). 13C{1H} δ 18.60(s), δ 22.06(s), δ 30.60(s), δ 79.65(s), δ 81.50(s), δ 95.91(s), δ 103.59(s), δ 116.32 (d, 1JC—F=22.5 Hz), δ 121.66 (d, 2JC—F=8.1 Hz), δ 141.30 (d, 3JC—F=1.7 Hz). 19F δ -115.71 (t of t, 3JF—H=8.5 Hz; 4JF—H=4.5 Hz); triplets overlap to form apparent "septuplet."

Suitable single crystals were grown from vapor diffusion of 30 ml heptane into a benzene solution of the 4-fluoroaniline complex (25 mg in 5 ml) over six days at room temperature. Traces of remaining liquid were removed by disposable glass pipet from the resulting red crystals which were washed twice with 5.0 ml hexanes and air-dried overnight in the dark.

Refinement top

Hydrogen atoms were placed in calculated positions and allowed to ride during subsequent refinement, with Uiso(H) = 1.2Ueq(C) and C—H distances of 0.93 Å for the aromatic H atoms, Uiso(H) = 1.5Ueq(C) and C—H distances of 0.96 Å for the methyl H atoms, Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.98 Å for the methine H atom, and Uiso(H) = 1.2Ueq(N) and N—H distances of 0.90 Å for the amine H atoms.

Structure description top

The (η6-p-cymene)ruthenium(II)-dihalide motif has been used extensively for promotion of organic reactions (Boutadla et al., 2010), bioinorganic studies (den Heeten et al., 2010), and anti-tumor medical trials (Hanif et al., 2010). Treating the commercially available dimer, di-µ-chloridobis-[chlorido(p-cymene)ruthenium(II)], with two molar equivalents of many neutral unidentate ligands (L) generates two moles of (η6-p-cymene)Ru(L)Cl2. The structures of several with aniline ligands (2,6-diisopropylphenyl, Burrell & Steedman, 1997; 4-chloro, Govindaswamy & Kollipara, 2006; 4-methyl, Begley, 1991) have been crystallographically determined. Structures of 4-fluoroaniline complexes have been reported for other late d-transition metals [palladium(II), Randell et al., 2006; Padmanabhan et al., 1985; nickel(II), Fawcett et al., 2005].

Our interest in studying relative binding affinities of soft metal centers for ligands of moderate and weak donor power using 19F and 31P NMR spectroscopy (Hoffman et al., 2009; Carter et al., 2004) to monitor ligand-substitution equilibria led us to prepare the title complex. Single crystals were grown from vapor diffusion of heptane into a benzene solution of the 4-fluoroaniline complex. The nitrogen atom in the 4-fluoroaniline ligand is essentially coplanar with its aromatic ring, whose plane is oriented slightly down and away from the plane of the p-cymene ring. Structural parameters were similar to those reported for the other (η6-p-cymene)Ru(4—X—C6H4NH2)Cl2 piano-stool complexes above. The Ru—Cl, Ru—N, and Ru—C distances are quite ordinary. Somewhat greater differences exist between structural parameters of interest in the 4-fluoroaniline complexes of the divalent Pd and Ni moieties, likely because of their dissimilar combinations of dn configurations, coordination geometry, and ligand sets.

Our standard ligand-substitution reaction to determine relative affinities of neutral ligands (L) of moderate and weak donor power for (η6-p-cymene)RuCl2 employs the equilibrium below (eq. 1), where P* is the very sterically hindered triaryl phosphite, P(O-2,4-But2-C6H3)3. Equilibrium constants are measured for different L employing

(η6-p-cymene)Ru(L)Cl2 + P* = (η6-p-cymene)Ru(P*)Cl2 + L (1)

(i) the integrals of the respective 31P resonances for free P* and Cl2CymRu-P* and also (ii) the integrals of respective 1H resonances (for either free P*/Ru—P* or Cl2CymRu-L/Cl2CymRu-P*). For L = 4-fluoroaniline, the 31P-NMR spectrum of the equilibrium solution afforded by mixing equimolar amounts of (η6-p-cymene)Ru(4—F—C6H4NH2)Cl2 and P* in CDCl3 displayed just the two signals expected for free P* and Ru—P* (Fig. 2). However, the 19F NMR spectrum (Fig. 3) showed three resonances, a quick indication that our standard Cl2CymRu-L experimental design was invalid for use with anilines.

For applications of (η6-p-cymene)Ru(II) dihalides in organic synthesis, see: Boutadla et al. (2010). For studies of (η6-arene)Ru(II) dihalides in bioinorganic chemistry, see: den Heeten et al. (2010). For anti-tumor medical applications of (η6-arene)Ru(II) systems, see: Hanif et al. (2010). For conversion of [(η6-p-cymene)RuCl2]2 with two molar equivalents of neutral unidentate nitrogen ligands into monomeric pseudo-octahedral piano-stool complexes of general formula (η6-p-cymene)Ru(N-ligand)Cl2, see: Burrell & Steedman (1997); Govindaswamy & Kollipara (2006); Begley et al. (1991). For crystal structures of Ni-triad complexes of 4-fluoroaniline, see: Randell et al. (2006); Fawcett et al. (2005); Padmanabhan et al. (1985). For applications of 19F-NMR reporter moieties in monitoring ligand-substitution equilibria, see: Hoffman et al. (2009); Carter et al. (2004).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1993); cell refinement: CAD-4-PC (Enraf–Nonius, 1993); data reduction: XCAD-4PC (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A thermal ellipsoid plot (50%) of the title compound showing the labeling scheme.
[Figure 2] Fig. 2. 31P{1H} NMR Spectrum of the Equilibrium Mixture Prepared by Mixing Equimolar Amounts of (η6-p-cymene)Ru(4—F—C6H4NH2)Cl2 and P(O-2,4-But2-C6H3)3 in CDCl3 at 23 °C.
[Figure 3] Fig. 3. 19F NMR Spectrum of the Equilibrium Mixture Prepared by Mixing Equimolar Amounts of (η6-p-cymene)Ru(4—F—C6H4NH2)Cl2 and P(O-2,4-But2-C6H3)3 in CDCl3 at 23 °C.
Dichlorido(η6-p-cymene)(4-fluoroaniline-κN)ruthenium(II) top
Crystal data top
[RuCl2(C10H14)(C6H6FN)]F(000) = 840
Mr = 417.30Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.6492 (9) Åθ = 8.5–13.2°
b = 12.2458 (13) ŵ = 1.27 mm1
c = 15.6471 (16) ÅT = 290 K
β = 93.271 (8)°Prism, red
V = 1654.6 (3) Å30.26 × 0.25 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.4°, θmin = 2.1°
θ/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.635, Tmax = 0.779l = 1818
3234 measured reflections3 standard reflections every 120 min
3027 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0435P)2]
where P = (Fo2 + 2Fc2)/3
3027 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[RuCl2(C10H14)(C6H6FN)]V = 1654.6 (3) Å3
Mr = 417.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6492 (9) ŵ = 1.27 mm1
b = 12.2458 (13) ÅT = 290 K
c = 15.6471 (16) Å0.26 × 0.25 × 0.20 mm
β = 93.271 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3027 independent reflections
Absorption correction: ψ scan
(North et al., 1968)
2284 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.779Rint = 0.048
3234 measured reflections3 standard reflections every 120 min
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.00Δρmax = 0.57 e Å3
3027 reflectionsΔρmin = 0.67 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.22499 (3)0.59291 (3)0.611377 (18)0.02585 (12)
Cl10.24408 (14)0.39815 (9)0.63052 (7)0.0442 (3)
Cl20.29626 (13)0.56893 (9)0.46564 (6)0.0391 (3)
F10.8394 (4)0.9472 (3)0.6880 (2)0.0811 (10)
N10.4725 (4)0.5795 (3)0.6397 (2)0.0335 (8)
H1A0.48640.53820.68710.040*
H1B0.51160.54170.59660.040*
C10.0988 (5)0.6207 (3)0.7270 (2)0.0322 (9)
C20.0055 (5)0.5901 (4)0.6567 (3)0.0353 (9)
H20.07120.53090.66310.042*
C30.0120 (5)0.6456 (4)0.5792 (3)0.0381 (10)
H30.08330.62470.53560.046*
C40.0905 (5)0.7347 (3)0.5664 (3)0.0359 (10)
C50.1936 (5)0.7656 (3)0.6343 (3)0.0377 (10)
H50.25930.82470.62750.045*
C60.2000 (5)0.7087 (3)0.7133 (2)0.0337 (9)
H60.27190.72950.75680.040*
C70.1003 (5)0.5586 (4)0.8103 (2)0.0375 (10)
H70.06860.48320.79790.045*
C80.0172 (6)0.6100 (5)0.8675 (3)0.0607 (15)
H8A0.01650.57110.92080.091*
H8B0.11870.60620.83950.091*
H8C0.00980.68500.87830.091*
C90.2608 (6)0.5567 (5)0.8572 (3)0.0513 (13)
H9A0.33470.52650.82030.077*
H9B0.25720.51270.90780.077*
H9C0.29080.62980.87290.077*
C100.0887 (6)0.7916 (4)0.4821 (3)0.0530 (13)
H10A0.03480.85980.48580.079*
H10B0.03720.74660.43900.079*
H10C0.19320.80500.46710.079*
C110.5666 (4)0.6756 (3)0.6529 (2)0.0312 (9)
C120.6131 (5)0.7101 (4)0.7343 (3)0.0406 (10)
H120.58320.67050.78130.049*
C130.7024 (6)0.8016 (4)0.7471 (3)0.0510 (13)
H130.73260.82510.80210.061*
C140.7458 (5)0.8573 (4)0.6771 (4)0.0508 (12)
C150.7011 (5)0.8263 (4)0.5954 (3)0.0539 (13)
H150.73190.86650.54890.065*
C160.6102 (5)0.7351 (4)0.5829 (3)0.0424 (11)
H160.57810.71330.52780.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02827 (18)0.02503 (18)0.02404 (17)0.00145 (14)0.00045 (12)0.00363 (13)
Cl10.0591 (7)0.0273 (5)0.0457 (6)0.0016 (5)0.0001 (5)0.0026 (4)
Cl20.0435 (6)0.0486 (7)0.0252 (5)0.0095 (5)0.0027 (4)0.0046 (4)
F10.074 (2)0.057 (2)0.111 (3)0.0266 (18)0.011 (2)0.001 (2)
N10.0335 (18)0.035 (2)0.0319 (17)0.0073 (16)0.0001 (14)0.0108 (15)
C10.032 (2)0.034 (2)0.031 (2)0.0024 (17)0.0060 (17)0.0075 (17)
C20.028 (2)0.040 (2)0.037 (2)0.0000 (19)0.0018 (16)0.0040 (19)
C30.029 (2)0.045 (3)0.040 (2)0.013 (2)0.0053 (18)0.006 (2)
C40.036 (2)0.034 (2)0.038 (2)0.0137 (19)0.0031 (18)0.0016 (18)
C50.046 (2)0.026 (2)0.041 (2)0.0058 (19)0.0048 (19)0.0049 (18)
C60.034 (2)0.035 (2)0.032 (2)0.0024 (18)0.0010 (17)0.0111 (18)
C70.046 (3)0.039 (2)0.028 (2)0.007 (2)0.0020 (18)0.0046 (18)
C80.062 (3)0.082 (4)0.039 (3)0.008 (3)0.013 (2)0.003 (3)
C90.059 (3)0.057 (3)0.037 (2)0.002 (3)0.007 (2)0.007 (2)
C100.064 (3)0.049 (3)0.046 (3)0.015 (3)0.001 (2)0.012 (2)
C110.026 (2)0.036 (2)0.032 (2)0.0046 (18)0.0015 (16)0.0056 (17)
C120.042 (2)0.046 (3)0.034 (2)0.001 (2)0.0034 (18)0.003 (2)
C130.051 (3)0.056 (3)0.044 (3)0.002 (3)0.008 (2)0.017 (2)
C140.035 (2)0.042 (3)0.074 (4)0.003 (2)0.006 (2)0.007 (3)
C150.044 (3)0.055 (3)0.063 (3)0.003 (2)0.013 (2)0.015 (3)
C160.041 (2)0.052 (3)0.034 (2)0.003 (2)0.0025 (18)0.004 (2)
Geometric parameters (Å, º) top
Ru1—C22.154 (4)C6—H60.9300
Ru1—C62.154 (4)C7—C81.528 (6)
Ru1—C52.165 (4)C7—C91.533 (6)
Ru1—N12.167 (3)C7—H70.9800
Ru1—C32.180 (4)C8—H8A0.9600
Ru1—C42.184 (4)C8—H8B0.9600
Ru1—C12.192 (4)C8—H8C0.9600
Ru1—Cl12.4082 (11)C9—H9A0.9600
Ru1—Cl22.4138 (10)C9—H9B0.9600
F1—C141.372 (6)C9—H9C0.9600
N1—C111.439 (5)C10—H10A0.9600
N1—H1A0.9000C10—H10B0.9600
N1—H1B0.9000C10—H10C0.9600
C1—C61.412 (6)C11—C121.381 (5)
C1—C21.433 (6)C11—C161.384 (6)
C1—C71.508 (6)C12—C131.369 (6)
C2—C31.388 (6)C12—H120.9300
C2—H20.9300C13—C141.361 (7)
C3—C41.427 (6)C13—H130.9300
C3—H30.9300C14—C151.367 (7)
C4—C51.401 (6)C15—C161.374 (7)
C4—C101.491 (6)C15—H150.9300
C5—C61.418 (6)C16—H160.9300
C5—H50.9300
C2—Ru1—C668.48 (15)C5—C4—C3118.3 (4)
C2—Ru1—C580.44 (17)C5—C4—C10121.3 (4)
C6—Ru1—C538.32 (16)C3—C4—C10120.4 (4)
C2—Ru1—N1148.59 (14)C5—C4—Ru170.5 (2)
C6—Ru1—N192.17 (14)C3—C4—Ru170.8 (2)
C5—Ru1—N199.88 (15)C10—C4—Ru1129.4 (3)
C2—Ru1—C337.34 (16)C4—C5—C6121.4 (4)
C6—Ru1—C380.99 (16)C4—C5—Ru172.0 (2)
C5—Ru1—C367.91 (17)C6—C5—Ru170.4 (2)
N1—Ru1—C3166.94 (15)C4—C5—H5119.3
C2—Ru1—C468.45 (16)C6—C5—H5119.3
C6—Ru1—C469.00 (15)Ru1—C5—H5131.2
C5—Ru1—C437.57 (16)C1—C6—C5120.9 (4)
N1—Ru1—C4128.89 (15)C1—C6—Ru172.5 (2)
C3—Ru1—C438.16 (16)C5—C6—Ru171.2 (2)
C2—Ru1—C138.48 (15)C1—C6—H6119.5
C6—Ru1—C137.91 (15)C5—C6—H6119.5
C5—Ru1—C168.81 (16)Ru1—C6—H6129.1
N1—Ru1—C1112.05 (14)C1—C7—C8109.0 (4)
C3—Ru1—C168.83 (15)C1—C7—C9112.6 (4)
C4—Ru1—C182.05 (15)C8—C7—C9109.9 (4)
C2—Ru1—Cl190.08 (12)C1—C7—H7108.4
C6—Ru1—Cl1124.65 (12)C8—C7—H7108.4
C5—Ru1—Cl1162.78 (12)C9—C7—H7108.4
N1—Ru1—Cl180.78 (9)C7—C8—H8A109.5
C3—Ru1—Cl1112.26 (13)C7—C8—H8B109.5
C4—Ru1—Cl1149.19 (12)H8A—C8—H8B109.5
C1—Ru1—Cl194.86 (11)C7—C8—H8C109.5
C2—Ru1—Cl2126.86 (11)H8A—C8—H8C109.5
C6—Ru1—Cl2145.24 (12)H8B—C8—H8C109.5
C5—Ru1—Cl2108.47 (12)C7—C9—H9A109.5
N1—Ru1—Cl283.19 (9)C7—C9—H9B109.5
C3—Ru1—Cl296.05 (11)H9A—C9—H9B109.5
C4—Ru1—Cl287.26 (11)C7—C9—H9C109.5
C1—Ru1—Cl2164.70 (11)H9A—C9—H9C109.5
Cl1—Ru1—Cl288.72 (4)H9B—C9—H9C109.5
C11—N1—Ru1120.8 (2)C4—C10—H10A109.5
C11—N1—H1A107.1C4—C10—H10B109.5
Ru1—N1—H1A107.1H10A—C10—H10B109.5
C11—N1—H1B107.1C4—C10—H10C109.5
Ru1—N1—H1B107.1H10A—C10—H10C109.5
H1A—N1—H1B106.8H10B—C10—H10C109.5
C6—C1—C2116.8 (4)C12—C11—C16119.4 (4)
C6—C1—C7122.7 (4)C12—C11—N1121.0 (4)
C2—C1—C7120.4 (4)C16—C11—N1119.6 (4)
C6—C1—Ru169.6 (2)C13—C12—C11121.1 (4)
C2—C1—Ru169.3 (2)C13—C12—H12119.4
C7—C1—Ru1130.9 (3)C11—C12—H12119.4
C3—C2—C1122.4 (4)C14—C13—C12118.1 (4)
C3—C2—Ru172.4 (2)C14—C13—H13120.9
C1—C2—Ru172.2 (2)C12—C13—H13120.9
C3—C2—H2118.8C13—C14—C15122.5 (5)
C1—C2—H2118.8C13—C14—F1119.3 (5)
Ru1—C2—H2129.1C15—C14—F1118.2 (5)
C2—C3—C4120.2 (4)C14—C15—C16119.2 (5)
C2—C3—Ru170.3 (2)C14—C15—H15120.4
C4—C3—Ru171.1 (2)C16—C15—H15120.4
C2—C3—H3119.9C15—C16—C11119.6 (4)
C4—C3—H3119.9C15—C16—H16120.2
Ru1—C3—H3131.6C11—C16—H16120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl2i0.902.393.225 (3)154
C6—H6···Cl1ii0.932.723.384 (4)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[RuCl2(C10H14)(C6H6FN)]
Mr417.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)8.6492 (9), 12.2458 (13), 15.6471 (16)
β (°) 93.271 (8)
V3)1654.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.26 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.635, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
3234, 3027, 2284
Rint0.048
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.090, 1.00
No. of reflections3027
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.67

Computer programs: CAD-4-PC (Enraf–Nonius, 1993), XCAD-4PC (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl2i0.902.393.225 (3)154
C6—H6···Cl1ii0.932.723.384 (4)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

The authors gratefully acknowledge the Department of Chemistry and the Univeristy Committee for Undergraduate Research at USA for their generous support and the Department of Energy and Oak Ridge National Laboratory for the diffractometer used in this study.

References

First citationBegley, M. J., Harrison, S. & Wright, A. H. (1991). Acta Cryst. C47, 318–320.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoutadla, Y., Davies, D. L., Al-Duaij, O., Fawcett, J., Jones, R. C. & Singh, K. (2010). Dalton Trans. pp. 10447–10457.  Web of Science CSD CrossRef Google Scholar
First citationBurrell, A. K. & Steedman, A. J. (1997). Organometallics, 16, 1203–1208.  CSD CrossRef CAS Web of Science Google Scholar
First citationCarter, E. B., Culver, S. L., Fox, P. A., Goode, R. D., Ntai, I., Tickell, M. D., Traylor, R. K., Hoffman, N. W. & Davis, J. H. Jr (2004). Chem. Commun. pp. 630–631.  Web of Science CrossRef Google Scholar
First citationHeeten, R. den, Munoz, B. K., Popa, G., Laan, W. & Kamer, P. C. J. (2010). Dalton Trans. pp. 8477–8483.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnraf–Nonius (1993). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFawcett, J., Sicilia, F. & Solan, G. A. (2005). Acta Cryst. E61, m1256–m1257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGovindaswamy, P. & Kollipara, M. R. (2006). J. Coord. Chem. 59, 131–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationHanif, M., Henke, H., Meier, S. M., Martic, S., Labib, M., Kandioller, W., Jakupec, M. A., Arion, V. B., Kraatz, H.-B., Keppler, B. K. & Hartinger, C. G. (2010). Inorg. Chem. 49, 7953–7963.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoffman, N. W., Stenson, A. C., Sykora, R. E., Traylor, R. K., Wicker, B. F., Reilly, S., Dixon, D. A., Marshall, A. G., Kwan, M.-L. & Schroder, P. (2009). Abstracts, Central Regional Meeting, American Chemical Society, Cleveland, OH, USA, May 20–23, CRM-213.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPadmanabhan, V. M., Patel, R. P. & Ranganathan, T. N. (1985). Acta Cryst. C41, 1305–1307.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRandell, K., Stanford, M. J., Clarkson, G. J. & Rourke, J. P. (2006). J. Organomet. Chem. 691, 3411–3415.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds