metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1,1′-[Butane-1,4-diylbis(nitrilo­methyl­­idyne)]di-2-naphtho­lato}copper(II) ethanol monosolvate

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: hkargar@pnu.ac.ir

(Received 15 December 2010; accepted 18 December 2010; online 24 December 2010)

The asymmetric unit of the title compound, [Cu(C26H22N2O2)]·C2H5OH, comprises a Schiff base complex and an ethanol mol­ecule of crystallization. The CuII atom shows a distorted square-planar geometry. The dihedral angle between the two aromatic rings is 48.16 (13)°. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and inter­molecular ππ inter­actions with centroid–centroid distances in the range 3.485 (2)–3.845 (3) Å.

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to Schiff base–metal complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem. 23, 109-112.]); Elmali et al. (2000[Elmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423-424.]); Kargar et al. (2010[Kargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C26H22N2O2)]·C2H6O

  • Mr = 504.06

  • Monoclinic, C 2/c

  • a = 13.468 (3) Å

  • b = 22.606 (5) Å

  • c = 15.831 (3) Å

  • β = 95.84 (3)°

  • V = 4794.9 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.42 × 0.26 × 0.22 mm

Data collection
  • Stoe IPDS II image plate diffractometer

  • Absorption correction: multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.973, Tmax = 1.000

  • 9868 measured reflections

  • 4655 independent reflections

  • 3110 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.126

  • S = 1.04

  • 4655 reflections

  • 308 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O1 0.90 1.95 2.837 (4) 167
C12—H12A⋯O2i 0.97 2.52 3.395 (5) 150
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

The asymmetric unit of the title compound, Fig. 1, comprises one unit of the Schiff base complex and an ethanol molecule of crystallization. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry ground the Cu(II) atom is distorted square-planar which is coordinated by the N2O2 donor atoms of the desired potentially tetradenate Schiff base ligand. The dihedral angle between the two aromatic rings is 48.16 (13)°. The crystal structure is stabilized by the intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular ππ interactions [Cg1···Cg1i = 3.4852 (18) Å, (i) 2 - x, y, 1/2 - z; Cg2···Cg2i = 3.7183 (6)Å; Cg3···Cg3i = 3.638 (2)Å; Cg4···Cg4i = 3.845 (3)Å], Cg1, Cg2, Cg3 and Cg4 are the centroids of the Cu1/O1/C1/C10/C11/N1, Cu1/O2/C26/C17/C16/N2, C17/C18/C23/C24/C25/C26, and C18–C23 rings, respectively.

Related literature top

For standard values of bond lengths, see: Allen et al. (1987). For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000); Kargar et al. (2010).

Experimental top

The title compound was synthesized by adding bis(hydroxy naphtylidene)-1,4-butanediamine (2 mmol) to a solution of CuCl2. 4 H2O (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant green solution was filtered. Dark-green block single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model approximation with Uiso (H) = 1.2 or 1.5 Ueq (C). The H atom of the hydroxy group was located from the difference Fourier mapand constrained to refine with the parent atom with Uiso (H) = 1.5 Ueq (O) after its distance was restrained to 0.90 (1)Å.

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993). Metal derivatives of the Schiff bases have been studied extensively, and Ni(II) and Cu(II) complexes play a major role in both synthetic and structurel research (Kargar et al., 2010; Elmali et al., 2000; Blower et al., 1998).

The asymmetric unit of the title compound, Fig. 1, comprises one unit of the Schiff base complex and an ethanol molecule of crystallization. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The geometry ground the Cu(II) atom is distorted square-planar which is coordinated by the N2O2 donor atoms of the desired potentially tetradenate Schiff base ligand. The dihedral angle between the two aromatic rings is 48.16 (13)°. The crystal structure is stabilized by the intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular ππ interactions [Cg1···Cg1i = 3.4852 (18) Å, (i) 2 - x, y, 1/2 - z; Cg2···Cg2i = 3.7183 (6)Å; Cg3···Cg3i = 3.638 (2)Å; Cg4···Cg4i = 3.845 (3)Å], Cg1, Cg2, Cg3 and Cg4 are the centroids of the Cu1/O1/C1/C10/C11/N1, Cu1/O2/C26/C17/C16/N2, C17/C18/C23/C24/C25/C26, and C18–C23 rings, respectively.

For standard values of bond lengths, see: Allen et al. (1987). For background to Schiff base–metal complexes, see: Granovski et al. (1993); Blower et al. (1998); Elmali et al. (2000); Kargar et al. (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The intermolecular interaction is shown as dashed lines.
[Figure 2] Fig. 2. The packing of the title compound viewed down the a-axis showing dimer formation through the intermolecular C—H···O hydrogen bonds. All H atoms were removed for clarity except those involved in the hydrogen bonding. The intermolecular interactions are shown as dashed lines.
Bis(2-hydroxynaphtylidene)-1,4-butanediamine copper (II) ethanol solvate top
Crystal data top
[Cu(C26H22N2O2)]·C2H6OF(000) = 2104
Mr = 504.06Dx = 1.397 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 10437 reflections
a = 13.468 (3) Åθ = 1.8–29.6°
b = 22.606 (5) ŵ = 0.94 mm1
c = 15.831 (3) ÅT = 296 K
β = 95.84 (3)°Block, dark-green
V = 4794.9 (17) Å30.42 × 0.26 × 0.22 mm
Z = 8
Data collection top
Stoe IPDS II image plate
diffractometer
4655 independent reflections
Radiation source: fine-focus sealed tube3110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 0.15 mm pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 1616
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
k = 2727
Tmin = 0.973, Tmax = 1.000l = 1419
9868 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0612P)2]
where P = (Fo2 + 2Fc2)/3
4655 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C26H22N2O2)]·C2H6OV = 4794.9 (17) Å3
Mr = 504.06Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.468 (3) ŵ = 0.94 mm1
b = 22.606 (5) ÅT = 296 K
c = 15.831 (3) Å0.42 × 0.26 × 0.22 mm
β = 95.84 (3)°
Data collection top
Stoe IPDS II image plate
diffractometer
4655 independent reflections
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
3110 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 1.000Rint = 0.053
9868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
4655 reflectionsΔρmin = 0.29 e Å3
308 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.99074 (3)0.39671 (2)0.13736 (3)0.03967 (16)
O11.09554 (19)0.34050 (11)0.13087 (19)0.0462 (7)
O21.0912 (2)0.45001 (11)0.18187 (19)0.0475 (7)
N10.8934 (2)0.33537 (13)0.1535 (2)0.0402 (8)
N20.9081 (2)0.45888 (13)0.08166 (19)0.0368 (7)
C11.0894 (3)0.28282 (16)0.1258 (2)0.0370 (9)
C21.1777 (3)0.25202 (17)0.1090 (3)0.0465 (10)
H2A1.23540.27340.10250.056*
C31.1793 (3)0.19265 (17)0.1022 (3)0.0475 (10)
H3A1.23760.17410.08950.057*
C41.0948 (3)0.15794 (16)0.1140 (3)0.0419 (9)
C51.0986 (3)0.09535 (18)0.1096 (3)0.0535 (11)
H5A1.15730.07690.09770.064*
C61.0179 (4)0.06193 (19)0.1226 (3)0.0627 (13)
H6A1.02160.02090.11950.075*
C70.9301 (4)0.08883 (17)0.1405 (3)0.0596 (13)
H7A0.87520.06580.15020.072*
C80.9236 (3)0.14926 (17)0.1440 (3)0.0506 (11)
H8A0.86360.16650.15490.061*
C91.0052 (3)0.18599 (17)0.1315 (2)0.0380 (8)
C101.0024 (3)0.25057 (16)0.1367 (3)0.0372 (8)
C110.9126 (3)0.27942 (16)0.1541 (2)0.0395 (9)
H11A0.86120.25480.16760.047*
C120.7936 (3)0.35263 (18)0.1772 (3)0.0470 (10)
H12A0.80130.38640.21510.056*
H12B0.76700.32030.20820.056*
C130.7198 (3)0.3680 (2)0.1035 (3)0.0630 (13)
H13A0.65320.36250.12040.076*
H13B0.72780.34030.05790.076*
C140.7270 (3)0.4312 (2)0.0682 (3)0.0595 (12)
H14A0.66860.43870.02850.071*
H14B0.72560.45900.11470.071*
C150.8183 (3)0.4431 (2)0.0241 (3)0.0486 (10)
H15A0.83310.40820.00790.058*
H15B0.80390.47510.01600.058*
C160.9315 (3)0.51465 (16)0.0851 (2)0.0359 (8)
H16A0.88890.54000.05240.043*
C171.0155 (2)0.54158 (15)0.1335 (2)0.0320 (8)
C181.0243 (3)0.60666 (17)0.1334 (2)0.0346 (8)
C190.9549 (3)0.64393 (17)0.0881 (3)0.0437 (10)
H19A0.90020.62770.05570.052*
C200.9669 (4)0.70446 (19)0.0913 (3)0.0589 (12)
H20A0.91950.72860.06150.071*
C211.0488 (4)0.7300 (2)0.1382 (4)0.0707 (15)
H21A1.05640.77090.13910.085*
C221.1174 (3)0.69509 (19)0.1827 (3)0.0584 (12)
H22A1.17160.71230.21480.070*
C231.1074 (3)0.63268 (17)0.1808 (3)0.0406 (9)
C241.1801 (3)0.59615 (17)0.2255 (3)0.0441 (9)
H24A1.23460.61380.25660.053*
C251.1733 (3)0.53693 (17)0.2245 (3)0.0429 (9)
H25A1.22320.51440.25400.052*
C261.0900 (3)0.50794 (16)0.1786 (2)0.0362 (8)
O31.2478 (2)0.40229 (16)0.0561 (2)0.0741 (10)
H11.20270.38590.08720.111*
C271.3277 (4)0.4255 (3)0.1075 (4)0.0863 (18)
H27A1.30240.44470.15570.104*
H27B1.35940.45560.07580.104*
C281.4013 (6)0.3832 (4)0.1383 (5)0.131 (3)
H28A1.45060.40210.17740.197*
H28B1.43280.36730.09150.197*
H28C1.37020.35190.16680.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0315 (2)0.0356 (2)0.0519 (3)0.0033 (2)0.00417 (19)0.0020 (3)
O10.0345 (14)0.0385 (15)0.066 (2)0.0025 (12)0.0089 (14)0.0030 (13)
O20.0387 (15)0.0332 (14)0.067 (2)0.0018 (12)0.0109 (14)0.0052 (13)
N10.0309 (16)0.0389 (17)0.052 (2)0.0010 (13)0.0092 (15)0.0013 (15)
N20.0295 (16)0.0404 (17)0.0401 (19)0.0068 (13)0.0021 (14)0.0015 (14)
C10.0316 (18)0.035 (2)0.045 (2)0.0009 (15)0.0031 (17)0.0003 (17)
C20.032 (2)0.044 (2)0.064 (3)0.0017 (16)0.0079 (19)0.003 (2)
C30.035 (2)0.045 (2)0.063 (3)0.0073 (17)0.006 (2)0.003 (2)
C40.043 (2)0.037 (2)0.045 (2)0.0006 (17)0.0026 (18)0.0003 (17)
C50.053 (2)0.041 (2)0.066 (3)0.006 (2)0.005 (2)0.005 (2)
C60.075 (3)0.032 (2)0.081 (4)0.004 (2)0.011 (3)0.005 (2)
C70.059 (3)0.034 (2)0.087 (4)0.0127 (19)0.011 (3)0.009 (2)
C80.047 (2)0.040 (2)0.066 (3)0.0065 (19)0.008 (2)0.002 (2)
C90.038 (2)0.0394 (19)0.037 (2)0.0013 (17)0.0034 (17)0.0035 (18)
C100.035 (2)0.0358 (18)0.041 (2)0.0052 (16)0.0022 (17)0.0029 (18)
C110.0342 (19)0.041 (2)0.044 (2)0.0055 (16)0.0071 (17)0.0002 (17)
C120.038 (2)0.045 (2)0.061 (3)0.0015 (18)0.017 (2)0.000 (2)
C130.038 (2)0.065 (3)0.086 (4)0.013 (2)0.002 (2)0.007 (3)
C140.042 (2)0.072 (3)0.062 (3)0.002 (2)0.006 (2)0.001 (2)
C150.039 (2)0.058 (3)0.045 (3)0.0073 (19)0.0100 (19)0.001 (2)
C160.0298 (19)0.040 (2)0.038 (2)0.0009 (16)0.0029 (17)0.0031 (16)
C170.0258 (18)0.0373 (19)0.033 (2)0.0036 (14)0.0047 (16)0.0020 (16)
C180.0326 (16)0.0403 (19)0.0318 (19)0.0016 (17)0.0084 (15)0.0026 (18)
C190.043 (2)0.039 (2)0.048 (3)0.0026 (18)0.000 (2)0.0033 (18)
C200.057 (3)0.042 (2)0.076 (3)0.003 (2)0.000 (3)0.009 (2)
C210.074 (3)0.038 (2)0.099 (4)0.007 (2)0.001 (3)0.003 (3)
C220.048 (3)0.046 (2)0.079 (4)0.009 (2)0.000 (2)0.007 (2)
C230.039 (2)0.043 (2)0.041 (2)0.0053 (17)0.0078 (18)0.0022 (18)
C240.038 (2)0.046 (2)0.047 (2)0.0073 (18)0.0022 (17)0.0042 (19)
C250.035 (2)0.044 (2)0.049 (3)0.0023 (17)0.0026 (18)0.0040 (18)
C260.0293 (18)0.038 (2)0.042 (2)0.0029 (15)0.0075 (17)0.0005 (17)
O30.0546 (19)0.092 (3)0.077 (2)0.013 (2)0.0114 (17)0.008 (2)
C270.075 (4)0.075 (4)0.110 (5)0.018 (3)0.012 (4)0.020 (3)
C280.099 (5)0.142 (7)0.143 (8)0.010 (5)0.033 (5)0.022 (6)
Geometric parameters (Å, º) top
Cu1—O21.893 (3)C13—H13B0.9700
Cu1—O11.910 (3)C14—C151.498 (6)
Cu1—N11.943 (3)C14—H14A0.9700
Cu1—N21.947 (3)C14—H14B0.9700
O1—C11.308 (4)C15—H15A0.9700
O2—C261.311 (4)C15—H15B0.9700
N1—C111.291 (5)C16—C171.436 (5)
N1—C121.485 (4)C16—H16A0.9300
N2—C161.299 (4)C17—C261.397 (5)
N2—C151.481 (5)C17—C181.476 (5)
C1—C101.405 (5)C18—C191.400 (5)
C1—C21.427 (5)C18—C231.411 (5)
C2—C31.347 (5)C19—C201.378 (6)
C2—H2A0.9300C19—H19A0.9300
C3—C41.411 (5)C20—C211.391 (7)
C3—H3A0.9300C20—H20A0.9300
C4—C91.415 (5)C21—C221.357 (7)
C4—C51.418 (5)C21—H21A0.9300
C5—C61.356 (6)C22—C231.417 (6)
C5—H5A0.9300C22—H22A0.9300
C6—C71.384 (6)C23—C241.414 (5)
C6—H6A0.9300C24—C251.342 (5)
C7—C81.370 (6)C24—H24A0.9300
C7—H7A0.9300C25—C261.431 (5)
C8—C91.406 (5)C25—H25A0.9300
C8—H8A0.9300O3—C271.384 (6)
C9—C101.463 (5)O3—H10.9000
C10—C111.426 (5)C27—C281.427 (8)
C11—H11A0.9300C27—H27A0.9700
C12—C131.495 (6)C27—H27B0.9700
C12—H12A0.9700C28—H28A0.9600
C12—H12B0.9700C28—H28B0.9600
C13—C141.541 (6)C28—H28C0.9600
C13—H13A0.9700
O2—Cu1—O186.54 (12)C15—C14—C13114.9 (4)
O2—Cu1—N1150.64 (14)C15—C14—H14A108.6
O1—Cu1—N192.55 (12)C13—C14—H14A108.6
O2—Cu1—N293.61 (12)C15—C14—H14B108.6
O1—Cu1—N2147.92 (13)C13—C14—H14B108.6
N1—Cu1—N2102.26 (13)H14A—C14—H14B107.5
C1—O1—Cu1128.6 (2)N2—C15—C14114.5 (4)
C26—O2—Cu1128.0 (3)N2—C15—H15A108.6
C11—N1—C12116.2 (3)C14—C15—H15A108.6
C11—N1—Cu1124.3 (3)N2—C15—H15B108.6
C12—N1—Cu1119.1 (2)C14—C15—H15B108.6
C16—N2—C15116.0 (3)H15A—C15—H15B107.6
C16—N2—Cu1123.8 (3)N2—C16—C17127.4 (4)
C15—N2—Cu1119.8 (2)N2—C16—H16A116.3
O1—C1—C10124.0 (3)C17—C16—H16A116.3
O1—C1—C2116.7 (3)C26—C17—C16121.9 (3)
C10—C1—C2119.4 (3)C26—C17—C18119.3 (3)
C3—C2—C1121.4 (4)C16—C17—C18118.8 (3)
C3—C2—H2A119.3C19—C18—C23118.2 (4)
C1—C2—H2A119.3C19—C18—C17123.4 (3)
C2—C3—C4121.6 (4)C23—C18—C17118.4 (3)
C2—C3—H3A119.2C20—C19—C18120.6 (4)
C4—C3—H3A119.2C20—C19—H19A119.7
C3—C4—C9119.5 (3)C18—C19—H19A119.7
C3—C4—C5121.0 (4)C19—C20—C21121.0 (5)
C9—C4—C5119.5 (4)C19—C20—H20A119.5
C6—C5—C4121.0 (4)C21—C20—H20A119.5
C6—C5—H5A119.5C22—C21—C20119.8 (4)
C4—C5—H5A119.5C22—C21—H21A120.1
C5—C6—C7120.0 (4)C20—C21—H21A120.1
C5—C6—H6A120.0C21—C22—C23120.6 (4)
C7—C6—H6A120.0C21—C22—H22A119.7
C8—C7—C6120.4 (4)C23—C22—H22A119.7
C8—C7—H7A119.8C18—C23—C24119.6 (3)
C6—C7—H7A119.8C18—C23—C22119.7 (4)
C7—C8—C9121.9 (4)C24—C23—C22120.7 (4)
C7—C8—H8A119.0C25—C24—C23122.2 (4)
C9—C8—H8A119.0C25—C24—H24A118.9
C8—C9—C4117.1 (4)C23—C24—H24A118.9
C8—C9—C10123.9 (4)C24—C25—C26120.8 (4)
C4—C9—C10119.0 (3)C24—C25—H25A119.6
C1—C10—C11121.4 (3)C26—C25—H25A119.6
C1—C10—C9119.0 (3)O2—C26—C17124.7 (3)
C11—C10—C9119.6 (3)O2—C26—C25115.6 (4)
N1—C11—C10128.3 (3)C17—C26—C25119.7 (3)
N1—C11—H11A115.8C27—O3—H1111.3
C10—C11—H11A115.8O3—C27—C28114.8 (5)
N1—C12—C13114.3 (4)O3—C27—H27A108.6
N1—C12—H12A108.7C28—C27—H27A108.6
C13—C12—H12A108.7O3—C27—H27B108.6
N1—C12—H12B108.7C28—C27—H27B108.6
C13—C12—H12B108.7H27A—C27—H27B107.6
H12A—C12—H12B107.6C27—C28—H28A109.5
C12—C13—C14115.9 (4)C27—C28—H28B109.5
C12—C13—H13A108.3H28A—C28—H28B109.5
C14—C13—H13A108.3C27—C28—H28C109.5
C12—C13—H13B108.3H28A—C28—H28C109.5
C14—C13—H13B108.3H28B—C28—H28C109.5
H13A—C13—H13B107.4
O2—Cu1—O1—C1160.0 (3)C4—C9—C10—C11179.8 (4)
N1—Cu1—O1—C19.4 (3)C12—N1—C11—C10178.0 (4)
N2—Cu1—O1—C1108.7 (4)Cu1—N1—C11—C105.7 (6)
O1—Cu1—O2—C26153.9 (3)C1—C10—C11—N17.9 (7)
N1—Cu1—O2—C26117.1 (3)C9—C10—C11—N1173.2 (4)
N2—Cu1—O2—C266.0 (3)C11—N1—C12—C13101.9 (4)
O2—Cu1—N1—C1189.3 (4)Cu1—N1—C12—C1385.4 (4)
O1—Cu1—N1—C111.9 (3)N1—C12—C13—C1481.5 (5)
N2—Cu1—N1—C11149.5 (3)C12—C13—C14—C1569.1 (5)
O2—Cu1—N1—C1282.7 (4)C16—N2—C15—C14102.7 (4)
O1—Cu1—N1—C12170.2 (3)Cu1—N2—C15—C1483.6 (4)
N2—Cu1—N1—C1238.4 (3)C13—C14—C15—N283.3 (5)
O2—Cu1—N2—C160.6 (3)C15—N2—C16—C17178.3 (3)
O1—Cu1—N2—C1689.9 (4)Cu1—N2—C16—C174.8 (5)
N1—Cu1—N2—C16154.5 (3)N2—C16—C17—C266.2 (6)
O2—Cu1—N2—C15172.5 (3)N2—C16—C17—C18175.4 (3)
O1—Cu1—N2—C1583.3 (3)C26—C17—C18—C19178.1 (3)
N1—Cu1—N2—C1532.3 (3)C16—C17—C18—C190.3 (5)
Cu1—O1—C1—C109.7 (6)C26—C17—C18—C231.3 (5)
Cu1—O1—C1—C2170.9 (3)C16—C17—C18—C23179.7 (3)
O1—C1—C2—C3179.8 (4)C23—C18—C19—C201.1 (6)
C10—C1—C2—C30.8 (6)C17—C18—C19—C20179.4 (4)
C1—C2—C3—C41.9 (7)C18—C19—C20—C211.0 (7)
C2—C3—C4—C91.4 (7)C19—C20—C21—C220.9 (8)
C2—C3—C4—C5177.8 (4)C20—C21—C22—C231.0 (8)
C3—C4—C5—C6178.7 (4)C19—C18—C23—C24178.4 (3)
C9—C4—C5—C60.5 (7)C17—C18—C23—C241.1 (5)
C4—C5—C6—C70.0 (8)C19—C18—C23—C221.2 (5)
C5—C6—C7—C81.0 (8)C17—C18—C23—C22179.4 (4)
C6—C7—C8—C91.4 (8)C21—C22—C23—C181.1 (7)
C7—C8—C9—C40.8 (7)C21—C22—C23—C24178.4 (5)
C7—C8—C9—C10178.4 (4)C18—C23—C24—C250.0 (6)
C3—C4—C9—C8179.1 (4)C22—C23—C24—C25179.5 (4)
C5—C4—C9—C80.1 (6)C23—C24—C25—C261.0 (6)
C3—C4—C9—C100.2 (6)Cu1—O2—C26—C176.3 (5)
C5—C4—C9—C10179.4 (4)Cu1—O2—C26—C25174.7 (3)
O1—C1—C10—C110.3 (6)C16—C17—C26—O20.3 (6)
C2—C1—C10—C11179.7 (4)C18—C17—C26—O2178.6 (3)
O1—C1—C10—C9178.6 (4)C16—C17—C26—C25178.7 (3)
C2—C1—C10—C90.8 (6)C18—C17—C26—C250.4 (5)
C8—C9—C10—C1178.0 (4)C24—C25—C26—O2179.8 (4)
C4—C9—C10—C11.2 (6)C24—C25—C26—C170.7 (6)
C8—C9—C10—C111.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O10.901.952.837 (4)167
C12—H12A···O2i0.972.523.395 (5)150
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C26H22N2O2)]·C2H6O
Mr504.06
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)13.468 (3), 22.606 (5), 15.831 (3)
β (°) 95.84 (3)
V3)4794.9 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.42 × 0.26 × 0.22
Data collection
DiffractometerStoe IPDS II image plate
Absorption correctionMulti-scan
(MULABS in PLATON; Spek, 2009)
Tmin, Tmax0.973, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9868, 4655, 3110
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.126, 1.04
No. of reflections4655
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.29

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O10.901.952.837 (4)167
C12—H12A···O2i0.972.523.395 (5)150
Symmetry code: (i) x+2, y, z+1/2.
 

Acknowledgements

HK thanks PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem. 23, 109–112.  CrossRef CAS Google Scholar
First citationElmali, A., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 423–424.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Tahir, M. N. & Sahraei, A. (2010). Acta Cryst. E66, m1246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds