organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Piperidin-1-yl)-4H-benzo[b]tetra­zolo[1,5-d][1,4]diazepin-5(6H)-one

aDepartment of Chemistry and Biochemistry, 1306 E University Boulevard, The University of Arizona, Tucson, AZ 85721, USA, and bSouthwest Center for Drug, Discovery and Development, College of Pharmacy, BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
*Correspondence e-mail: gsnichol@email.arizona.edu

(Received 15 November 2010; accepted 29 November 2010; online 4 December 2010)

There are two crystallographically unique mol­ecules present in the asymmetric unit of the title compound, C14H16N6O; in both mol­ecules, the seven-membered diazepinone ring adopts a boat-like conformation and the chair conformation piperidine ring is an axial substituent on the diazepinone ring. In the crystal, each mol­ecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between mol­ecule A and symmetry equivalents forms two ring motifs, the first formed by inversion-related N—H⋯O inter­actions and the second formed by C—H⋯O and C—H⋯N inter­actions. The combination of both ring motifs results in the formation of an infinite double tape, which propagates in the a-axis direction. Hydrogen bonding between mol­ecule B and symmetry equivalents forms one ring motif by inversion-related N—H⋯O inter­actions and a second ring motif by C—H⋯O inter­actions, which propagate as a single tape parallel with the c axis.

Related literature

The structure of the title compound was determined as part of a larger study on development of synthetic methods for high-throughput medicinal chemistry. For background to the use of multi-component reactions in high-throughput medicinal chemistry, see: Gunawan et al. (2010[Gunawan, S., Nichol, G. S., Chappeta, S., Dietrich, J. & Hulme, C. (2010). Tetrahedron Lett. 51, 4689-4692]); Hulme & Dietrich (2009[Hulme, C. & Dietrich, J. (2009). Mol. Divers. 13, 195-207.]); Hulme & Gore (2003[Hulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51-80.]). For the Ugi reaction, see: Ugi & Steinbrückner (1961[Ugi, I. & Steinbrückner, C. (1961). Chem. Ber. 94, 734-742.]). For graph-set notation for hydrogen bonding, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N6O

  • Mr = 284.33

  • Triclinic, [P \overline 1]

  • a = 8.8210 (7) Å

  • b = 13.1802 (10) Å

  • c = 13.4476 (11) Å

  • α = 105.549 (2)°

  • β = 99.490 (2)°

  • γ = 106.623 (2)°

  • V = 1392.99 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.39 × 0.28 × 0.09 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.992

  • 51078 measured reflections

  • 12177 independent reflections

  • 9733 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.05

  • 12177 reflections

  • 507 parameters

  • All H-atom parameters refined

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.850 (14) 2.069 (14) 2.9089 (9) 169.4 (13)
N51—H51N⋯O51ii 0.886 (16) 1.929 (16) 2.8116 (10) 173.6 (14)
C6—H6⋯N2iii 0.936 (15) 2.531 (15) 3.4638 (11) 174.8 (12)
C7—H7⋯O1iii 0.947 (15) 2.406 (15) 3.3394 (10) 168.4 (13)
C55—H55⋯N54iv 0.974 (13) 2.548 (13) 3.2293 (11) 127.0 (10)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al. 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

At present there is a huge need for unique small molecules in the lead development stages of drug discovery. In this process, speed is paramount, and the development of high speed parallel synthesis in concert with isocyanide based multi-component reactions (MCRs) has enabled a revolution in high-throughput medicinal chemistry (Gunawan et al., (2010); Hulme & Dietrich (2009); Hulme & Gore (2003)). Following this theme, a novel two step solution phase protocol for the synthesis of an array of tricyclic fused tetrazole-benzodiazepines was recently investigated (Figure 1). The methodology employs ortho-N-Boc benzylisonitriles 1 and ethyl glyoxylate 2 in the 4-component TMS-N3 modified Ugi reaction (Ugi & Steinbrückner, 1961) to assemble the desired product 3. Subsequent treatment with trifluoroacetic acid unmasks an internal amino nucleophile and promotes cyclization to form the diazepine ring of the generic structure 4. Here we report the crystal structure of 4.

The asymmetric unit of 4 is shown in Figure 2. There are two crystallographically unique molecules in the asymmetric unit; the molecule composed of atoms O1 to C14 will henceforth be referred to as "molecule A" and the molecule composed of atoms O51 to C64 referred to as "molecule B". Where appropriate, discussion will be limited to molecule A with results for molecule B presented in square brackets. Molecular dimensions are unexceptional.

The molecule adopts a U-shaped conformation in which the 7-membered diazepinone ring has adopted a boat-like conformation (total Q parameter 0.8021 (8)Å [0.8177 (9) Å]; Cremer & Pople (1975)) and the chair conformation piperidinyl ring is an axial substituent on the diazepinone ring. Both molecules have a very similar overall shape as shown by an overlay, fitting N1, N5, C4 > C9 with N51, N55, C54 > C59 (these representing the largest planar moiety in the structure, Figure 3).

In the crystal each molecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between molecule A and symmetry equivalents forms two ring motifs (Bernstein et al., 1995), an R22(8) motif formed by inversion-related N—H···O interactions and an R22(9) motif formed by C—H···O and C—H···N interactions. The combination of both ring motifs results in the formation of an infinite double tape which propagates in the a axis direction (Figure 4). Hydrogen bonding between molecule B and symmetry equivalents forms one ring motif composed of an R22(8) motif formed by inversion-related N—H···O interactions and an R22(10) motif formed by C—H···O interactions (Figure 5). This propagates as a single tape parallel with the c axis.

Related literature top

The structure of the title compound was determined as part of a larger study on development of synthetic methods for high-throughput medicinal chemistry. For background to the use of multi-component reactions in high-throughput medicinal chemistry, see: Gunawan et al. (2010); Hulme & Dietrich (2009); Hulme & Gore (2003). For the Ugi reaction, see: Ugi & Steinbrückner (1961). For graph-set notation for hydrogen bonding, see: Bernstein et al. (1995) and puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of piperidine (0.017 g, 0.20 mmol) and ethyl glyoxylate (0.04 ml, 50% in toluene, 0.20 mmol) in methanol (0.5 ml) were stirred at room temperature. After 5 minutes, ortho-N-Boc-phenylisonitrile (0.0436 g, 0.20 mmol) and trimethylsilylazide (0.023 g, 0.20 mmol) was added dropwise to the above solution and stirred at room temperature for 23 h. The solvent was evaporated in vacuo and the product was purified using column chromatography (5–30% Hexane/Ethyl Acetate) to afford the desired Ugi product (0.056 g, 0.20 mmol, 65%) as colorless oil. The purified Ugi product was treated with 10% trifluoroacetic acid in dichloroethane (4 ml) and irradiated in a Biotage Initiator™ for 10 minutes at 120°C. The organic layer was washed with 1M NaHCO3 (3 × 5 ml) and dried (MgSO4). The solvent was evaporated in vacuo and purified by column chromatography (0–50% Hexane/Ethyl Acetate) to afford the desired product (0.030 g, 0.116 mmol, 92%) as a white solid.

Refinement top

All hydrogen atoms were located in a difference Fourier map and are freely refined.

Structure description top

At present there is a huge need for unique small molecules in the lead development stages of drug discovery. In this process, speed is paramount, and the development of high speed parallel synthesis in concert with isocyanide based multi-component reactions (MCRs) has enabled a revolution in high-throughput medicinal chemistry (Gunawan et al., (2010); Hulme & Dietrich (2009); Hulme & Gore (2003)). Following this theme, a novel two step solution phase protocol for the synthesis of an array of tricyclic fused tetrazole-benzodiazepines was recently investigated (Figure 1). The methodology employs ortho-N-Boc benzylisonitriles 1 and ethyl glyoxylate 2 in the 4-component TMS-N3 modified Ugi reaction (Ugi & Steinbrückner, 1961) to assemble the desired product 3. Subsequent treatment with trifluoroacetic acid unmasks an internal amino nucleophile and promotes cyclization to form the diazepine ring of the generic structure 4. Here we report the crystal structure of 4.

The asymmetric unit of 4 is shown in Figure 2. There are two crystallographically unique molecules in the asymmetric unit; the molecule composed of atoms O1 to C14 will henceforth be referred to as "molecule A" and the molecule composed of atoms O51 to C64 referred to as "molecule B". Where appropriate, discussion will be limited to molecule A with results for molecule B presented in square brackets. Molecular dimensions are unexceptional.

The molecule adopts a U-shaped conformation in which the 7-membered diazepinone ring has adopted a boat-like conformation (total Q parameter 0.8021 (8)Å [0.8177 (9) Å]; Cremer & Pople (1975)) and the chair conformation piperidinyl ring is an axial substituent on the diazepinone ring. Both molecules have a very similar overall shape as shown by an overlay, fitting N1, N5, C4 > C9 with N51, N55, C54 > C59 (these representing the largest planar moiety in the structure, Figure 3).

In the crystal each molecule forms hydrogen bonds with its respective symmetry equivalents. Hydrogen bonding between molecule A and symmetry equivalents forms two ring motifs (Bernstein et al., 1995), an R22(8) motif formed by inversion-related N—H···O interactions and an R22(9) motif formed by C—H···O and C—H···N interactions. The combination of both ring motifs results in the formation of an infinite double tape which propagates in the a axis direction (Figure 4). Hydrogen bonding between molecule B and symmetry equivalents forms one ring motif composed of an R22(8) motif formed by inversion-related N—H···O interactions and an R22(10) motif formed by C—H···O interactions (Figure 5). This propagates as a single tape parallel with the c axis.

The structure of the title compound was determined as part of a larger study on development of synthetic methods for high-throughput medicinal chemistry. For background to the use of multi-component reactions in high-throughput medicinal chemistry, see: Gunawan et al. (2010); Hulme & Dietrich (2009); Hulme & Gore (2003). For the Ugi reaction, see: Ugi & Steinbrückner (1961). For graph-set notation for hydrogen bonding, see: Bernstein et al. (1995) and puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The synthetic route to 4.
[Figure 2] Fig. 2. The asymmetric unit of 4 with displacement ellipsoids at the 50% probability level and C-bound H atoms omitted.
[Figure 3] Fig. 3. An overlay of molecule A (orange) and molecule B (black), r.m.s. deviation = 0.0185 Å), in 4.
[Figure 4] Fig. 4. Hydrogen bonding patterns (dotted blue lines) formed by molecule A in 4. Symmetry operations: a, -x + 1, -y, -z + 1; c, x + 1, y, z.
[Figure 5] Fig. 5. Hydrogen bonding patterns (dotted blue lines) formed by molecule B in 4. Symmetry operations: b, -x + 1, -y + 1, -z; d, -x + 1, -y + 1, -z + 1.
4-(Piperidin-1-yl)-4H-benzo[b]tetrazolo[1,5- d][1,4]diazepin-5(6H)-one top
Crystal data top
C14H16N6OZ = 4
Mr = 284.33F(000) = 600
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8210 (7) ÅCell parameters from 9970 reflections
b = 13.1802 (10) Åθ = 2.5–35.5°
c = 13.4476 (11) ŵ = 0.09 mm1
α = 105.549 (2)°T = 100 K
β = 99.490 (2)°Prism, colourless
γ = 106.623 (2)°0.39 × 0.28 × 0.09 mm
V = 1392.99 (19) Å3
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
12177 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics9733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 35.0°, θmin = 1.6°
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
h = 814
Tmin = 0.965, Tmax = 0.992k = 2121
51078 measured reflectionsl = 2119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.123All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.1991P]
where P = (Fo2 + 2Fc2)/3
12177 reflections(Δ/σ)max < 0.001
507 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H16N6Oγ = 106.623 (2)°
Mr = 284.33V = 1392.99 (19) Å3
Triclinic, P1Z = 4
a = 8.8210 (7) ÅMo Kα radiation
b = 13.1802 (10) ŵ = 0.09 mm1
c = 13.4476 (11) ÅT = 100 K
α = 105.549 (2)°0.39 × 0.28 × 0.09 mm
β = 99.490 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
12177 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
9733 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.992Rint = 0.029
51078 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 1.05Δρmax = 0.59 e Å3
12177 reflectionsΔρmin = 0.23 e Å3
507 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38761 (7)0.05350 (5)0.43124 (5)0.01571 (11)
N10.60561 (8)0.01832 (6)0.38204 (5)0.01320 (11)
H1N0.6179 (16)0.0054 (11)0.4346 (11)0.022 (3)*
N20.28444 (8)0.02275 (6)0.10021 (5)0.01491 (11)
N30.31273 (9)0.10081 (6)0.02234 (5)0.01668 (12)
N40.45718 (9)0.10612 (6)0.05193 (5)0.01538 (12)
N50.52683 (8)0.02989 (5)0.15250 (5)0.01189 (10)
N60.60485 (8)0.20364 (5)0.29571 (5)0.01251 (11)
C10.48112 (9)0.05928 (6)0.37255 (6)0.01170 (11)
C20.45700 (9)0.11124 (6)0.28435 (6)0.01159 (11)
H20.3595 (15)0.1330 (10)0.2855 (10)0.017 (3)*
C30.41921 (9)0.02050 (6)0.17984 (6)0.01156 (11)
C40.68763 (9)0.01103 (6)0.21140 (6)0.01208 (12)
C50.80602 (10)0.02132 (7)0.15637 (7)0.01617 (13)
H50.7760 (17)0.0426 (12)0.0765 (11)0.027 (3)*
C60.96362 (10)0.00308 (7)0.21295 (7)0.01873 (14)
H61.0457 (18)0.0093 (12)0.1781 (12)0.030 (3)*
C71.00262 (10)0.02641 (7)0.32418 (7)0.01900 (14)
H71.1107 (19)0.0416 (12)0.3635 (12)0.033 (4)*
C80.88362 (9)0.03591 (7)0.37831 (7)0.01614 (13)
H80.9081 (16)0.0536 (11)0.4581 (11)0.022 (3)*
C90.72383 (9)0.01681 (6)0.32280 (6)0.01220 (12)
C100.57954 (10)0.25511 (7)0.21242 (6)0.01617 (13)
H10A0.5286 (16)0.1938 (11)0.1401 (11)0.023 (3)*
H10B0.4961 (17)0.2921 (11)0.2234 (11)0.025 (3)*
C110.74158 (12)0.33854 (7)0.21560 (8)0.02248 (16)
H11A0.8144 (18)0.2980 (13)0.1966 (12)0.033 (4)*
H110.722 (2)0.3742 (13)0.1604 (13)0.040 (4)*
C120.81799 (14)0.42864 (8)0.32592 (9)0.02767 (19)
H12A0.753 (2)0.4792 (14)0.3395 (13)0.039 (4)*
H12B0.933 (2)0.4793 (14)0.3300 (13)0.039 (4)*
C130.82547 (12)0.37556 (8)0.41398 (8)0.02422 (17)
H13A0.9033 (18)0.3335 (12)0.4088 (12)0.031 (4)*
H13B0.8589 (17)0.4330 (12)0.4846 (11)0.027 (3)*
C140.65953 (10)0.28969 (7)0.40202 (6)0.01774 (14)
H14A0.6707 (17)0.2514 (11)0.4561 (11)0.026 (3)*
H14B0.5794 (18)0.3278 (12)0.4109 (11)0.029 (3)*
O510.52486 (10)0.64389 (6)0.05346 (5)0.02384 (13)
N510.40757 (10)0.50343 (6)0.11293 (6)0.01766 (13)
H51N0.4212 (19)0.4560 (13)0.0574 (13)0.036 (4)*
N520.67271 (10)0.77756 (6)0.37934 (6)0.02130 (14)
N530.72173 (10)0.73295 (7)0.45426 (6)0.02402 (15)
N540.62468 (10)0.63061 (7)0.43334 (6)0.02147 (14)
N550.50786 (9)0.60616 (6)0.34204 (5)0.01671 (12)
N560.26638 (9)0.67324 (6)0.22010 (5)0.01605 (12)
C510.45755 (11)0.61293 (7)0.11881 (6)0.01729 (14)
C520.43580 (10)0.69955 (6)0.21216 (6)0.01637 (13)
H520.4837 (16)0.7759 (11)0.2025 (10)0.020 (3)*
C530.53997 (10)0.69786 (7)0.31100 (6)0.01685 (13)
C540.38196 (10)0.49889 (6)0.29242 (6)0.01599 (13)
C550.31368 (11)0.44075 (7)0.35588 (7)0.01975 (15)
H550.3508 (16)0.4735 (11)0.4336 (11)0.022 (3)*
C560.19621 (11)0.33379 (8)0.30809 (8)0.02194 (16)
H560.1541 (17)0.2909 (12)0.3505 (11)0.027 (3)*
C570.14557 (11)0.28606 (7)0.19694 (8)0.02214 (16)
H570.0629 (17)0.2098 (12)0.1595 (12)0.029 (3)*
C580.21359 (11)0.34480 (7)0.13379 (7)0.01951 (15)
H580.1781 (17)0.3104 (12)0.0555 (11)0.027 (3)*
C590.33285 (10)0.45203 (6)0.18068 (6)0.01597 (13)
C600.14703 (12)0.64876 (7)0.11863 (7)0.02103 (15)
H600.1632 (16)0.7177 (11)0.1003 (11)0.023 (3)*
H60B0.1633 (17)0.5889 (12)0.0625 (11)0.028 (3)*
C610.02563 (12)0.60567 (8)0.13221 (8)0.02450 (17)
H61A0.1061 (19)0.5883 (13)0.0638 (13)0.038 (4)*
H61B0.0431 (17)0.5330 (12)0.1488 (11)0.027 (3)*
C620.05395 (13)0.69164 (9)0.22197 (9)0.0310 (2)
H62A0.059 (2)0.7574 (15)0.1989 (14)0.049 (5)*
H62B0.164 (2)0.6604 (14)0.2299 (13)0.039 (4)*
C630.08227 (13)0.73000 (9)0.32478 (8)0.02806 (19)
H63A0.075 (2)0.6703 (14)0.3558 (13)0.039 (4)*
H63B0.0736 (19)0.7914 (13)0.3791 (13)0.038 (4)*
C640.25074 (11)0.76573 (7)0.30339 (7)0.02088 (15)
H64A0.3370 (17)0.7863 (11)0.3681 (11)0.025 (3)*
H64B0.2700 (17)0.8337 (12)0.2788 (11)0.030 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0141 (2)0.0241 (3)0.0131 (2)0.0092 (2)0.00717 (19)0.0080 (2)
N10.0118 (2)0.0199 (3)0.0118 (2)0.0077 (2)0.0050 (2)0.0080 (2)
N20.0124 (3)0.0189 (3)0.0118 (3)0.0044 (2)0.0018 (2)0.0046 (2)
N30.0167 (3)0.0181 (3)0.0123 (3)0.0043 (2)0.0021 (2)0.0034 (2)
N40.0179 (3)0.0152 (3)0.0108 (2)0.0049 (2)0.0028 (2)0.0023 (2)
N50.0120 (2)0.0138 (2)0.0102 (2)0.0050 (2)0.00305 (19)0.00371 (19)
N60.0132 (3)0.0130 (2)0.0109 (2)0.0040 (2)0.0037 (2)0.00355 (19)
C10.0102 (3)0.0149 (3)0.0102 (3)0.0048 (2)0.0032 (2)0.0038 (2)
C20.0109 (3)0.0146 (3)0.0103 (3)0.0054 (2)0.0035 (2)0.0042 (2)
C30.0108 (3)0.0142 (3)0.0107 (3)0.0047 (2)0.0035 (2)0.0050 (2)
C40.0105 (3)0.0147 (3)0.0127 (3)0.0056 (2)0.0041 (2)0.0053 (2)
C50.0159 (3)0.0203 (3)0.0176 (3)0.0096 (3)0.0090 (3)0.0084 (3)
C60.0142 (3)0.0241 (4)0.0242 (4)0.0101 (3)0.0104 (3)0.0109 (3)
C70.0113 (3)0.0238 (4)0.0247 (4)0.0079 (3)0.0053 (3)0.0099 (3)
C80.0114 (3)0.0208 (3)0.0168 (3)0.0065 (2)0.0026 (2)0.0070 (3)
C90.0103 (3)0.0150 (3)0.0134 (3)0.0055 (2)0.0044 (2)0.0059 (2)
C100.0185 (3)0.0160 (3)0.0159 (3)0.0063 (3)0.0051 (3)0.0076 (2)
C110.0251 (4)0.0194 (3)0.0221 (4)0.0027 (3)0.0097 (3)0.0090 (3)
C120.0297 (5)0.0174 (3)0.0284 (4)0.0010 (3)0.0088 (4)0.0050 (3)
C130.0205 (4)0.0219 (4)0.0203 (4)0.0014 (3)0.0043 (3)0.0015 (3)
C140.0177 (3)0.0176 (3)0.0132 (3)0.0027 (3)0.0049 (3)0.0010 (2)
O510.0383 (4)0.0196 (3)0.0197 (3)0.0109 (3)0.0165 (3)0.0097 (2)
N510.0272 (3)0.0141 (3)0.0140 (3)0.0077 (2)0.0090 (3)0.0054 (2)
N520.0236 (3)0.0198 (3)0.0173 (3)0.0063 (3)0.0042 (3)0.0032 (2)
N530.0253 (4)0.0247 (3)0.0186 (3)0.0083 (3)0.0019 (3)0.0044 (3)
N540.0247 (4)0.0246 (3)0.0143 (3)0.0102 (3)0.0018 (3)0.0056 (2)
N550.0202 (3)0.0180 (3)0.0126 (3)0.0074 (2)0.0042 (2)0.0055 (2)
N560.0200 (3)0.0147 (3)0.0128 (3)0.0066 (2)0.0037 (2)0.0033 (2)
C510.0245 (4)0.0157 (3)0.0137 (3)0.0078 (3)0.0070 (3)0.0059 (2)
C520.0221 (3)0.0142 (3)0.0135 (3)0.0063 (3)0.0059 (3)0.0049 (2)
C530.0206 (3)0.0162 (3)0.0143 (3)0.0070 (3)0.0060 (3)0.0044 (2)
C540.0192 (3)0.0163 (3)0.0150 (3)0.0075 (3)0.0059 (3)0.0068 (2)
C550.0243 (4)0.0234 (4)0.0189 (3)0.0120 (3)0.0102 (3)0.0119 (3)
C560.0226 (4)0.0242 (4)0.0269 (4)0.0099 (3)0.0119 (3)0.0159 (3)
C570.0207 (4)0.0194 (3)0.0278 (4)0.0057 (3)0.0071 (3)0.0111 (3)
C580.0222 (4)0.0165 (3)0.0190 (3)0.0057 (3)0.0042 (3)0.0065 (3)
C590.0202 (3)0.0158 (3)0.0150 (3)0.0078 (3)0.0065 (3)0.0071 (2)
C600.0260 (4)0.0214 (4)0.0149 (3)0.0088 (3)0.0022 (3)0.0060 (3)
C610.0238 (4)0.0219 (4)0.0229 (4)0.0070 (3)0.0005 (3)0.0041 (3)
C620.0237 (4)0.0301 (5)0.0333 (5)0.0114 (4)0.0046 (4)0.0010 (4)
C630.0242 (4)0.0281 (4)0.0259 (4)0.0074 (3)0.0098 (3)0.0006 (3)
C640.0229 (4)0.0161 (3)0.0193 (4)0.0058 (3)0.0058 (3)0.0001 (3)
Geometric parameters (Å, º) top
O1—C11.2329 (9)O51—C511.2317 (10)
N1—H1N0.850 (14)N51—H51N0.886 (16)
N1—C11.3578 (9)N51—C511.3589 (10)
N1—C91.4142 (10)N51—C591.4131 (11)
N2—N31.3686 (10)N52—N531.3663 (11)
N2—C31.3229 (9)N52—C531.3202 (11)
N3—N41.2983 (10)N53—N541.2992 (12)
N4—N51.3640 (9)N54—N551.3615 (10)
N5—C31.3499 (9)N55—C531.3524 (11)
N5—C41.4225 (9)N55—C541.4244 (11)
N6—C21.4605 (10)N56—C521.4632 (11)
N6—C101.4752 (10)N56—C601.4731 (11)
N6—C141.4674 (10)N56—C641.4748 (11)
C1—C21.5351 (10)C51—C521.5338 (11)
C2—H20.982 (12)C52—H521.026 (13)
C2—C31.4944 (10)C52—C531.4955 (11)
C4—C51.3923 (10)C54—C551.3908 (11)
C4—C91.4004 (10)C54—C591.4005 (11)
C5—H51.002 (14)C55—H550.974 (13)
C5—C61.3897 (11)C55—C561.3904 (13)
C6—H60.936 (15)C56—H560.951 (14)
C6—C71.3959 (13)C56—C571.3943 (14)
C7—H70.947 (15)C57—H570.992 (14)
C7—C81.3877 (12)C57—C581.3912 (13)
C8—H81.007 (13)C58—H580.983 (14)
C8—C91.3988 (10)C58—C591.3982 (12)
C10—H10A1.014 (13)C60—H600.982 (13)
C10—H10B1.001 (14)C60—H60B0.997 (14)
C10—C111.5196 (12)C60—C611.5258 (14)
C11—H11A0.969 (15)C61—H61A0.991 (16)
C11—H110.996 (16)C61—H61B1.016 (14)
C11—C121.5275 (14)C61—C621.5269 (14)
C12—H12A0.996 (16)C62—H62A1.005 (18)
C12—H12B1.023 (16)C62—H62B0.974 (17)
C12—C131.5300 (15)C62—C631.5300 (16)
C13—H13A0.998 (15)C63—H63A0.977 (16)
C13—H13B0.979 (14)C63—H63B0.965 (16)
C13—C141.5252 (12)C63—C641.5252 (14)
C14—H14A0.998 (14)C64—H64A0.973 (14)
C14—H14B0.982 (14)C64—H64B1.015 (14)
H1N—N1—C1114.3 (9)H51N—N51—C51115.8 (10)
H1N—N1—C9115.7 (9)H51N—N51—C59114.1 (10)
C1—N1—C9129.81 (6)C51—N51—C59130.00 (7)
N3—N2—C3105.55 (6)N53—N52—C53105.52 (7)
N2—N3—N4111.36 (6)N52—N53—N54111.29 (7)
N3—N4—N5106.08 (6)N53—N54—N55106.29 (7)
N4—N5—C3108.10 (6)N54—N55—C53107.76 (7)
N4—N5—C4122.45 (6)N54—N55—C54122.40 (7)
C3—N5—C4129.44 (6)C53—N55—C54129.82 (7)
C2—N6—C10111.02 (6)C52—N56—C60113.57 (7)
C2—N6—C14112.06 (6)C52—N56—C64110.57 (6)
C10—N6—C14109.94 (6)C60—N56—C64109.24 (7)
O1—C1—N1121.56 (7)O51—C51—N51121.40 (7)
O1—C1—C2120.43 (6)O51—C51—C52119.90 (7)
N1—C1—C2118.00 (6)N51—C51—C52118.64 (7)
N6—C2—C1111.27 (6)N56—C52—C51113.38 (7)
N6—C2—H2113.6 (7)N56—C52—H52113.6 (7)
N6—C2—C3109.40 (6)N56—C52—C53108.84 (7)
C1—C2—H2108.1 (7)C51—C52—H52105.9 (7)
C1—C2—C3107.10 (6)C51—C52—C53105.63 (6)
H2—C2—C3107.0 (7)H52—C52—C53109.1 (7)
N2—C3—N5108.91 (6)N52—C53—N55109.13 (7)
N2—C3—C2128.45 (7)N52—C53—C52128.94 (8)
N5—C3—C2122.63 (6)N55—C53—C52121.92 (7)
N5—C4—C5118.89 (7)N55—C54—C55119.38 (7)
N5—C4—C9119.78 (6)N55—C54—C59119.52 (7)
C5—C4—C9121.33 (7)C55—C54—C59121.06 (8)
C4—C5—H5119.5 (8)C54—C55—H55120.3 (8)
C4—C5—C6119.48 (7)C54—C55—C56119.71 (8)
H5—C5—C6121.0 (8)H55—C55—C56119.9 (8)
C5—C6—H6121.3 (9)C55—C56—H56120.7 (9)
C5—C6—C7119.99 (7)C55—C56—C57119.95 (8)
H6—C6—C7118.7 (9)H56—C56—C57119.3 (9)
C6—C7—H7120.5 (9)C56—C57—H57122.7 (8)
C6—C7—C8120.13 (7)C56—C57—C58120.12 (8)
H7—C7—C8119.4 (9)H57—C57—C58117.2 (8)
C7—C8—H8121.2 (8)C57—C58—H58119.8 (8)
C7—C8—C9120.79 (7)C57—C58—C59120.60 (8)
H8—C8—C9118.0 (8)H58—C58—C59119.6 (8)
N1—C9—C4123.90 (6)N51—C59—C54123.27 (7)
N1—C9—C8117.64 (7)N51—C59—C58117.95 (7)
C4—C9—C8118.27 (7)C54—C59—C58118.55 (7)
N6—C10—H10A109.2 (7)N56—C60—H60109.4 (8)
N6—C10—H10B109.5 (8)N56—C60—H60B108.1 (8)
N6—C10—C11109.81 (7)N56—C60—C61108.76 (7)
H10A—C10—H10B105.0 (11)H60—C60—H60B111.6 (11)
H10A—C10—C11111.8 (8)H60—C60—C61109.8 (8)
H10B—C10—C11111.4 (8)H60B—C60—C61109.2 (8)
C10—C11—H11A108.7 (9)C60—C61—H61A108.9 (9)
C10—C11—H11108.8 (9)C60—C61—H61B109.5 (8)
C10—C11—C12110.94 (8)C60—C61—C62111.39 (8)
H11A—C11—H11107.3 (13)H61A—C61—H61B107.4 (12)
H11A—C11—C12111.0 (9)H61A—C61—C62110.2 (9)
H11—C11—C12109.9 (9)H61B—C61—C62109.4 (8)
C11—C12—H12A110.7 (9)C61—C62—H62A109.2 (10)
C11—C12—H12B110.5 (9)C61—C62—H62B109.1 (9)
C11—C12—C13110.97 (8)C61—C62—C63110.61 (8)
H12A—C12—H12B105.6 (13)H62A—C62—H62B102.9 (13)
H12A—C12—C13108.5 (9)H62A—C62—C63110.7 (10)
H12B—C12—C13110.4 (9)H62B—C62—C63114.0 (9)
C12—C13—H13A110.2 (9)C62—C63—H63A111.7 (10)
C12—C13—H13B110.7 (8)C62—C63—H63B111.2 (9)
C12—C13—C14111.35 (8)C62—C63—C64110.88 (9)
H13A—C13—H13B110.0 (12)H63A—C63—H63B105.8 (13)
H13A—C13—C14106.0 (8)H63A—C63—C64107.8 (9)
H13B—C13—C14108.4 (8)H63B—C63—C64109.4 (9)
N6—C14—C13109.53 (7)N56—C64—C63110.32 (7)
N6—C14—H14A107.6 (8)N56—C64—H64A108.6 (8)
N6—C14—H14B109.8 (8)N56—C64—H64B108.5 (8)
C13—C14—H14A109.5 (8)C63—C64—H64A110.7 (8)
C13—C14—H14B109.4 (8)C63—C64—H64B111.4 (8)
H14A—C14—H14B111.0 (12)H64A—C64—H64B107.2 (12)
C3—N2—N3—N40.15 (9)C53—N52—N53—N540.19 (10)
N2—N3—N4—N50.29 (8)N52—N53—N54—N550.05 (10)
N3—N4—N5—C30.62 (8)N53—N54—N55—C530.27 (9)
N3—N4—N5—C4179.48 (7)N53—N54—N55—C54177.97 (8)
C9—N1—C1—O1179.78 (7)C59—N51—C51—O51178.22 (9)
C9—N1—C1—C21.11 (11)C59—N51—C51—C520.99 (14)
C10—N6—C2—C1178.53 (6)C60—N56—C52—C5150.44 (9)
C10—N6—C2—C363.32 (7)C60—N56—C52—C53167.67 (6)
C14—N6—C2—C155.17 (8)C64—N56—C52—C51173.65 (7)
C14—N6—C2—C3173.31 (6)C64—N56—C52—C5369.12 (8)
O1—C1—C2—N6123.80 (7)O51—C51—C52—N56126.51 (9)
O1—C1—C2—C3116.68 (7)O51—C51—C52—C53114.40 (9)
N1—C1—C2—N657.52 (8)N51—C51—C52—N5656.22 (10)
N1—C1—C2—C362.01 (8)N51—C51—C52—C5362.87 (10)
N3—N2—C3—N50.53 (8)N53—N52—C53—N550.36 (9)
N3—N2—C3—C2178.55 (7)N53—N52—C53—C52179.19 (8)
N4—N5—C3—N20.73 (8)N54—N55—C53—N520.40 (9)
N4—N5—C3—C2178.43 (6)N54—N55—C53—C52179.32 (7)
C4—N5—C3—N2179.49 (7)C54—N55—C53—N52177.66 (8)
C4—N5—C3—C20.33 (12)C54—N55—C53—C521.26 (13)
N6—C2—C3—N2121.66 (8)N56—C52—C53—N52124.11 (9)
N6—C2—C3—N557.31 (9)N56—C52—C53—N5557.19 (10)
C1—C2—C3—N2117.62 (8)C51—C52—C53—N52113.82 (9)
C1—C2—C3—N563.41 (9)C51—C52—C53—N5564.87 (10)
N4—N5—C4—C533.23 (10)N54—N55—C54—C5536.85 (11)
N4—N5—C4—C9146.46 (7)N54—N55—C54—C59140.99 (8)
C3—N5—C4—C5145.37 (8)C53—N55—C54—C55145.34 (9)
C3—N5—C4—C934.94 (11)C53—N55—C54—C5936.82 (12)
N5—C4—C5—C6179.98 (7)N55—C54—C55—C56177.01 (8)
C9—C4—C5—C60.34 (12)C59—C54—C55—C560.80 (13)
C4—C5—C6—C70.64 (12)C54—C55—C56—C570.99 (13)
C5—C6—C7—C80.98 (13)C55—C56—C57—C580.65 (14)
C6—C7—C8—C90.34 (13)C56—C57—C58—C590.11 (14)
C7—C8—C9—N1174.59 (7)C57—C58—C59—N51174.60 (8)
C7—C8—C9—C40.62 (11)C57—C58—C59—C540.09 (13)
N5—C4—C9—N15.76 (11)N55—C54—C59—N513.16 (12)
N5—C4—C9—C8179.36 (7)N55—C54—C59—C58177.55 (7)
C5—C4—C9—N1173.92 (7)C55—C54—C59—N51174.65 (8)
C5—C4—C9—C80.96 (11)C55—C54—C59—C580.26 (12)
C1—N1—C9—C443.24 (12)C51—N51—C59—C5441.97 (13)
C1—N1—C9—C8141.84 (8)C51—N51—C59—C58143.61 (9)
C2—N6—C10—C11171.45 (6)C52—N56—C60—C61171.56 (7)
C14—N6—C10—C1163.98 (8)C64—N56—C60—C6164.50 (9)
N6—C10—C11—C1257.34 (10)N56—C60—C61—C6258.95 (10)
C10—C11—C12—C1350.96 (11)C60—C61—C62—C6352.02 (12)
C11—C12—C13—C1450.81 (11)C61—C62—C63—C6450.42 (12)
C2—N6—C14—C13172.62 (7)C52—N56—C64—C63170.26 (8)
C10—N6—C14—C1363.41 (9)C60—N56—C64—C6364.06 (10)
C12—C13—C14—N656.84 (10)C62—C63—C64—N5656.70 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.850 (14)2.069 (14)2.9089 (9)169.4 (13)
N51—H51N···O51ii0.886 (16)1.929 (16)2.8116 (10)173.6 (14)
C6—H6···N2iii0.936 (15)2.531 (15)3.4638 (11)174.8 (12)
C7—H7···O1iii0.947 (15)2.406 (15)3.3394 (10)168.4 (13)
C55—H55···N54iv0.974 (13)2.548 (13)3.2293 (11)127.0 (10)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N6O
Mr284.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.8210 (7), 13.1802 (10), 13.4476 (11)
α, β, γ (°)105.549 (2), 99.490 (2), 106.623 (2)
V3)1392.99 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.28 × 0.09
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
Absorption correctionNumerical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.965, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
51078, 12177, 9733
Rint0.029
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.05
No. of reflections12177
No. of parameters507
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.59, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al. 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.850 (14)2.069 (14)2.9089 (9)169.4 (13)
N51—H51N···O51ii0.886 (16)1.929 (16)2.8116 (10)173.6 (14)
C6—H6···N2iii0.936 (15)2.531 (15)3.4638 (11)174.8 (12)
C7—H7···O1iii0.947 (15)2.406 (15)3.3394 (10)168.4 (13)
C55—H55···N54iv0.974 (13)2.548 (13)3.2293 (11)127.0 (10)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The diffractometer was purchased with funding from NSF grant CHE-0741837.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGunawan, S., Nichol, G. S., Chappeta, S., Dietrich, J. & Hulme, C. (2010). Tetrahedron Lett. 51, 4689–4692  Web of Science CrossRef CAS PubMed Google Scholar
First citationHulme, C. & Dietrich, J. (2009). Mol. Divers. 13, 195–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHulme, C. & Gore, V. (2003). Curr. Med. Chem. 10, 51–80.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgi, I. & Steinbrückner, C. (1961). Chem. Ber. 94, 734–742.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds