organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Iso­propyl 3-(3,4-dihy­dr­oxy­phen­yl)acrylate

aCollege of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China, and bAffiliated High School, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: zhengxh@nwu.edu.cn

(Received 25 October 2010; accepted 29 October 2010; online 4 November 2010)

In the title compound, C12H14O4, a derivative of caffeic acid [(E)-3-(3,4-dihy­droxy­phen­yl)-2-propenoic acid], an intra­molecular O—H⋯O hydrogen bond forms an S(5) ring. In the crystal, inter­molecular O—H⋯O hydrogen bonds link mol­ecules into chains propagating in [110].

Related literature

For the properties of caffeate esters, see: Uwai et al. (2008[Uwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795-7803.]); Buzzi et al. (2009[Buzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596-4602.]); Calheiros et al.(2008[Calheiros, R., Machado, N. F. L., Fiuza, S. M., Gaspar, A., Garrido, J., Milhazes, N., Borges, F. & Marques, M. P. M. (2008). J. Raman Spectrosc. 39, 95-107.]); Xia et al.(2008[Xia, C.-N., Li, H.-B., Liu, F. & Hu, W.-X. (2008). Bioorg. Med. Chem. Lett. 18, 6553-6557.]). For the preparation of the title compound, see: Hu et al. (2006[Hu, W.-X., Xia, C.-N., Wang, G.-H. & Zhou, W. (2006). J. Chem. Res. 29, 586-588.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14O4

  • Mr = 222.23

  • Triclinic, [P \overline 1]

  • a = 5.8830 (14) Å

  • b = 9.644 (2) Å

  • c = 11.428 (3) Å

  • α = 65.690 (2)°

  • β = 89.370 (3)°

  • γ = 81.018 (3)°

  • V = 582.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.31 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 2938 measured reflections

  • 2042 independent reflections

  • 1436 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.151

  • S = 1.05

  • 2042 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.92 2.725 (2) 169
O4—H4⋯O3ii 0.82 2.09 2.792 (2) 143
O4—H4⋯O3 0.82 2.28 2.721 (2) 114
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Caffeate esters have been shown to have, an inhibitory effect on lipopolysaccharide-induced nitric oxide production, antinociceptive properties, and anticancer activity (Uwai et al., 2008; Buzzi et al., 2009; Calheiros et al., 2008; Xia et al., 2008).

The molecular structure of the title compound (I) is shown in Fig. 1. An intramolecular O-H···O hydrogen bond forms an S(5) ring (Bernstein et al., 1995). In the crystal structure, intermolecular O—H···O hydrogen bonds link molecules into one-dimensional chains along [110] (see Fig .2).

Related literature top

For the properties of caffeate esters, see: Uwai et al. (2008); Buzzi et al. (2009); Calheiros et al.(2008); Xia et al.(2008). For the preparation of the title compound, see: Hu et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The synthesis follows the method of Hu et al. (2006). To a solution of 0.02 M caffeic acid in 120 ml of 2-propanol at room temperature, 0.2 M HCl in 2-propanol was added. After the solution had been allowed to stir and reflux for 16 h, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate three times and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl, dried over MgSO4, and evaporated. The crude products were purified by chromatography (SiO2; elution with petroleum ether-acetoacetate, 6:1 v/v). Yield 80%. X-ray quality crystals were grown from a solution of the title compound in acetone and toluene at room temperature. Spectroscopic analysis: IR(KBr, χm-1): 3464, 3310, 2973, 2926, 1675, 1629, 1599, 1529, 1370, 1276; 1H NMR (DMSO, δ, p.p.m.): 9.606 (s, 1 H), 9.146 (s, 1 H), 7.424—7.464 (d, 1 H), 7.029 (s, 1 H), 6.990—7.011 (d, 1 H), 6.742—6.762 (d, 1 H), 6.246—6.206(d, 1 H), 4.951—5.013(m, 1 H), 1.245 (s, 3 H), 1.229 (s, 3 H).

Refinement top

H atoms were placed in calculated positions with O—H = 0.82Å and C—H = 0.93–0.96 Å with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl, O).

Structure description top

Caffeate esters have been shown to have, an inhibitory effect on lipopolysaccharide-induced nitric oxide production, antinociceptive properties, and anticancer activity (Uwai et al., 2008; Buzzi et al., 2009; Calheiros et al., 2008; Xia et al., 2008).

The molecular structure of the title compound (I) is shown in Fig. 1. An intramolecular O-H···O hydrogen bond forms an S(5) ring (Bernstein et al., 1995). In the crystal structure, intermolecular O—H···O hydrogen bonds link molecules into one-dimensional chains along [110] (see Fig .2).

For the properties of caffeate esters, see: Uwai et al. (2008); Buzzi et al. (2009); Calheiros et al.(2008); Xia et al.(2008). For the preparation of the title compound, see: Hu et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), viewed along the a axis. The dashed lines show the donor-acceptor distances of O—H···O hydrogen bonds. H atoms are not shown.
(E)-Isopropyl 3-(3,4-dihydroxyphenyl)acrylate top
Crystal data top
C12H14O4Z = 2
Mr = 222.23F(000) = 236
Triclinic, P1Dx = 1.267 Mg m3
Hall symbol: -P 1Melting point: 415 K
a = 5.8830 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.644 (2) ÅCell parameters from 966 reflections
c = 11.428 (3) Åθ = 2.4–26.5°
α = 65.690 (2)°µ = 0.10 mm1
β = 89.370 (3)°T = 296 K
γ = 81.018 (3)°Block, colorless
V = 582.6 (2) Å30.31 × 0.27 × 0.19 mm
Data collection top
Bruker APEXII CCD
diffractometer
1436 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
φ and ω scansh = 74
2938 measured reflectionsk = 1111
2042 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.0498P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2042 reflectionsΔρmax = 0.16 e Å3
150 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.059 (11)
Crystal data top
C12H14O4γ = 81.018 (3)°
Mr = 222.23V = 582.6 (2) Å3
Triclinic, P1Z = 2
a = 5.8830 (14) ÅMo Kα radiation
b = 9.644 (2) ŵ = 0.10 mm1
c = 11.428 (3) ÅT = 296 K
α = 65.690 (2)°0.31 × 0.27 × 0.19 mm
β = 89.370 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1436 reflections with I > 2σ(I)
2938 measured reflectionsRint = 0.015
2042 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2042 reflectionsΔρmin = 0.13 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2370 (2)0.06896 (13)0.33802 (11)0.0681 (4)
O20.0059 (3)0.11022 (15)0.18106 (14)0.0914 (6)
O30.3441 (2)0.87422 (13)0.01294 (13)0.0716 (4)
H30.23020.87940.05620.107*
O40.7644 (2)0.80457 (15)0.11324 (14)0.0808 (5)
H40.69070.88840.06530.121*
C10.0940 (5)0.1810 (3)0.4336 (3)0.1171 (10)
H1A0.03410.19520.51630.176*
H1B0.18150.26100.44390.176*
H1C0.19180.08230.39400.176*
C20.1019 (4)0.1880 (2)0.34997 (19)0.0718 (6)
H20.04110.17070.26470.086*
C30.2645 (4)0.3381 (2)0.4062 (2)0.0847 (7)
H3A0.39040.33490.35150.127*
H3B0.18470.42050.41320.127*
H3C0.32280.35520.49000.127*
C40.1664 (3)0.0739 (2)0.25094 (17)0.0612 (5)
C50.3170 (3)0.1807 (2)0.25085 (17)0.0631 (5)
H50.44980.14300.30530.076*
C60.2693 (3)0.3291 (2)0.17549 (16)0.0585 (5)
H60.13440.36050.12320.070*
C70.4000 (3)0.45108 (19)0.16300 (15)0.0539 (5)
C80.6149 (3)0.4221 (2)0.22568 (17)0.0606 (5)
H80.67970.32130.27950.073*
C90.7324 (3)0.5406 (2)0.20894 (17)0.0639 (5)
H90.87520.51940.25220.077*
C100.6403 (3)0.69140 (19)0.12826 (16)0.0582 (5)
C110.4264 (3)0.72247 (19)0.06532 (15)0.0550 (5)
C120.3083 (3)0.60347 (18)0.08283 (15)0.0550 (5)
H120.16450.62520.04030.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0731 (9)0.0470 (7)0.0691 (8)0.0095 (6)0.0157 (6)0.0089 (6)
O20.1011 (12)0.0557 (8)0.0969 (10)0.0118 (8)0.0444 (9)0.0104 (8)
O30.0749 (9)0.0457 (7)0.0806 (9)0.0074 (6)0.0259 (7)0.0128 (6)
O40.0724 (9)0.0577 (8)0.1017 (11)0.0153 (7)0.0234 (8)0.0204 (8)
C10.0813 (17)0.0802 (16)0.167 (3)0.0154 (13)0.0211 (17)0.0286 (17)
C20.0847 (14)0.0521 (11)0.0697 (12)0.0175 (10)0.0131 (10)0.0139 (9)
C30.1079 (18)0.0533 (11)0.0819 (14)0.0073 (11)0.0031 (12)0.0192 (10)
C40.0665 (12)0.0488 (10)0.0578 (10)0.0044 (9)0.0117 (9)0.0132 (8)
C50.0617 (11)0.0536 (11)0.0644 (11)0.0074 (9)0.0098 (9)0.0153 (9)
C60.0622 (11)0.0515 (10)0.0549 (10)0.0062 (8)0.0053 (8)0.0161 (8)
C70.0561 (10)0.0501 (10)0.0515 (9)0.0055 (8)0.0005 (7)0.0180 (8)
C80.0613 (11)0.0503 (10)0.0593 (10)0.0018 (8)0.0065 (8)0.0143 (8)
C90.0550 (10)0.0594 (11)0.0686 (11)0.0038 (9)0.0117 (9)0.0196 (9)
C100.0574 (11)0.0533 (10)0.0610 (10)0.0099 (8)0.0040 (8)0.0204 (8)
C110.0593 (10)0.0459 (9)0.0537 (9)0.0051 (8)0.0066 (8)0.0157 (8)
C120.0539 (10)0.0517 (10)0.0540 (9)0.0049 (8)0.0072 (8)0.0176 (8)
Geometric parameters (Å, º) top
O1—C41.327 (2)C3—H3C0.9600
O1—C21.457 (2)C4—C51.459 (3)
O2—C41.210 (2)C5—C61.317 (2)
O3—C111.3735 (19)C5—H50.9300
O3—H30.8200C6—C71.462 (2)
O4—C101.358 (2)C6—H60.9300
O4—H40.8200C7—C81.391 (3)
C1—C21.500 (3)C7—C121.395 (2)
C1—H1A0.9600C8—C91.372 (3)
C1—H1B0.9600C8—H80.9300
C1—H1C0.9600C9—C101.386 (2)
C2—C31.496 (3)C9—H90.9300
C2—H20.9800C10—C111.384 (2)
C3—H3A0.9600C11—C121.377 (2)
C3—H3B0.9600C12—H120.9300
C4—O1—C2118.69 (14)C6—C5—C4121.51 (17)
C11—O3—H3109.5C6—C5—H5119.2
C10—O4—H4109.5C4—C5—H5119.2
C2—C1—H1A109.5C5—C6—C7128.67 (18)
C2—C1—H1B109.5C5—C6—H6115.7
H1A—C1—H1B109.5C7—C6—H6115.7
C2—C1—H1C109.5C8—C7—C12118.10 (16)
H1A—C1—H1C109.5C8—C7—C6122.98 (16)
H1B—C1—H1C109.5C12—C7—C6118.91 (16)
O1—C2—C3106.18 (17)C9—C8—C7120.69 (17)
O1—C2—C1108.92 (17)C9—C8—H8119.7
C3—C2—C1112.69 (18)C7—C8—H8119.7
O1—C2—H2109.7C8—C9—C10120.69 (17)
C3—C2—H2109.7C8—C9—H9119.7
C1—C2—H2109.7C10—C9—H9119.7
C2—C3—H3A109.5O4—C10—C11122.00 (15)
C2—C3—H3B109.5O4—C10—C9118.59 (16)
H3A—C3—H3B109.5C11—C10—C9119.41 (16)
C2—C3—H3C109.5O3—C11—C12123.54 (15)
H3A—C3—H3C109.5O3—C11—C10116.67 (15)
H3B—C3—H3C109.5C12—C11—C10119.79 (15)
O2—C4—O1123.04 (17)C11—C12—C7121.31 (16)
O2—C4—C5124.39 (16)C11—C12—H12119.3
O1—C4—C5112.57 (15)C7—C12—H12119.3
C4—O1—C2—C3155.38 (16)C7—C8—C9—C100.6 (3)
C4—O1—C2—C183.0 (2)C8—C9—C10—O4179.05 (16)
C2—O1—C4—O20.3 (3)C8—C9—C10—C110.8 (3)
C2—O1—C4—C5179.43 (15)O4—C10—C11—O30.4 (3)
O2—C4—C5—C62.5 (3)C9—C10—C11—O3179.78 (16)
O1—C4—C5—C6176.64 (16)O4—C10—C11—C12179.41 (17)
C4—C5—C6—C7179.87 (16)C9—C10—C11—C120.4 (3)
C5—C6—C7—C85.7 (3)O3—C11—C12—C7179.71 (14)
C5—C6—C7—C12175.59 (17)C10—C11—C12—C70.1 (3)
C12—C7—C8—C90.1 (3)C8—C7—C12—C110.2 (3)
C6—C7—C8—C9178.84 (17)C6—C7—C12—C11178.53 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.922.725 (2)169
O4—H4···O3ii0.822.092.792 (2)143
O4—H4···O30.822.282.721 (2)114
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H14O4
Mr222.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.8830 (14), 9.644 (2), 11.428 (3)
α, β, γ (°)65.690 (2), 89.370 (3), 81.018 (3)
V3)582.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.27 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2938, 2042, 1436
Rint0.015
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.151, 1.05
No. of reflections2042
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.13

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.9162.725 (2)168.96
O4—H4···O3ii0.822.0902.792 (2)143.34
O4—H4···O30.822.2812.721 (2)114.13
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Sciences Foundation of China (grant No. 20875074) and the Ministry of Science of China (grant No. 2009ZX09103-121).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuzzi, F. de C., Franzoi, C. L., Antonini, G., Fracasso, M., Filho, V. C., Yunes, R. A. & Niero, R. (2009). Eur. J. Med. Chem. 44, 4596–4602.  PubMed CAS Google Scholar
First citationCalheiros, R., Machado, N. F. L., Fiuza, S. M., Gaspar, A., Garrido, J., Milhazes, N., Borges, F. & Marques, M. P. M. (2008). J. Raman Spectrosc. 39, 95–107.  Web of Science CrossRef CAS Google Scholar
First citationHu, W.-X., Xia, C.-N., Wang, G.-H. & Zhou, W. (2006). J. Chem. Res. 29, 586–588.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUwai, K., Osanai, Y., Imaizumi, T., Kanno, S., Takeshita, M. & Ishikawa, M. (2008). Bioorg. Med. Chem. 16, 7795–7803.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, C.-N., Li, H.-B., Liu, F. & Hu, W.-X. (2008). Bioorg. Med. Chem. Lett. 18, 6553–6557.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds