organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­methyl-7-phenyl-N-(4-methyl­phen­yl)dibenzo[b,h][1,6]naphthyridin-6-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: vennilakn@gmail.com

(Received 24 November 2010; accepted 6 December 2010; online 11 December 2010)

The title compound, C31H25N3, was synthesized from 6,4′,4′′-trimethyl-2,4-bis­(N-phenyl­amino)­quinoline and is the first structural example containing a phenyl and phenyl­amino fragment attached to a fused dibenzo[1,6]naphthyridine moiety. The fused tetra­cyclic ring system is essentially planar [r.m.s. deviation = 0.08 (3) Å]. The phenyl ring and the phenyl­amino group are inclined by 82.68 (6) and 35.31 (5)°, respectively, to the mean plane of the fused tetra­cyclic ring system. A weak intra­molecular N—H⋯π(arene) inter­action may in part influence the conformation of the mol­ecule. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯N hydrogen bonds into centrosymmetric dimers. Additional stabilization is provided by weak C—H⋯π and ππ stacking inter­actions [centroid–centroid distances = 3.834 (2) and 3.898 (1) Å].

Related literature

For the biological activity of [1,6]naphthyridine derivatives, see: Ruchelman et al. (2003[Ruchelman, A. L., Singh, K. S., Ray, A., Wu, H. X., Yang, M. J., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061-2073.], 2005[Ruchelman, A. L., Houghton, P. J., Zhou, N., Liu, A., Liu, L. F. & LaVoie, E. J. (2005). J. Med Chem. 48, 792-804.]); Hinschberger et al. (2003[Hinschberger, A., Butt, S., Lelong, V., Boulouard, M., Dumuis, A., Dauphin, F., Bureau, R., Pfeiffer, B., Renard, P. & Rault, S. (2003). J. Med. Chem. 43, 138-147.]); Bedard et al. (2000[Bedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929-937.]); Feng et al. (2008[Feng, W., Satyanarayana, M., Cheng, L., Liu, A., Tsai, Y. C., Liu, L. F. & LaVoie, E. J. (2008). Bioorg. Med. Chem. 16, 9295-9301.]). For the synthesis of the title compound, see: Manoj & Rajendra Prasad (2009[Manoj, M. & Rajendra Prasad, K. J. (2009). J. Chem. Res. pp. 485-488.]). For the crystal structures of other [1,6]naphthrydine derivatives, see: Peng et al. (2009[Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109-o1110.]); Sivakumar et al. (2003[Sivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153-o155.]); Seebacher et al. (2010[Seebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114.]); Vennila et al. (2010[Vennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010). Acta Cryst. E66, o2426-o2427.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C31H25N3

  • Mr = 439.54

  • Monoclinic, P 21 /c

  • a = 11.9390 (4) Å

  • b = 10.5595 (4) Å

  • c = 19.6084 (7) Å

  • β = 107.369 (2)°

  • V = 2359.31 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.986

  • 17909 measured reflections

  • 2938 independent reflections

  • 2197 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 22.1°

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.132

  • S = 1.07

  • 2938 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cg1 0.86 2.51 3.364 (3) 174
C18—H18⋯Cg2i 0.93 2.62 3.495 (3) 156
C29—H29BCg2ii 0.96 2.90 3.622 (3) 133
C22—H22⋯N2iii 0.93 2.51 3.419 (3) 166
Symmetry codes: (i) -x+1, -y, -z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976)[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structures of number of differently substituted naphthyridine derivatives have already been reported (e.g. Peng et al. 2009) but among those only few are dibenzo[1,6] naphthyridine compounds (e.g. Sivakumar et al. 2003; Seebacher et al., 2010). [1,6]Naphthyridine compounds are known to have biological activities (Ruchelman et al. 2005; Hinschberger et al. 2003; Feng et al., 2008). Dibenzo[1,6]naphthyridines are reported to have potent Topomerase I targeting, cytotoxic (Ruchelman et al., 2003) and are also proven anti-tumour agents. A series of [1,6] naphthyridine compounds were shown to exhibit potent activity against human cytomegalovirus (Bedard et al. , 2000). We are focused on preparing heterocyclic naphthyridine derivatives with potential biological properties. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1 The fused tetracyclic ring system is essentially planar (r.m.s. deviation = 0.08 (3)Å) as was reported for a previously determined structure (Vennila et al., 2010). The phenyl ring and the phenyl amino group are inclined by 82.68 (6)° and 35.31 (5)°, respectively to the mean plane of the fused tetracyclic ring system. The bond lengths (Allen et al., 1987) and angles are in the normal ranges. In the crystal structure (Fig. 2), molecules are linked by weak intermolecular C-H···N hydrogen bonds into centrosymmetric dimers. Additional stabilization is provided by weak C-H···π and ππ stacking interactions.

Related literature top

For the biological activity of [1,6]naphthyridine derivatives, see: Ruchelman et al. (2003, 2005); Hinschberger et al. (2003); Bedard et al. (2000); Feng et al. (2008). For the synthesis of the title compound, see: Manoj & Rajendra Prasad (2009). For the crystal structures of other [1,6]naphthrydine derivatives, see: Peng et al. (2009); Sivakumar et al. (2003); Seebacher et al. (2010); Vennila et al. (2010). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis follows the procedure of Manoj & Rajendra Prasad (2009). Preparation of 6,4',4''-Trimethyl-2,4-bis-(N-phenylamino)quinoline: A mixture of appropriate 2,4-dichloro-6-methylquinoline (0.010 mol) and p-toluidine (0.010 mol) was heated at 433K for half an hour. The product obtained was washed with water, dried and purified by column chromatography over silica gel and eluted with ethyl acetate : methanol mixture (95 : 5) to yield a white solid. The product was recrytallized from methanol. Preparation of 2,9,4'-Trimethyl-7-phenyl-6-(N-phenylamino) dibenzo[b,h][1,6] naphthyridine: An mixture of 6,4',4''-trimethyl-2,4-bis-(N-phenylamino) quinoline (0.0010 mol) and benzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of P2O5 in 1.5 mL of H3PO4) and kept at 323-328 K for 5 hours. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was poured into ice water and neutralised with saturated NaHCO3 solution to remove the excess benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether : ethyl acetate (99 : 1) mixture to obtain yellow solid. The yellow solid was dissolved in ethylacetate and left to crystallize at 277K for about 6 months. Only few crystals were obtained and the best available was used for the X-ray structure analysis.

Refinement top

The H-atoms were positioned geometrically and treated as riding atoms: C—H =0.93 Å H-aromatic, C—H = 0.96 Å H-methyl, and N—H = 0.86 Å, with Uiso = k×Ueq(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms. The low percentage of data used (because of low theta cut-off) may affect the precision of the structure.

Structure description top

The crystal structures of number of differently substituted naphthyridine derivatives have already been reported (e.g. Peng et al. 2009) but among those only few are dibenzo[1,6] naphthyridine compounds (e.g. Sivakumar et al. 2003; Seebacher et al., 2010). [1,6]Naphthyridine compounds are known to have biological activities (Ruchelman et al. 2005; Hinschberger et al. 2003; Feng et al., 2008). Dibenzo[1,6]naphthyridines are reported to have potent Topomerase I targeting, cytotoxic (Ruchelman et al., 2003) and are also proven anti-tumour agents. A series of [1,6] naphthyridine compounds were shown to exhibit potent activity against human cytomegalovirus (Bedard et al. , 2000). We are focused on preparing heterocyclic naphthyridine derivatives with potential biological properties. The crystal structure of the title compound is presented herein.

The molecular structure of the title compound is shown in Fig. 1 The fused tetracyclic ring system is essentially planar (r.m.s. deviation = 0.08 (3)Å) as was reported for a previously determined structure (Vennila et al., 2010). The phenyl ring and the phenyl amino group are inclined by 82.68 (6)° and 35.31 (5)°, respectively to the mean plane of the fused tetracyclic ring system. The bond lengths (Allen et al., 1987) and angles are in the normal ranges. In the crystal structure (Fig. 2), molecules are linked by weak intermolecular C-H···N hydrogen bonds into centrosymmetric dimers. Additional stabilization is provided by weak C-H···π and ππ stacking interactions.

For the biological activity of [1,6]naphthyridine derivatives, see: Ruchelman et al. (2003, 2005); Hinschberger et al. (2003); Bedard et al. (2000); Feng et al. (2008). For the synthesis of the title compound, see: Manoj & Rajendra Prasad (2009). For the crystal structures of other [1,6]naphthrydine derivatives, see: Peng et al. (2009); Sivakumar et al. (2003); Seebacher et al. (2010); Vennila et al. (2010). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along the b-axis with weak hydrogen bonds and C-H..π interactions shown as dotted lines
2,9-Dimethyl-7-phenyl-N-(4- methylphenyl)dibenzo[b,h][1,6]naphthyridin-6-amine top
Crystal data top
C31H25N3F(000) = 928
Mr = 439.54Dx = 1.237 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2938 reflections
a = 11.9390 (4) Åθ = 2.2–21.2°
b = 10.5595 (4) ŵ = 0.07 mm1
c = 19.6084 (7) ÅT = 293 K
β = 107.369 (2)°Prismatic, yellow
V = 2359.31 (15) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2938 independent reflections
Radiation source: fine-focus sealed tube2197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scansθmax = 22.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.982, Tmax = 0.986k = 1111
17909 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.4411P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max = 0.034
310 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H25N3V = 2359.31 (15) Å3
Mr = 439.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9390 (4) ŵ = 0.07 mm1
b = 10.5595 (4) ÅT = 293 K
c = 19.6084 (7) Å0.30 × 0.20 × 0.20 mm
β = 107.369 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2938 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2197 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.037
17909 measured reflectionsθmax = 22.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
2938 reflectionsΔρmin = 0.23 e Å3
310 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.21879 (18)0.4613 (2)0.03581 (11)0.0434 (6)
N10.32355 (16)0.27439 (18)0.01274 (10)0.0508 (5)
N20.12176 (16)0.44039 (18)0.12785 (10)0.0529 (5)
C30.18596 (18)0.3921 (2)0.08942 (12)0.0448 (6)
C40.22420 (18)0.2617 (2)0.10461 (12)0.0448 (6)
C120.08099 (19)0.5597 (2)0.11381 (12)0.0511 (6)
N30.32400 (17)0.45075 (18)0.05365 (10)0.0569 (6)
H30.30310.52880.06070.068*
C110.10670 (18)0.6366 (2)0.06154 (12)0.0461 (6)
C50.29150 (19)0.2088 (2)0.06518 (12)0.0473 (6)
C10.29049 (18)0.3908 (2)0.00132 (12)0.0459 (6)
C100.18035 (18)0.5874 (2)0.02346 (11)0.0448 (6)
C90.19467 (19)0.1887 (2)0.15606 (12)0.0512 (6)
H90.14990.22500.18240.061*
C80.2296 (2)0.0654 (2)0.16883 (12)0.0523 (6)
C170.21691 (19)0.6767 (2)0.02498 (13)0.0464 (6)
C230.38787 (19)0.4030 (2)0.09768 (12)0.0480 (6)
C160.0570 (2)0.7604 (2)0.05065 (13)0.0546 (6)
H160.07410.81280.01690.066*
C60.3278 (2)0.0832 (2)0.07839 (13)0.0592 (7)
H60.37360.04650.05280.071*
C140.0376 (2)0.7257 (3)0.13967 (14)0.0659 (7)
H140.08580.75540.16570.079*
C130.0083 (2)0.6078 (3)0.15287 (14)0.0666 (7)
H130.00820.55810.18790.080*
C70.2968 (2)0.0136 (2)0.12858 (13)0.0604 (7)
H70.32100.07020.13610.073*
C240.4578 (2)0.4875 (2)0.11974 (13)0.0548 (6)
H240.46600.56990.10220.066*
C150.0144 (2)0.8045 (2)0.08782 (14)0.0575 (7)
C290.1979 (2)0.0121 (3)0.22479 (14)0.0678 (8)
H29A0.14300.03400.24240.102*
H29B0.26740.02920.26350.102*
H29C0.16320.09060.20420.102*
C220.1465 (2)0.7020 (2)0.09377 (14)0.0617 (7)
H220.07360.66330.11120.074*
C280.3782 (2)0.2810 (2)0.12414 (13)0.0571 (7)
H280.33230.22200.10940.069*
C270.4362 (2)0.2465 (3)0.17227 (13)0.0632 (7)
H270.42810.16410.18980.076*
C260.5057 (2)0.3298 (3)0.19527 (13)0.0617 (7)
C250.5157 (2)0.4509 (3)0.16770 (13)0.0609 (7)
H250.56280.50930.18180.073*
C180.3242 (2)0.7371 (2)0.00024 (15)0.0591 (7)
H180.37140.72200.04620.071*
C210.1851 (3)0.7849 (3)0.13643 (16)0.0780 (9)
H210.13800.80180.18270.094*
C300.0682 (2)0.9343 (2)0.07514 (16)0.0744 (8)
H30A0.01150.99590.09990.112*
H30B0.13530.93750.09250.112*
H30C0.09210.95250.02490.112*
C200.2927 (3)0.8426 (3)0.1109 (2)0.0818 (10)
H200.31830.89800.13990.098*
C190.3623 (3)0.8190 (3)0.04288 (19)0.0752 (8)
H190.43510.85820.02570.090*
C310.5664 (3)0.2936 (3)0.24940 (15)0.0941 (11)
H31A0.52550.33050.29480.141*
H31B0.56660.20310.25390.141*
H31C0.64570.32420.23410.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0396 (12)0.0431 (14)0.0481 (14)0.0009 (10)0.0139 (11)0.0022 (11)
N10.0549 (12)0.0442 (13)0.0578 (13)0.0076 (9)0.0240 (10)0.0019 (10)
N20.0570 (12)0.0496 (13)0.0591 (13)0.0049 (10)0.0277 (10)0.0003 (10)
C30.0415 (13)0.0463 (14)0.0475 (14)0.0003 (10)0.0149 (11)0.0041 (11)
C40.0427 (13)0.0444 (14)0.0461 (14)0.0006 (10)0.0115 (11)0.0010 (11)
C120.0506 (14)0.0493 (16)0.0578 (15)0.0032 (12)0.0228 (12)0.0040 (13)
N30.0722 (14)0.0440 (12)0.0677 (14)0.0125 (10)0.0410 (12)0.0060 (10)
C110.0436 (13)0.0410 (14)0.0549 (15)0.0023 (10)0.0165 (11)0.0046 (11)
C50.0470 (13)0.0435 (15)0.0508 (14)0.0027 (11)0.0138 (11)0.0007 (12)
C10.0434 (13)0.0448 (15)0.0507 (15)0.0025 (11)0.0158 (11)0.0020 (12)
C100.0422 (13)0.0435 (15)0.0485 (14)0.0001 (10)0.0133 (11)0.0023 (11)
C90.0489 (14)0.0526 (17)0.0526 (15)0.0011 (11)0.0158 (12)0.0003 (12)
C80.0520 (14)0.0495 (16)0.0509 (15)0.0005 (12)0.0088 (12)0.0042 (12)
C170.0485 (14)0.0387 (14)0.0565 (16)0.0069 (11)0.0225 (12)0.0006 (12)
C230.0508 (14)0.0473 (15)0.0492 (14)0.0090 (11)0.0198 (12)0.0027 (12)
C160.0553 (14)0.0475 (15)0.0620 (16)0.0045 (11)0.0189 (13)0.0021 (12)
C60.0664 (16)0.0510 (17)0.0650 (17)0.0116 (13)0.0266 (14)0.0006 (13)
C140.0642 (16)0.0645 (19)0.080 (2)0.0080 (14)0.0376 (15)0.0138 (15)
C130.0743 (18)0.0638 (19)0.0756 (18)0.0079 (14)0.0437 (15)0.0024 (15)
C70.0693 (17)0.0465 (16)0.0641 (18)0.0089 (12)0.0178 (14)0.0072 (13)
C240.0616 (15)0.0505 (16)0.0568 (16)0.0037 (12)0.0244 (13)0.0030 (12)
C150.0507 (14)0.0545 (16)0.0683 (17)0.0057 (12)0.0193 (13)0.0115 (14)
C290.0722 (18)0.0643 (18)0.0665 (18)0.0023 (13)0.0200 (14)0.0124 (14)
C220.0666 (16)0.0567 (17)0.0641 (18)0.0094 (13)0.0230 (15)0.0042 (14)
C280.0601 (15)0.0553 (17)0.0623 (16)0.0010 (12)0.0280 (13)0.0026 (13)
C270.0730 (17)0.0601 (17)0.0597 (17)0.0098 (14)0.0248 (14)0.0055 (13)
C260.0681 (17)0.071 (2)0.0508 (16)0.0211 (14)0.0254 (13)0.0070 (14)
C250.0569 (15)0.073 (2)0.0594 (16)0.0070 (13)0.0274 (13)0.0154 (15)
C180.0631 (16)0.0503 (16)0.0694 (17)0.0022 (13)0.0282 (14)0.0012 (13)
C210.111 (3)0.070 (2)0.0632 (19)0.0262 (19)0.0413 (18)0.0143 (16)
C300.0693 (17)0.0624 (18)0.091 (2)0.0197 (14)0.0233 (15)0.0106 (16)
C200.118 (3)0.0528 (19)0.105 (3)0.0048 (18)0.079 (2)0.0082 (18)
C190.084 (2)0.0567 (19)0.101 (3)0.0073 (15)0.052 (2)0.0060 (18)
C310.115 (3)0.111 (3)0.076 (2)0.033 (2)0.058 (2)0.0119 (19)
Geometric parameters (Å, º) top
C2—C101.406 (3)C14—C151.403 (3)
C2—C31.428 (3)C14—H140.9300
C2—C11.480 (3)C13—H130.9300
N1—C11.295 (3)C7—H70.9300
N1—C51.385 (3)C24—C251.379 (3)
N2—C31.327 (3)C24—H240.9300
N2—C121.349 (3)C15—C301.503 (3)
C3—C41.453 (3)C29—H29A0.9600
C4—C51.388 (3)C29—H29B0.9600
C4—C91.396 (3)C29—H29C0.9600
C12—C111.411 (3)C22—C211.381 (4)
C12—C131.412 (3)C22—H220.9300
N3—C11.364 (3)C28—C271.376 (3)
N3—C231.405 (3)C28—H280.9300
N3—H30.8600C27—C261.374 (4)
C11—C101.412 (3)C27—H270.9300
C11—C161.424 (3)C26—C251.380 (4)
C5—C61.396 (3)C26—C311.502 (3)
C10—C171.493 (3)C25—H250.9300
C9—C81.368 (3)C18—C191.371 (4)
C9—H90.9300C18—H180.9300
C8—C71.394 (3)C21—C201.374 (4)
C8—C291.505 (3)C21—H210.9300
C17—C181.383 (3)C30—H30A0.9600
C17—C221.386 (3)C30—H30B0.9600
C23—C241.377 (3)C30—H30C0.9600
C23—C281.381 (3)C20—C191.367 (4)
C16—C151.359 (3)C20—H200.9300
C16—H160.9300C19—H190.9300
C6—C71.365 (3)C31—H31A0.9600
C6—H60.9300C31—H31B0.9600
C14—C131.354 (3)C31—H31C0.9600
C10—C2—C3117.67 (19)C6—C7—H7119.2
C10—C2—C1126.8 (2)C8—C7—H7119.2
C3—C2—C1115.5 (2)C23—C24—C25120.4 (2)
C1—N1—C5119.88 (18)C23—C24—H24119.8
C3—N2—C12118.52 (19)C25—C24—H24119.8
N2—C3—C2123.6 (2)C16—C15—C14118.5 (2)
N2—C3—C4116.57 (19)C16—C15—C30121.9 (2)
C2—C3—C4119.82 (18)C14—C15—C30119.6 (2)
C5—C4—C9119.6 (2)C8—C29—H29A109.5
C5—C4—C3117.8 (2)C8—C29—H29B109.5
C9—C4—C3122.7 (2)H29A—C29—H29B109.5
N2—C12—C11122.84 (19)C8—C29—H29C109.5
N2—C12—C13117.9 (2)H29A—C29—H29C109.5
C11—C12—C13119.3 (2)H29B—C29—H29C109.5
C1—N3—C23129.1 (2)C21—C22—C17119.8 (3)
C1—N3—H3115.4C21—C22—H22120.1
C23—N3—H3115.4C17—C22—H22120.1
C10—C11—C12118.5 (2)C27—C28—C23120.1 (2)
C10—C11—C16123.7 (2)C27—C28—H28119.9
C12—C11—C16117.8 (2)C23—C28—H28119.9
N1—C5—C4123.1 (2)C28—C27—C26122.2 (3)
N1—C5—C6118.3 (2)C28—C27—H27118.9
C4—C5—C6118.6 (2)C26—C27—H27118.9
N1—C1—N3117.50 (19)C27—C26—C25117.1 (2)
N1—C1—C2123.9 (2)C27—C26—C31122.4 (3)
N3—C1—C2118.6 (2)C25—C26—C31120.6 (3)
C2—C10—C11118.7 (2)C24—C25—C26121.7 (2)
C2—C10—C17124.41 (19)C24—C25—H25119.2
C11—C10—C17116.81 (19)C26—C25—H25119.2
C8—C9—C4122.0 (2)C19—C18—C17121.2 (3)
C8—C9—H9119.0C19—C18—H18119.4
C4—C9—H9119.0C17—C18—H18119.4
C9—C8—C7117.7 (2)C20—C21—C22120.3 (3)
C9—C8—C29121.5 (2)C20—C21—H21119.9
C7—C8—C29120.8 (2)C22—C21—H21119.9
C18—C17—C22118.8 (2)C15—C30—H30A109.5
C18—C17—C10119.0 (2)C15—C30—H30B109.5
C22—C17—C10122.3 (2)H30A—C30—H30B109.5
C24—C23—C28118.5 (2)C15—C30—H30C109.5
C24—C23—N3116.8 (2)H30A—C30—H30C109.5
C28—C23—N3124.4 (2)H30B—C30—H30C109.5
C15—C16—C11122.3 (2)C19—C20—C21120.3 (3)
C15—C16—H16118.9C19—C20—H20119.8
C11—C16—H16118.9C21—C20—H20119.8
C7—C6—C5120.6 (2)C20—C19—C18119.6 (3)
C7—C6—H6119.7C20—C19—H19120.2
C5—C6—H6119.7C18—C19—H19120.2
C13—C14—C15121.8 (2)C26—C31—H31A109.5
C13—C14—H14119.1C26—C31—H31B109.5
C15—C14—H14119.1H31A—C31—H31B109.5
C14—C13—C12120.4 (2)C26—C31—H31C109.5
C14—C13—H13119.8H31A—C31—H31C109.5
C12—C13—H13119.8H31B—C31—H31C109.5
C6—C7—C8121.6 (2)
C12—N2—C3—C22.8 (3)C4—C9—C8—C70.2 (3)
C12—N2—C3—C4177.8 (2)C4—C9—C8—C29179.5 (2)
C10—C2—C3—N20.1 (3)C2—C10—C17—C1880.6 (3)
C1—C2—C3—N2179.91 (19)C11—C10—C17—C1896.2 (3)
C10—C2—C3—C4179.53 (19)C2—C10—C17—C22100.0 (3)
C1—C2—C3—C40.6 (3)C11—C10—C17—C2283.2 (3)
N2—C3—C4—C5180.0 (2)C1—N3—C23—C24149.1 (2)
C2—C3—C4—C50.5 (3)C1—N3—C23—C2836.0 (4)
N2—C3—C4—C90.8 (3)C10—C11—C16—C15179.4 (2)
C2—C3—C4—C9179.7 (2)C12—C11—C16—C151.0 (3)
C3—N2—C12—C112.0 (3)N1—C5—C6—C7178.8 (2)
C3—N2—C12—C13177.1 (2)C4—C5—C6—C70.6 (4)
N2—C12—C11—C101.4 (3)C15—C14—C13—C120.5 (4)
C13—C12—C11—C10179.5 (2)N2—C12—C13—C14178.3 (2)
N2—C12—C11—C16179.0 (2)C11—C12—C13—C140.9 (4)
C13—C12—C11—C160.1 (3)C5—C6—C7—C80.9 (4)
C1—N1—C5—C40.0 (3)C9—C8—C7—C60.4 (4)
C1—N1—C5—C6179.4 (2)C29—C8—C7—C6178.9 (2)
C9—C4—C5—N1179.4 (2)C28—C23—C24—C250.6 (3)
C3—C4—C5—N10.2 (3)N3—C23—C24—C25174.7 (2)
C9—C4—C5—C60.0 (3)C11—C16—C15—C141.4 (4)
C3—C4—C5—C6179.2 (2)C11—C16—C15—C30178.9 (2)
C5—N1—C1—N3179.7 (2)C13—C14—C15—C160.6 (4)
C5—N1—C1—C20.1 (3)C13—C14—C15—C30179.7 (2)
C23—N3—C1—N12.3 (4)C18—C17—C22—C211.0 (3)
C23—N3—C1—C2177.5 (2)C10—C17—C22—C21179.6 (2)
C10—C2—C1—N1179.7 (2)C24—C23—C28—C270.9 (4)
C3—C2—C1—N10.5 (3)N3—C23—C28—C27173.9 (2)
C10—C2—C1—N30.4 (3)C23—C28—C27—C260.5 (4)
C3—C2—C1—N3179.37 (19)C28—C27—C26—C250.3 (4)
C3—C2—C10—C113.4 (3)C28—C27—C26—C31178.2 (2)
C1—C2—C10—C11176.4 (2)C23—C24—C25—C260.2 (4)
C3—C2—C10—C17173.4 (2)C27—C26—C25—C240.7 (4)
C1—C2—C10—C176.8 (4)C31—C26—C25—C24177.8 (2)
C12—C11—C10—C24.1 (3)C22—C17—C18—C191.2 (4)
C16—C11—C10—C2176.3 (2)C10—C17—C18—C19179.3 (2)
C12—C11—C10—C17172.9 (2)C17—C22—C21—C200.2 (4)
C16—C11—C10—C176.6 (3)C22—C21—C20—C190.3 (4)
C5—C4—C9—C80.4 (3)C21—C20—C19—C180.1 (4)
C3—C4—C9—C8178.8 (2)C17—C18—C19—C200.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···Cg10.862.513.364 (3)174
C18—H18···Cg2i0.932.623.495 (3)156
C29—H29B···Cg2ii0.962.903.622 (3)133
C22—H22···N2iii0.932.513.419 (3)166
C28—H28···N10.932.492.946 (3)110
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC31H25N3
Mr439.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.9390 (4), 10.5595 (4), 19.6084 (7)
β (°) 107.369 (2)
V3)2359.31 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
17909, 2938, 2197
Rint0.037
θmax (°)22.1
(sin θ/λ)max1)0.530
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.132, 1.07
No. of reflections2938
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C23–C28 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···Cg10.862.513.364 (3)174
C18—H18···Cg2i0.932.623.495 (3)156
C29—H29B···Cg2ii0.962.903.622 (3)133
C22—H22···N2iii0.932.513.419 (3)166
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z1/2; (iii) x, y+1, z.
ππ interactions [Å] top
Cg2, Cg3 and Cg4 are the centroids of the N1/C1–C5, N2/C2/C3/C10–C12 and C11–C16 rings, respectively.
Cg(I)Cg(J)Centroid-to-Centroid
Cg(2)Cg(4i)3.834 (2)
Cg(3)Cg(3i)3.898 (1)
Symmetry code (i): -x, 1-y, -z.
 

Acknowledgements

DV acknowledges the Department of Science and Technology (DST) for providing data collection facilities under major research projects and is also thankful for financial support to the Department under the UGC–SAP and DST–FIST programs.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929–937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, W., Satyanarayana, M., Cheng, L., Liu, A., Tsai, Y. C., Liu, L. F. & LaVoie, E. J. (2008). Bioorg. Med. Chem. 16, 9295–9301.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHinschberger, A., Butt, S., Lelong, V., Boulouard, M., Dumuis, A., Dauphin, F., Bureau, R., Pfeiffer, B., Renard, P. & Rault, S. (2003). J. Med. Chem. 43, 138–147.  Web of Science CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationManoj, M. & Rajendra Prasad, K. J. (2009). J. Chem. Res. pp. 485–488.  Web of Science CrossRef Google Scholar
First citationPeng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109–o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRuchelman, A. L., Houghton, P. J., Zhou, N., Liu, A., Liu, L. F. & LaVoie, E. J. (2005). J. Med Chem. 48, 792–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRuchelman, A. L., Singh, K. S., Ray, A., Wu, H. X., Yang, M. J., Li, T. K., Liu, A., Liu, L. F. & LaVoie, E. J. (2003). Bioorg. Med. Chem. 11, 2061–2073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, B., SethuSankar, K., Senthil Kumar, U. P., Jeyaraman, R. & Velmurugan, D. (2003). Acta Cryst. C59, o153–o155.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010). Acta Cryst. E66, o2426–o2427.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds