metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua­bis­­(μ3-benzene-1,3-di­carboxyl­ato-κ3O:O′:O′′)bis­­(μ2-benzene-1,3-di­carboxyl­ato-κ3O,O′:O′′)[μ2-1,4-bis­­(1,2,4-triazol-1-yl)butane-κ2N:N′]tetra­zinc(II)]

aLiaohe Institute of Petroleum Technology, People's Republic of China
*Correspondence e-mail: fugh_2010@yahoo.cn

(Received 24 November 2010; accepted 8 December 2010; online 15 December 2010)

In the crystal structure of the title compound, [Zn4(C8H4O4)4(C8H12N6)(H2O)4]n, one ZnII atom is four-coordinated in a slightly distorted tetra­hedral geometry by two O atoms from benzene-1,3-dicarboxyl­ate (BDC) ligands, one N atom from a 1,4-bis­(1,2,4-triazol-1-yl)butane (BTB) ligand and one water mol­ecule, while a second ZnII atom is five-coordinated in a distorted square-pyramidal geometry bridged by four O atoms from BDC ligands and one water mol­ecule. The ZnII atoms are connected by the benzene-1,3-dicarboxyl­ate anions and the nitro­gen ligand into layers parallel to the ac plane. The asymmetric unit consits of two crystallographically independent ZnII cations, two BDC anions and two water mol­ecules in general positions, as well as one-half of the BTB ligand that is completed by inversion symmetry.

Related literature

For related structures, see: Liu et al. (2009[Liu, X. G., Wang, L. Y., Zhu, X., Li, B. L. & Zhang, Y. (2009). Cryst. Growth Des. 9, 3997-4005.]); Wang et al. (2009[Wang, X. L., Qin, C., Wu, S. X., Shao, K. Z., Lan, Y. Q., Wang, S., Zhu, D. X., Su, Z. M. & Wang, E. B. (2009). Angew. Chem. Int. Ed. 48, 5291-5295.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn4(C8H4O4)4(C8H12N6)(H2O)4]

  • Mr = 1182.23

  • Monoclinic, P 21 /c

  • a = 10.064 (2) Å

  • b = 21.147 (4) Å

  • c = 10.237 (2) Å

  • β = 91.76 (3)°

  • V = 2177.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.23 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.918

  • 16853 measured reflections

  • 3819 independent reflections

  • 3381 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.058

  • S = 1.04

  • 3819 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007)[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; cell refinement: SAINT (Bruker, 2007)[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Investigations on metal carboxylate coordination polymers have become of increasing interest in the past few years. As a part of our ongoing investigations in this field (Liu et al. 2009; Wang et al. 2009), we report here the crystal structure of the title compound. Zn1 ion is surrounded by two oxygen atoms from BDC ligands, one nitrogen atom from BTB ligand and one aqua ligand. Zn2 atom is coordinated to four oxygen atoms from BDC ligands and one aqua ligand (Fig 1). The zinc atoms are linked by the anions into layers parallel to the crystallographic ac plane.

Related literature top

For related structures, see: Liu et al. (2009); Wang et al. (2009).

Experimental top

The hydrothermal reaction of ZnCl2 (0.041 g, 0.3 mmol), 1,4-Bis(1,2,4-triazol-1-yl)butane (btb) (0.078 g, 0.4 mmol) and water (15.0 ml) was carried out at 423 K for 3 d. After cooling to room temperature at a rate of 5 K h-1, block-shaped colorless crystals of the title compound suitable for X-ray analysis were obtained.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding atoms, with Uĩso~(H) = 1.2U~eq~(C). H atoms of the water molecules were initially located in a difference Fourier map, but were idealized and refined as riding atoms, with O—H = 0.85 Å and Uĩso~(H) = 1.5U~eq~(O).

Structure description top

Investigations on metal carboxylate coordination polymers have become of increasing interest in the past few years. As a part of our ongoing investigations in this field (Liu et al. 2009; Wang et al. 2009), we report here the crystal structure of the title compound. Zn1 ion is surrounded by two oxygen atoms from BDC ligands, one nitrogen atom from BTB ligand and one aqua ligand. Zn2 atom is coordinated to four oxygen atoms from BDC ligands and one aqua ligand (Fig 1). The zinc atoms are linked by the anions into layers parallel to the crystallographic ac plane.

For related structures, see: Liu et al. (2009); Wang et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: i = x,y,z - 1, ii = x - 1, y, z, iii = -x + 1, - y, - z
Poly[tetraaquabis(µ3-benzene-1,3-dicarboxylato- κ3O:O':O'')bis(µ2-benzene-1,3-dicarboxylato- κ3O,O':O'')[µ2–1,4-bis(1,2,4-triazol-1- yl)butane-κ2N:N']tetrazinc(II)] top
Crystal data top
[Zn4(C8H4O4)4(C8H12N6)(H2O)4]F(000) = 1196
Mr = 1182.23Dx = 1.803 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16853 reflections
a = 10.064 (2) Åθ = 3.0–25.0°
b = 21.147 (4) ŵ = 2.27 mm1
c = 10.237 (2) ÅT = 293 K
β = 91.76 (3)°Block, colourless
V = 2177.7 (7) Å30.26 × 0.24 × 0.23 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3819 independent reflections
Radiation source: fine-focus sealed tube3381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.902, Tmax = 0.918k = 2525
16853 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.178P]
where P = (Fo2 + 2Fc2)/3
3819 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Zn4(C8H4O4)4(C8H12N6)(H2O)4]V = 2177.7 (7) Å3
Mr = 1182.23Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.064 (2) ŵ = 2.27 mm1
b = 21.147 (4) ÅT = 293 K
c = 10.237 (2) Å0.26 × 0.24 × 0.23 mm
β = 91.76 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3819 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3381 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.918Rint = 0.032
16853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3819 reflectionsΔρmin = 0.25 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.06578 (2)0.089944 (12)0.04961 (2)0.02203 (8)
Zn20.01752 (2)0.195761 (12)0.28205 (2)0.02292 (8)
C10.4953 (2)0.19260 (10)0.3569 (2)0.0232 (5)
H1A0.48310.19170.26650.028*
C20.3852 (2)0.19388 (11)0.4356 (2)0.0253 (5)
C30.4046 (2)0.19304 (12)0.5709 (2)0.0311 (5)
H3A0.33180.19430.62460.037*
C40.5317 (2)0.19028 (12)0.6257 (2)0.0341 (6)
H4A0.54370.18760.71590.041*
C50.6411 (2)0.19145 (11)0.5471 (2)0.0282 (5)
H5A0.72650.19140.58460.034*
C60.6230 (2)0.19265 (10)0.4115 (2)0.0220 (4)
C70.7386 (2)0.19342 (10)0.3224 (2)0.0241 (5)
C80.2511 (2)0.19557 (11)0.3714 (2)0.0277 (5)
C90.1669 (2)0.04379 (11)0.5724 (2)0.0256 (5)
C100.2664 (3)0.00116 (13)0.5638 (2)0.0438 (7)
H10A0.30420.01630.63940.053*
C110.3100 (3)0.02387 (15)0.4430 (2)0.0545 (9)
H11A0.37820.05350.43740.065*
C120.2519 (3)0.00223 (13)0.3307 (2)0.0418 (7)
H12A0.28160.01740.24960.050*
C130.1500 (2)0.04180 (10)0.3378 (2)0.0236 (5)
C140.1084 (2)0.06503 (10)0.4595 (2)0.0229 (5)
H14A0.04080.09500.46520.027*
C150.1227 (2)0.07043 (11)0.7024 (2)0.0245 (5)
C160.0893 (2)0.06554 (10)0.21533 (19)0.0210 (5)
C170.2212 (2)0.08641 (11)0.0369 (2)0.0271 (5)
H17A0.20340.06360.11200.032*
C180.2031 (3)0.13749 (13)0.1382 (2)0.0386 (6)
H18A0.16510.15760.21100.046*
C190.4709 (3)0.08703 (13)0.0581 (3)0.0397 (6)
H19A0.46110.07710.14980.048*
H19B0.52840.12370.05270.048*
C200.5359 (2)0.03118 (12)0.0093 (3)0.0378 (6)
H20A0.53940.04000.10210.045*
H20B0.62660.02700.02440.045*
N10.13007 (18)0.10764 (9)0.04798 (17)0.0252 (4)
N20.34087 (19)0.10224 (9)0.00052 (18)0.0295 (4)
N30.3313 (2)0.13562 (11)0.1145 (2)0.0420 (5)
O10.84932 (14)0.21495 (8)0.37012 (15)0.0288 (4)
O20.72171 (16)0.17320 (9)0.20969 (15)0.0329 (4)
O30.23743 (16)0.18834 (9)0.25146 (16)0.0396 (4)
O40.14763 (15)0.20414 (9)0.43934 (16)0.0367 (4)
O50.00281 (15)0.10856 (7)0.22114 (14)0.0259 (3)
O60.12568 (16)0.04097 (7)0.10727 (13)0.0279 (4)
O70.14620 (17)0.03846 (8)0.80488 (13)0.0305 (4)
O80.06492 (18)0.12246 (8)0.70924 (14)0.0354 (4)
O90.00911 (17)0.26150 (8)0.14493 (15)0.0359 (4)
H10.06950.27060.09180.054*
H20.01570.29940.15670.054*
O100.18152 (16)0.16534 (8)0.02552 (14)0.0314 (4)
H30.21160.17310.04950.047*
H40.16260.20100.05830.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02386 (14)0.02685 (15)0.01542 (13)0.00144 (10)0.00116 (10)0.00010 (10)
Zn20.01664 (13)0.02776 (15)0.02441 (14)0.00191 (10)0.00121 (10)0.00385 (10)
C10.0200 (11)0.0293 (12)0.0204 (10)0.0010 (9)0.0015 (9)0.0030 (9)
C20.0177 (11)0.0307 (12)0.0276 (11)0.0024 (9)0.0035 (9)0.0052 (9)
C30.0219 (12)0.0462 (15)0.0256 (11)0.0014 (10)0.0082 (10)0.0025 (10)
C40.0321 (14)0.0491 (16)0.0214 (11)0.0018 (11)0.0032 (10)0.0020 (11)
C50.0206 (11)0.0378 (14)0.0257 (11)0.0010 (10)0.0043 (9)0.0002 (10)
C60.0162 (11)0.0255 (11)0.0242 (10)0.0007 (9)0.0011 (9)0.0022 (9)
C70.0172 (11)0.0265 (12)0.0287 (12)0.0028 (9)0.0043 (9)0.0008 (9)
C80.0216 (12)0.0290 (12)0.0326 (12)0.0034 (9)0.0037 (10)0.0055 (10)
C90.0348 (13)0.0252 (12)0.0169 (10)0.0013 (10)0.0008 (9)0.0025 (9)
C100.0604 (18)0.0481 (17)0.0232 (12)0.0226 (14)0.0063 (12)0.0051 (11)
C110.073 (2)0.061 (2)0.0303 (14)0.0432 (17)0.0038 (14)0.0007 (13)
C120.0608 (19)0.0440 (16)0.0202 (11)0.0227 (14)0.0031 (12)0.0022 (11)
C130.0300 (12)0.0230 (11)0.0177 (10)0.0008 (9)0.0003 (9)0.0008 (8)
C140.0271 (12)0.0202 (11)0.0212 (10)0.0001 (9)0.0013 (9)0.0016 (8)
C150.0263 (12)0.0285 (12)0.0186 (10)0.0045 (10)0.0011 (9)0.0022 (9)
C160.0233 (11)0.0222 (11)0.0175 (10)0.0037 (9)0.0000 (9)0.0008 (8)
C170.0276 (12)0.0309 (13)0.0229 (11)0.0015 (10)0.0036 (10)0.0008 (9)
C180.0321 (14)0.0472 (16)0.0366 (13)0.0027 (12)0.0046 (11)0.0172 (12)
C190.0266 (13)0.0482 (16)0.0438 (14)0.0005 (11)0.0074 (11)0.0100 (12)
C200.0206 (12)0.0478 (16)0.0448 (14)0.0052 (11)0.0017 (11)0.0019 (12)
N10.0263 (10)0.0276 (10)0.0219 (9)0.0026 (8)0.0041 (8)0.0005 (8)
N20.0267 (11)0.0316 (11)0.0303 (10)0.0020 (8)0.0010 (8)0.0033 (8)
N30.0323 (12)0.0508 (14)0.0431 (12)0.0025 (10)0.0059 (10)0.0154 (11)
O10.0162 (8)0.0346 (9)0.0360 (9)0.0024 (7)0.0061 (7)0.0108 (7)
O20.0227 (8)0.0531 (11)0.0230 (8)0.0011 (8)0.0035 (7)0.0060 (7)
O30.0217 (9)0.0667 (13)0.0304 (9)0.0031 (8)0.0020 (7)0.0066 (8)
O40.0152 (8)0.0603 (12)0.0349 (9)0.0010 (8)0.0037 (7)0.0107 (8)
O50.0269 (8)0.0254 (8)0.0258 (8)0.0033 (7)0.0059 (7)0.0051 (6)
O60.0372 (9)0.0319 (9)0.0144 (7)0.0065 (7)0.0014 (6)0.0011 (6)
O70.0453 (10)0.0317 (9)0.0146 (7)0.0039 (8)0.0007 (7)0.0019 (6)
O80.0494 (11)0.0335 (10)0.0229 (8)0.0128 (8)0.0026 (7)0.0005 (7)
O90.0403 (10)0.0334 (9)0.0349 (9)0.0056 (8)0.0141 (8)0.0049 (7)
O100.0408 (10)0.0304 (9)0.0236 (8)0.0054 (7)0.0105 (7)0.0024 (7)
Geometric parameters (Å, º) top
Zn1—O101.9943 (16)C11—C121.384 (3)
Zn1—O7i1.9963 (16)C11—H11A0.9300
Zn1—N12.0058 (19)C12—C131.385 (3)
Zn1—O62.0185 (15)C12—H12A0.9300
Zn2—O51.9553 (16)C13—C141.392 (3)
Zn2—O91.9757 (16)C13—C161.498 (3)
Zn2—O1ii1.9840 (15)C14—H14A0.9300
Zn2—O42.0517 (18)C15—O81.245 (3)
Zn2—O32.2503 (17)C15—O71.277 (3)
Zn2—C82.496 (2)C16—O51.260 (3)
C1—C61.386 (3)C16—O61.266 (2)
C1—C21.390 (3)C17—N21.318 (3)
C1—H1A0.9300C17—N11.322 (3)
C2—C31.393 (3)C17—H17A0.9300
C2—C81.484 (3)C18—N31.306 (3)
C3—C41.382 (3)C18—N11.354 (3)
C3—H3A0.9300C18—H18A0.9300
C4—C51.384 (3)C19—N21.459 (3)
C4—H4A0.9300C19—C201.526 (3)
C5—C61.395 (3)C19—H19A0.9700
C5—H5A0.9300C19—H19B0.9700
C6—C71.500 (3)C20—C20iii1.519 (5)
C7—O21.238 (3)C20—H20A0.9700
C7—O11.286 (3)C20—H20B0.9700
C8—O31.241 (3)N2—N31.365 (3)
C8—O41.282 (3)O1—Zn2iv1.9840 (15)
C9—C101.381 (3)O7—Zn1v1.9963 (16)
C9—C141.388 (3)O9—H10.8500
C9—C151.500 (3)O9—H20.8500
C10—C111.385 (4)O10—H30.8501
C10—H10A0.9300O10—H40.8500
O10—Zn1—O7i107.66 (7)C12—C11—H11A120.1
O10—Zn1—N1115.30 (7)C10—C11—H11A120.1
O7i—Zn1—N1118.93 (7)C11—C12—C13120.7 (2)
O10—Zn1—O697.01 (7)C11—C12—H12A119.7
O7i—Zn1—O6100.94 (6)C13—C12—H12A119.7
N1—Zn1—O6113.98 (7)C12—C13—C14119.1 (2)
O5—Zn2—O9115.80 (7)C12—C13—C16120.12 (19)
O5—Zn2—O1ii104.80 (6)C14—C13—C16120.8 (2)
O9—Zn2—O1ii99.23 (7)C9—C14—C13120.5 (2)
O5—Zn2—O4112.94 (7)C9—C14—H14A119.8
O9—Zn2—O4120.61 (8)C13—C14—H14A119.8
O1ii—Zn2—O499.13 (7)O8—C15—O7121.3 (2)
O5—Zn2—O389.06 (7)O8—C15—C9120.48 (19)
O9—Zn2—O388.34 (7)O7—C15—C9118.2 (2)
O1ii—Zn2—O3159.06 (6)O5—C16—O6121.23 (18)
O4—Zn2—O360.56 (6)O5—C16—C13120.12 (18)
O5—Zn2—C8101.74 (7)O6—C16—C13118.64 (19)
O9—Zn2—C8106.32 (8)N2—C17—N1110.2 (2)
O1ii—Zn2—C8129.85 (7)N2—C17—H17A124.9
O4—Zn2—C830.83 (7)N1—C17—H17A124.9
O3—Zn2—C829.74 (6)N3—C18—N1114.4 (2)
C6—C1—C2120.77 (19)N3—C18—H18A122.8
C6—C1—H1A119.6N1—C18—H18A122.8
C2—C1—H1A119.6N2—C19—C20112.1 (2)
C1—C2—C3119.1 (2)N2—C19—H19A109.2
C1—C2—C8118.31 (19)C20—C19—H19A109.2
C3—C2—C8122.60 (19)N2—C19—H19B109.2
C4—C3—C2120.3 (2)C20—C19—H19B109.2
C4—C3—H3A119.9H19A—C19—H19B107.9
C2—C3—H3A119.9C20iii—C20—C19113.8 (3)
C3—C4—C5120.4 (2)C20iii—C20—H20A108.8
C3—C4—H4A119.8C19—C20—H20A108.8
C5—C4—H4A119.8C20iii—C20—H20B108.8
C4—C5—C6119.7 (2)C19—C20—H20B108.8
C4—C5—H5A120.1H20A—C20—H20B107.7
C6—C5—H5A120.1C17—N1—C18103.10 (19)
C1—C6—C5119.57 (19)C17—N1—Zn1127.13 (15)
C1—C6—C7118.78 (19)C18—N1—Zn1129.41 (17)
C5—C6—C7121.6 (2)C17—N2—N3109.8 (2)
O2—C7—O1124.67 (19)C17—N2—C19129.9 (2)
O2—C7—C6118.4 (2)N3—N2—C19120.3 (2)
O1—C7—C6116.89 (19)C18—N3—N2102.60 (19)
O3—C8—O4119.1 (2)C7—O1—Zn2iv119.77 (13)
O3—C8—C2120.46 (19)C8—O3—Zn286.17 (13)
O4—C8—C2120.4 (2)C8—O4—Zn294.10 (14)
O3—C8—Zn264.09 (13)C16—O5—Zn2139.61 (14)
O4—C8—Zn255.07 (11)C16—O6—Zn1113.53 (14)
C2—C8—Zn2175.04 (16)C15—O7—Zn1v104.09 (14)
C10—C9—C14119.7 (2)Zn2—O9—H1126.8
C10—C9—C15120.7 (2)Zn2—O9—H2124.8
C14—C9—C15119.7 (2)H1—O9—H295.5
C9—C10—C11120.3 (2)Zn1—O10—H3119.4
C9—C10—H10A119.8Zn1—O10—H4121.5
C11—C10—H10A119.8H3—O10—H4106.0
C12—C11—C10119.8 (2)
Symmetry codes: (i) x, y, z1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn4(C8H4O4)4(C8H12N6)(H2O)4]
Mr1182.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.064 (2), 21.147 (4), 10.237 (2)
β (°) 91.76 (3)
V3)2177.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.26 × 0.24 × 0.23
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.902, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
16853, 3819, 3381
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.04
No. of reflections3819
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (No. 20701006).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, X. G., Wang, L. Y., Zhu, X., Li, B. L. & Zhang, Y. (2009). Cryst. Growth Des. 9, 3997–4005.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X. L., Qin, C., Wu, S. X., Shao, K. Z., Lan, Y. Q., Wang, S., Zhu, D. X., Su, Z. M. & Wang, E. B. (2009). Angew. Chem. Int. Ed. 48, 5291–5295.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds