organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acridine–benzene-1,3,5-tricarb­­oxy­lic acid (3/1)

aFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, bDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, and cDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 3 October 2010; accepted 1 December 2010; online 15 December 2010)

In the title adduct, 3C13H9N·C9H6O6 or (acr)3(btc), associ­ations of one btc and three acr molecules linked by O—H⋯N hydrogen bonds occur. C—H⋯O interactions also occur, resulting in a cyclic hydrogen-bonded synthon R21(6). The acr mol­ecules and the btc mol­ecules also form slipped or offset ππ stacking inter­actions [centroid–centroid distances of 3.5212 (17) Å for btc rings and 3.703 (2) and 3.731 (2) Å for acr rings]. Together these inter­actions lead to a three-dimensional network.

Related literature

For background to proton-transfer compounds including acridine, see: Tabatabaee et al. (2009[Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.]). For background to co-crystals, see: Dale et al. (2004[Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328-335.]).

[Scheme 1]

Experimental

Crystal data
  • 3C13H9N·C9H6O6

  • Mr = 747.77

  • Triclinic, [P \overline 1]

  • a = 12.031 (2) Å

  • b = 13.113 (3) Å

  • c = 13.220 (3) Å

  • α = 77.44 (3)°

  • β = 71.43 (3)°

  • γ = 72.23 (3)°

  • V = 1865.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.3 × 0.2 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED and X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.964, Tmax = 0.980

  • 15233 measured reflections

  • 7305 independent reflections

  • 3826 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.218

  • S = 0.95

  • 7305 reflections

  • 526 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.03 (4) 1.62 (4) 2.643 (4) 173 (4)
O3—H3⋯N2 1.08 (6) 1.55 (6) 2.619 (4) 166 (5)
O5—H5⋯N3 1.10 (5) 1.57 (5) 2.659 (4) 171 (6)
C14—H14⋯O6i 0.93 2.44 3.266 (5) 147
C16—H16⋯O6i 0.93 2.55 3.355 (5) 145
C18—H18⋯O2ii 0.93 2.54 3.389 (5) 151
C24—H24⋯O5iii 0.93 2.53 3.278 (5) 138
C27—H27⋯O4iv 0.93 2.59 3.435 (5) 151
C47—H47⋯O3iii 0.93 2.56 3.345 (5) 143
Symmetry codes: (i) x+1, y, z-1; (ii) -x+1, -y, -z-1; (iii) -x, -y, -z; (iv) -x-1, -y+1, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Acridine is structurally related to anthracene wherein one of the central CH group is replaced by nitrogen. It is a raw material used for the production of dyes and some valuable drugs. Our research group has recently reported two proton transfer complexes with acridine (Tabatabaee et al., 2009; Eshtiagh-Hosseini et al., 2010). Recently, Dale et al. reported the structure of btc with three pyridines as a cocrystal (Dale et al., 2004). In this article, we report the crystal structure of a new cocrystal system containing acridine and benzenetricarboxylic acid, for the first time.

The title cocrystal structure contains acridine and benzene-1,3,5-tricarboxylic acid in 3:1 molar ratio in the asymmetric unit (Fig. 1). These three bases and one acid formed a cocrystal without any proton transfer. Hence, the acr molecules interact with the carboxylic acid groups of the respective btc molecule through O—H···N and C—H···O hydrogen bonds (Table 1). The latter formed a cyclic hydrogen-bonded synthon R1 2(6). The acr molecules and also btc molecules form slipped or offset π-π stacking interactions [with centroid···centroid distances of 3.5212 (17) Å for btc rings and 3.703 (2) and 3.731 (2) Å for acr rings]. The dihedral angle of the plane of three carboxylate groups with respect to plane of the central benzene ring in btc are equal to 3.17, 6.46 and 6.52°. Indeed, the crystal structure is stabilized by an extensive series of intermolecular O—H···N and C—H···O hydrogen bonds and π-π stacking interactions, forming a three-dimensional network (Fig. 2).

Related literature top

For background to proton-transfer compounds including acridine, see: Tabatabaee et al. (2009); Eshtiagh-Hosseini et al. (2010). For background to co-crystals, see: Dale et al. (2004).

Experimental top

The reaction between a solution of benzenetricarboxylic acid (70 mg, 0.30 mmol) in 5 ml ethanol and acridine (180 mg, 1.0 mmol) in 5 ml ethanol in 1:3 molar ratio at 298 K for 4 hr gave orange block crystals of (acr)3(btc) after slow evaporation of the solvent at room temperature (m.p. > 260 °C).

Refinement top

The hydrogen atoms of the carboxylic part of btc molecule were found in a diference Fourier map and refined isotropically without restraint. All of the other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and Uiso(H) = 1.2Ueq(C).

Structure description top

Acridine is structurally related to anthracene wherein one of the central CH group is replaced by nitrogen. It is a raw material used for the production of dyes and some valuable drugs. Our research group has recently reported two proton transfer complexes with acridine (Tabatabaee et al., 2009; Eshtiagh-Hosseini et al., 2010). Recently, Dale et al. reported the structure of btc with three pyridines as a cocrystal (Dale et al., 2004). In this article, we report the crystal structure of a new cocrystal system containing acridine and benzenetricarboxylic acid, for the first time.

The title cocrystal structure contains acridine and benzene-1,3,5-tricarboxylic acid in 3:1 molar ratio in the asymmetric unit (Fig. 1). These three bases and one acid formed a cocrystal without any proton transfer. Hence, the acr molecules interact with the carboxylic acid groups of the respective btc molecule through O—H···N and C—H···O hydrogen bonds (Table 1). The latter formed a cyclic hydrogen-bonded synthon R1 2(6). The acr molecules and also btc molecules form slipped or offset π-π stacking interactions [with centroid···centroid distances of 3.5212 (17) Å for btc rings and 3.703 (2) and 3.731 (2) Å for acr rings]. The dihedral angle of the plane of three carboxylate groups with respect to plane of the central benzene ring in btc are equal to 3.17, 6.46 and 6.52°. Indeed, the crystal structure is stabilized by an extensive series of intermolecular O—H···N and C—H···O hydrogen bonds and π-π stacking interactions, forming a three-dimensional network (Fig. 2).

For background to proton-transfer compounds including acridine, see: Tabatabaee et al. (2009); Eshtiagh-Hosseini et al. (2010). For background to co-crystals, see: Dale et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound along b axis. The figure shows the parallel arrangements between centro-symmetry related aromatic rings [symmetry code: (i) 1-x, -y, -1-z; (ii)-1-x, 1-y, -z; (iii) -x, -1-y, 1-z; (iv) -x,-y,-z].
Acridine–benzene-1,3,5-tricarboxylic acid (3/1) top
Crystal data top
3C13H9N·C9H6O6Z = 2
Mr = 747.77F(000) = 780
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.031 (2) ÅCell parameters from 7305 reflections
b = 13.113 (3) Åθ = 2.1–26.0°
c = 13.220 (3) ŵ = 0.09 mm1
α = 77.44 (3)°T = 298 K
β = 71.43 (3)°Block, orange
γ = 72.23 (3)°0.45 × 0.3 × 0.2 mm
V = 1865.9 (8) Å3
Data collection top
Stoe IPDS II
diffractometer
7305 independent reflections
Radiation source: fine-focus sealed tube3826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 0.15 mm pixels mm-1θmax = 26.0°, θmin = 2.1°
φ scansh = 1414
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
k = 1616
Tmin = 0.964, Tmax = 0.980l = 1615
15233 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.1227P)2]
where P = (Fo2 + 2Fc2)/3
7305 reflections(Δ/σ)max = 0.001
526 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
3C13H9N·C9H6O6γ = 72.23 (3)°
Mr = 747.77V = 1865.9 (8) Å3
Triclinic, P1Z = 2
a = 12.031 (2) ÅMo Kα radiation
b = 13.113 (3) ŵ = 0.09 mm1
c = 13.220 (3) ÅT = 298 K
α = 77.44 (3)°0.45 × 0.3 × 0.2 mm
β = 71.43 (3)°
Data collection top
Stoe IPDS II
diffractometer
7305 independent reflections
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
3826 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.980Rint = 0.088
15233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.32 e Å3
7305 reflectionsΔρmin = 0.34 e Å3
526 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1489 (2)0.0445 (2)0.0245 (2)0.0366 (6)
C20.0715 (3)0.1475 (3)0.0249 (2)0.0401 (7)
H20.08420.19820.08590.048*
C30.0247 (2)0.1761 (2)0.0643 (2)0.0373 (7)
C40.0432 (3)0.1001 (3)0.1548 (2)0.0401 (7)
H40.10690.11890.21510.048*
C50.0317 (2)0.0032 (2)0.1564 (2)0.0373 (7)
C60.1281 (2)0.0312 (2)0.0661 (2)0.0356 (6)
H60.17860.10090.06680.043*
C70.2493 (3)0.0184 (3)0.1247 (2)0.0420 (7)
C80.1130 (3)0.2841 (3)0.0637 (3)0.0475 (8)
C90.0045 (3)0.0833 (3)0.2553 (2)0.0441 (7)
C100.5826 (3)0.0662 (3)0.3125 (2)0.0487 (8)
C110.5902 (3)0.0260 (4)0.2253 (3)0.0663 (11)
H110.53390.03290.15870.080*
C120.6791 (4)0.0227 (4)0.2379 (4)0.0787 (12)
H120.68410.04830.17950.094*
C130.7643 (4)0.0348 (4)0.3387 (4)0.0803 (13)
H130.82390.06940.34610.096*
C140.7611 (3)0.0025 (3)0.4240 (3)0.0653 (10)
H140.81810.00660.48970.078*
C150.6707 (3)0.0561 (3)0.4144 (3)0.0483 (8)
C160.6635 (3)0.0974 (3)0.4987 (3)0.0517 (9)
H160.71990.09160.56530.062*
C170.5721 (3)0.1480 (3)0.4846 (2)0.0479 (8)
C180.5598 (4)0.1925 (3)0.5674 (3)0.0668 (11)
H180.61510.18980.63500.080*
C190.4684 (4)0.2389 (4)0.5491 (4)0.0779 (12)
H190.46110.26740.60460.094*
C200.3842 (4)0.2449 (4)0.4480 (4)0.0741 (12)
H200.32310.27910.43690.089*
C210.3901 (3)0.2020 (3)0.3663 (3)0.0641 (10)
H210.33170.20430.30040.077*
C220.4859 (3)0.1532 (3)0.3814 (2)0.0466 (8)
C230.3427 (3)0.4865 (3)0.1242 (3)0.0475 (8)
C240.2966 (3)0.3906 (3)0.1741 (3)0.0592 (9)
H240.22660.34050.16260.071*
C250.3548 (4)0.3724 (4)0.2383 (3)0.0709 (11)
H250.32270.31060.27240.085*
C260.4632 (4)0.4455 (4)0.2545 (3)0.0705 (11)
H260.50220.43090.29810.085*
C270.5107 (3)0.5364 (3)0.2070 (3)0.0610 (10)
H270.58270.58370.21760.073*
C280.4514 (3)0.5604 (3)0.1410 (3)0.0494 (8)
C290.4945 (3)0.6528 (3)0.0911 (3)0.0523 (8)
H290.56580.70250.10000.063*
C300.4323 (3)0.6719 (3)0.0280 (3)0.0509 (8)
C310.4709 (4)0.7652 (3)0.0253 (3)0.0649 (10)
H310.54160.81720.01830.078*
C320.4067 (4)0.7791 (4)0.0856 (4)0.0781 (13)
H320.43330.84040.12010.094*
C330.2995 (4)0.7015 (4)0.0969 (4)0.0741 (12)
H330.25580.71300.13830.089*
C340.2582 (3)0.6102 (3)0.0489 (3)0.0643 (10)
H340.18770.55930.05830.077*
C350.3234 (3)0.5934 (3)0.0155 (3)0.0491 (8)
C360.0443 (3)0.2948 (3)0.5167 (3)0.0533 (9)
C370.0199 (4)0.2314 (4)0.5384 (3)0.0764 (12)
H370.07890.20550.48300.092*
C380.0040 (5)0.2087 (4)0.6387 (4)0.0904 (15)
H380.03840.16640.65140.108*
C390.0916 (6)0.2472 (4)0.7246 (4)0.0945 (16)
H390.10580.23110.79350.113*
C400.1547 (5)0.3071 (4)0.7077 (3)0.0828 (14)
H400.21310.33160.76500.099*
C410.1338 (4)0.3341 (3)0.6033 (3)0.0595 (10)
C420.1932 (4)0.3969 (3)0.5801 (3)0.0737 (12)
H420.25170.42390.63510.088*
C430.1683 (4)0.4208 (3)0.4771 (3)0.0607 (10)
C440.2255 (5)0.4863 (4)0.4478 (4)0.0911 (15)
H440.28530.51450.49990.109*
C450.1941 (6)0.5077 (4)0.3462 (4)0.0977 (17)
H450.23230.55060.32850.117*
C460.1043 (5)0.4659 (4)0.2667 (4)0.0879 (14)
H460.08070.48430.19740.106*
C470.0512 (4)0.3994 (4)0.2888 (3)0.0697 (11)
H470.00400.36840.23380.084*
C480.0789 (3)0.3769 (3)0.3947 (3)0.0507 (8)
N10.4920 (2)0.1125 (2)0.2986 (2)0.0495 (7)
N20.2812 (2)0.5027 (2)0.0623 (2)0.0495 (7)
N30.0211 (3)0.3142 (2)0.4155 (2)0.0538 (7)
O10.3136 (2)0.08203 (19)0.12033 (18)0.0543 (6)
H10.378 (3)0.092 (3)0.193 (3)0.063 (10)*
O20.2668 (3)0.0870 (2)0.20116 (19)0.0759 (9)
O30.0948 (2)0.3460 (2)0.02961 (19)0.0640 (7)
H30.173 (5)0.414 (5)0.032 (4)0.128 (19)*
O40.1941 (3)0.3119 (2)0.1420 (2)0.0805 (9)
O50.0707 (2)0.1822 (2)0.24783 (18)0.0573 (6)
H50.041 (5)0.239 (4)0.319 (4)0.116 (17)*
O60.0735 (2)0.0553 (2)0.33509 (19)0.0731 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (14)0.0458 (17)0.0357 (14)0.0116 (13)0.0035 (11)0.0106 (12)
C20.0337 (15)0.0490 (19)0.0381 (15)0.0152 (14)0.0055 (12)0.0061 (13)
C30.0296 (14)0.0428 (17)0.0389 (15)0.0075 (13)0.0070 (11)0.0101 (13)
C40.0311 (14)0.0497 (19)0.0384 (15)0.0122 (14)0.0004 (12)0.0144 (13)
C50.0313 (14)0.0481 (18)0.0349 (14)0.0162 (13)0.0047 (11)0.0080 (12)
C60.0289 (13)0.0354 (16)0.0398 (15)0.0067 (12)0.0046 (11)0.0088 (12)
C70.0345 (15)0.0481 (19)0.0378 (15)0.0114 (14)0.0020 (12)0.0050 (14)
C80.0370 (16)0.0484 (19)0.0491 (18)0.0041 (14)0.0037 (14)0.0119 (15)
C90.0385 (16)0.053 (2)0.0386 (16)0.0161 (15)0.0015 (13)0.0081 (14)
C100.0364 (16)0.057 (2)0.0453 (17)0.0110 (15)0.0000 (13)0.0088 (15)
C110.053 (2)0.089 (3)0.054 (2)0.018 (2)0.0018 (16)0.023 (2)
C120.067 (3)0.106 (4)0.074 (3)0.025 (3)0.018 (2)0.031 (2)
C130.061 (3)0.103 (4)0.089 (3)0.035 (3)0.021 (2)0.015 (3)
C140.0436 (19)0.081 (3)0.066 (2)0.0226 (19)0.0032 (17)0.007 (2)
C150.0354 (16)0.053 (2)0.0468 (18)0.0074 (15)0.0010 (13)0.0073 (15)
C160.0401 (17)0.055 (2)0.0438 (17)0.0079 (16)0.0042 (14)0.0023 (15)
C170.0476 (18)0.0427 (18)0.0438 (17)0.0060 (15)0.0047 (14)0.0053 (14)
C180.076 (3)0.067 (3)0.053 (2)0.017 (2)0.0090 (19)0.0157 (18)
C190.097 (3)0.074 (3)0.073 (3)0.029 (3)0.023 (2)0.021 (2)
C200.079 (3)0.067 (3)0.088 (3)0.035 (2)0.024 (2)0.006 (2)
C210.056 (2)0.065 (2)0.065 (2)0.0260 (19)0.0015 (18)0.0029 (19)
C220.0426 (17)0.0456 (18)0.0438 (17)0.0107 (15)0.0036 (13)0.0032 (14)
C230.0431 (17)0.0467 (19)0.0439 (17)0.0102 (15)0.0034 (14)0.0027 (14)
C240.052 (2)0.054 (2)0.061 (2)0.0074 (17)0.0059 (17)0.0097 (17)
C250.073 (3)0.073 (3)0.066 (2)0.025 (2)0.002 (2)0.024 (2)
C260.067 (3)0.084 (3)0.066 (2)0.025 (2)0.011 (2)0.022 (2)
C270.053 (2)0.068 (3)0.059 (2)0.0140 (19)0.0180 (17)0.0020 (19)
C280.0446 (17)0.051 (2)0.0447 (17)0.0136 (16)0.0037 (14)0.0000 (15)
C290.0459 (18)0.049 (2)0.0515 (18)0.0075 (16)0.0098 (15)0.0019 (15)
C300.0497 (19)0.0432 (19)0.0512 (18)0.0106 (16)0.0060 (15)0.0018 (15)
C310.063 (2)0.047 (2)0.080 (3)0.0069 (18)0.018 (2)0.0091 (19)
C320.081 (3)0.057 (3)0.100 (3)0.018 (2)0.018 (3)0.027 (2)
C330.074 (3)0.069 (3)0.091 (3)0.025 (2)0.024 (2)0.022 (2)
C340.054 (2)0.063 (3)0.077 (2)0.0126 (19)0.0213 (19)0.009 (2)
C350.0477 (18)0.049 (2)0.0477 (18)0.0162 (16)0.0076 (14)0.0026 (15)
C360.064 (2)0.052 (2)0.0419 (17)0.0191 (18)0.0093 (15)0.0019 (15)
C370.095 (3)0.081 (3)0.066 (3)0.045 (3)0.019 (2)0.005 (2)
C380.124 (4)0.090 (4)0.077 (3)0.043 (3)0.035 (3)0.019 (3)
C390.141 (5)0.093 (4)0.055 (2)0.032 (4)0.025 (3)0.019 (2)
C400.111 (4)0.079 (3)0.048 (2)0.030 (3)0.004 (2)0.004 (2)
C410.077 (2)0.053 (2)0.0423 (18)0.025 (2)0.0042 (17)0.0015 (15)
C420.086 (3)0.075 (3)0.055 (2)0.045 (2)0.0024 (19)0.0052 (19)
C430.070 (2)0.057 (2)0.057 (2)0.028 (2)0.0150 (18)0.0029 (17)
C440.108 (4)0.091 (4)0.095 (3)0.062 (3)0.034 (3)0.010 (3)
C450.136 (5)0.096 (4)0.098 (4)0.064 (4)0.062 (4)0.005 (3)
C460.112 (4)0.100 (4)0.072 (3)0.033 (3)0.046 (3)0.014 (3)
C470.075 (3)0.085 (3)0.054 (2)0.025 (2)0.0218 (19)0.006 (2)
C480.057 (2)0.0462 (19)0.0466 (18)0.0124 (16)0.0155 (15)0.0001 (15)
N10.0382 (14)0.0564 (17)0.0419 (14)0.0114 (13)0.0045 (11)0.0060 (12)
N20.0426 (15)0.0472 (17)0.0515 (15)0.0077 (13)0.0094 (12)0.0022 (13)
N30.0585 (17)0.0560 (18)0.0450 (15)0.0226 (15)0.0069 (13)0.0018 (13)
O10.0431 (12)0.0534 (15)0.0454 (12)0.0039 (11)0.0081 (10)0.0060 (10)
O20.0754 (17)0.0670 (17)0.0472 (13)0.0086 (14)0.0170 (12)0.0053 (12)
O30.0534 (14)0.0623 (16)0.0524 (14)0.0052 (13)0.0057 (11)0.0006 (12)
O40.0723 (17)0.0653 (18)0.0621 (16)0.0051 (14)0.0163 (14)0.0081 (13)
O50.0611 (15)0.0496 (15)0.0467 (13)0.0168 (12)0.0058 (11)0.0040 (11)
O60.0686 (16)0.0710 (18)0.0470 (13)0.0110 (14)0.0193 (12)0.0040 (12)
Geometric parameters (Å, º) top
C1—C21.388 (4)C25—C261.411 (6)
C1—C61.389 (4)C25—H250.9300
C1—C71.501 (4)C26—C271.350 (6)
C2—C31.389 (4)C26—H260.9300
C2—H20.9300C27—C281.422 (5)
C3—C41.386 (4)C27—H270.9300
C3—C81.488 (4)C28—C291.386 (5)
C4—C51.379 (4)C29—C301.386 (5)
C4—H40.9300C29—H290.9300
C5—C61.397 (4)C30—C311.424 (5)
C5—C91.503 (4)C30—C351.430 (5)
C6—H60.9300C31—C321.345 (6)
C7—O21.208 (4)C31—H310.9300
C7—O11.308 (4)C32—C331.405 (6)
C8—O41.208 (4)C32—H320.9300
C8—O31.316 (4)C33—C341.360 (6)
C9—O61.207 (4)C33—H330.9300
C9—O51.304 (4)C34—C351.414 (5)
C10—N11.349 (4)C34—H340.9300
C10—C111.406 (5)C35—N21.344 (4)
C10—C151.433 (4)C36—N31.341 (4)
C11—C121.356 (6)C36—C371.416 (5)
C11—H110.9300C36—C411.426 (5)
C12—C131.411 (6)C37—C381.344 (6)
C12—H120.9300C37—H370.9300
C13—C141.337 (6)C38—C391.403 (7)
C13—H130.9300C38—H380.9300
C14—C151.427 (5)C39—C401.339 (7)
C14—H140.9300C39—H390.9300
C15—C161.377 (5)C40—C411.425 (6)
C16—C171.395 (5)C40—H400.9300
C16—H160.9300C41—C421.376 (6)
C17—C181.412 (5)C42—C431.382 (5)
C17—C221.430 (4)C42—H420.9300
C18—C191.346 (6)C43—C481.426 (5)
C18—H180.9300C43—C441.427 (6)
C19—C201.400 (6)C44—C451.343 (7)
C19—H190.9300C44—H440.9300
C20—C211.351 (6)C45—C461.401 (7)
C20—H200.9300C45—H450.9300
C21—C221.424 (5)C46—C471.350 (6)
C21—H210.9300C46—H460.9300
C22—N11.348 (4)C47—C481.407 (5)
C23—N21.348 (4)C47—H470.9300
C23—C281.420 (5)C48—N31.344 (4)
C23—C241.423 (5)O1—H11.03 (4)
C24—C251.355 (6)O3—H31.08 (6)
C24—H240.9300O5—H51.10 (5)
C2—C1—C6119.1 (2)C27—C26—C25120.5 (4)
C2—C1—C7118.1 (3)C27—C26—H26119.7
C6—C1—C7122.7 (3)C25—C26—H26119.7
C1—C2—C3121.0 (3)C26—C27—C28120.4 (4)
C1—C2—H2119.5C26—C27—H27119.8
C3—C2—H2119.5C28—C27—H27119.8
C4—C3—C2119.2 (3)C29—C28—C23117.6 (3)
C4—C3—C8118.7 (2)C29—C28—C27123.3 (3)
C2—C3—C8122.0 (3)C23—C28—C27119.1 (3)
C5—C4—C3120.8 (3)C28—C29—C30120.6 (3)
C5—C4—H4119.6C28—C29—H29119.7
C3—C4—H4119.6C30—C29—H29119.7
C4—C5—C6119.6 (3)C29—C30—C31123.7 (3)
C4—C5—C9118.3 (2)C29—C30—C35118.2 (3)
C6—C5—C9122.0 (3)C31—C30—C35118.1 (3)
C1—C6—C5120.3 (3)C32—C31—C30120.9 (4)
C1—C6—H6119.8C32—C31—H31119.6
C5—C6—H6119.8C30—C31—H31119.6
O2—C7—O1124.5 (3)C31—C32—C33120.4 (4)
O2—C7—C1121.0 (3)C31—C32—H32119.8
O1—C7—C1114.5 (3)C33—C32—H32119.8
O4—C8—O3123.3 (3)C34—C33—C32121.6 (4)
O4—C8—C3122.9 (3)C34—C33—H33119.2
O3—C8—C3113.9 (3)C32—C33—H33119.2
O6—C9—O5123.8 (3)C33—C34—C35119.4 (4)
O6—C9—C5120.8 (3)C33—C34—H34120.3
O5—C9—C5115.4 (2)C35—C34—H34120.3
N1—C10—C11119.2 (3)N2—C35—C34118.6 (3)
N1—C10—C15121.6 (3)N2—C35—C30121.9 (3)
C11—C10—C15119.3 (3)C34—C35—C30119.5 (3)
C12—C11—C10120.3 (3)N3—C36—C37119.3 (3)
C12—C11—H11119.9N3—C36—C41122.0 (3)
C10—C11—H11119.9C37—C36—C41118.6 (3)
C11—C12—C13120.6 (4)C38—C37—C36120.3 (4)
C11—C12—H12119.7C38—C37—H37119.8
C13—C12—H12119.7C36—C37—H37119.8
C14—C13—C12121.3 (4)C37—C38—C39121.5 (5)
C14—C13—H13119.3C37—C38—H38119.2
C12—C13—H13119.3C39—C38—H38119.2
C13—C14—C15120.3 (3)C40—C39—C38120.1 (4)
C13—C14—H14119.9C40—C39—H39119.9
C15—C14—H14119.9C38—C39—H39119.9
C16—C15—C14123.1 (3)C39—C40—C41121.1 (4)
C16—C15—C10118.6 (3)C39—C40—H40119.4
C14—C15—C10118.3 (3)C41—C40—H40119.4
C15—C16—C17120.4 (3)C42—C41—C40124.5 (3)
C15—C16—H16119.8C42—C41—C36117.3 (3)
C17—C16—H16119.8C40—C41—C36118.2 (4)
C16—C17—C18123.3 (3)C41—C42—C43121.7 (3)
C16—C17—C22117.8 (3)C41—C42—H42119.1
C18—C17—C22118.8 (3)C43—C42—H42119.1
C19—C18—C17120.4 (4)C42—C43—C48117.4 (3)
C19—C18—H18119.8C42—C43—C44124.6 (4)
C17—C18—H18119.8C48—C43—C44118.0 (4)
C18—C19—C20121.1 (4)C45—C44—C43120.9 (4)
C18—C19—H19119.4C45—C44—H44119.5
C20—C19—H19119.4C43—C44—H44119.5
C21—C20—C19121.1 (4)C44—C45—C46120.4 (4)
C21—C20—H20119.4C44—C45—H45119.8
C19—C20—H20119.4C46—C45—H45119.8
C20—C21—C22119.8 (3)C47—C46—C45121.1 (4)
C20—C21—H21120.1C47—C46—H46119.4
C22—C21—H21120.1C45—C46—H46119.4
N1—C22—C21119.2 (3)C46—C47—C48120.4 (4)
N1—C22—C17122.2 (3)C46—C47—H47119.8
C21—C22—C17118.7 (3)C48—C47—H47119.8
N2—C23—C28122.9 (3)N3—C48—C47119.3 (3)
N2—C23—C24118.3 (3)N3—C48—C43121.7 (3)
C28—C23—C24118.8 (3)C47—C48—C43119.0 (3)
C25—C24—C23120.0 (4)C22—N1—C10119.3 (2)
C25—C24—H24120.0C35—N2—C23118.8 (3)
C23—C24—H24120.0C36—N3—C48119.7 (3)
C24—C25—C26121.2 (4)C7—O1—H1108 (2)
C24—C25—H25119.4C8—O3—H3111 (3)
C26—C25—H25119.4C9—O5—H5112 (3)
C6—C1—C2—C31.0 (4)N2—C23—C28—C27179.6 (3)
C7—C1—C2—C3178.6 (3)C24—C23—C28—C270.1 (4)
C1—C2—C3—C40.1 (4)C26—C27—C28—C29179.2 (3)
C1—C2—C3—C8176.5 (3)C26—C27—C28—C231.0 (5)
C2—C3—C4—C50.7 (4)C23—C28—C29—C300.5 (4)
C8—C3—C4—C5175.8 (3)C27—C28—C29—C30179.7 (3)
C3—C4—C5—C60.6 (4)C28—C29—C30—C31179.8 (3)
C3—C4—C5—C9177.8 (3)C28—C29—C30—C350.4 (4)
C2—C1—C6—C51.2 (4)C29—C30—C31—C32179.9 (4)
C7—C1—C6—C5178.7 (3)C35—C30—C31—C320.1 (5)
C4—C5—C6—C10.4 (4)C30—C31—C32—C330.2 (6)
C9—C5—C6—C1178.7 (3)C31—C32—C33—C340.8 (7)
C2—C1—C7—O24.4 (5)C32—C33—C34—C351.0 (6)
C6—C1—C7—O2178.1 (3)C33—C34—C35—N2180.0 (3)
C2—C1—C7—O1176.0 (3)C33—C34—C35—C300.7 (5)
C6—C1—C7—O11.6 (4)C29—C30—C35—N20.3 (4)
C4—C3—C8—O46.9 (5)C31—C30—C35—N2179.5 (3)
C2—C3—C8—O4176.7 (3)C29—C30—C35—C34179.6 (3)
C4—C3—C8—O3173.1 (3)C31—C30—C35—C340.1 (5)
C2—C3—C8—O33.3 (4)N3—C36—C37—C38178.3 (4)
C4—C5—C9—O67.2 (5)C41—C36—C37—C380.4 (7)
C6—C5—C9—O6174.5 (3)C36—C37—C38—C390.6 (8)
C4—C5—C9—O5173.2 (3)C37—C38—C39—C400.8 (9)
C6—C5—C9—O55.1 (4)C38—C39—C40—C410.7 (8)
N1—C10—C11—C12178.8 (4)C39—C40—C41—C42178.7 (5)
C15—C10—C11—C120.7 (6)C39—C40—C41—C360.5 (7)
C10—C11—C12—C130.7 (7)N3—C36—C41—C422.4 (6)
C11—C12—C13—C141.0 (8)C37—C36—C41—C42178.9 (4)
C12—C13—C14—C150.2 (7)N3—C36—C41—C40178.4 (4)
C13—C14—C15—C16179.1 (4)C37—C36—C41—C400.3 (6)
C13—C14—C15—C101.5 (6)C40—C41—C42—C43179.6 (4)
N1—C10—C15—C161.7 (5)C36—C41—C42—C430.4 (6)
C11—C10—C15—C16178.9 (3)C41—C42—C43—C480.6 (6)
N1—C10—C15—C14177.7 (3)C41—C42—C43—C44179.2 (4)
C11—C10—C15—C141.8 (5)C42—C43—C44—C45178.5 (5)
C14—C15—C16—C17179.3 (3)C48—C43—C44—C451.4 (7)
C10—C15—C16—C170.0 (5)C43—C44—C45—C460.0 (9)
C15—C16—C17—C18179.8 (3)C44—C45—C46—C473.1 (9)
C15—C16—C17—C221.2 (5)C45—C46—C47—C484.7 (8)
C16—C17—C18—C19179.0 (4)C46—C47—C48—N3177.2 (4)
C22—C17—C18—C190.0 (6)C46—C47—C48—C433.2 (6)
C17—C18—C19—C200.5 (7)C42—C43—C48—N30.3 (6)
C18—C19—C20—C211.7 (7)C44—C43—C48—N3179.8 (4)
C19—C20—C21—C222.4 (7)C42—C43—C48—C47180.0 (4)
C20—C21—C22—N1178.8 (4)C44—C43—C48—C470.2 (6)
C20—C21—C22—C171.9 (6)C21—C22—N1—C10180.0 (3)
C16—C17—C22—N10.9 (5)C17—C22—N1—C100.7 (5)
C18—C17—C22—N1180.0 (3)C11—C10—N1—C22178.6 (3)
C16—C17—C22—C21178.4 (3)C15—C10—N1—C222.0 (5)
C18—C17—C22—C210.7 (5)C34—C35—N2—C23179.7 (3)
N2—C23—C24—C25178.9 (3)C30—C35—N2—C231.0 (4)
C28—C23—C24—C251.6 (5)C28—C23—N2—C351.0 (4)
C23—C24—C25—C262.0 (5)C24—C23—N2—C35179.5 (3)
C24—C25—C26—C270.9 (6)C37—C36—N3—C48178.0 (4)
C25—C26—C27—C280.7 (6)C41—C36—N3—C483.3 (5)
N2—C23—C28—C290.2 (4)C47—C48—N3—C36178.1 (3)
C24—C23—C28—C29179.7 (3)C43—C48—N3—C362.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.03 (4)1.62 (4)2.643 (4)173 (4)
O3—H3···N21.08 (6)1.55 (6)2.619 (4)166 (5)
O5—H5···N31.10 (5)1.57 (5)2.659 (4)171 (6)
C14—H14···O6i0.932.443.266 (5)147
C16—H16···O6i0.932.553.355 (5)145
C18—H18···O2ii0.932.543.389 (5)151
C24—H24···O5iii0.932.533.278 (5)138
C27—H27···O4iv0.932.593.435 (5)151
C47—H47···O3iii0.932.563.345 (5)143
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z1; (iii) x, y, z; (iv) x1, y+1, z.

Experimental details

Crystal data
Chemical formula3C13H9N·C9H6O6
Mr747.77
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)12.031 (2), 13.113 (3), 13.220 (3)
α, β, γ (°)77.44 (3), 71.43 (3), 72.23 (3)
V3)1865.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.3 × 0.2
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
(X-RED and X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.964, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
15233, 7305, 3826
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.218, 0.95
No. of reflections7305
No. of parameters526
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.03 (4)1.62 (4)2.643 (4)173 (4)
O3—H3···N21.08 (6)1.55 (6)2.619 (4)166 (5)
O5—H5···N31.10 (5)1.57 (5)2.659 (4)171 (6)
C14—H14···O6i0.932.443.266 (5)147
C16—H16···O6i0.932.553.355 (5)145
C18—H18···O2ii0.932.543.389 (5)151
C24—H24···O5iii0.932.533.278 (5)138
C27—H27···O4iv0.932.593.435 (5)151
C47—H47···O3iii0.932.563.345 (5)143
Symmetry codes: (i) x+1, y, z1; (ii) x+1, y, z1; (iii) x, y, z; (iv) x1, y+1, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationDale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationEshtiagh-Hosseini, H., Aghabozorg, H. & Mirzaei, M. (2010). Acta Cryst. E66, m882.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473–m474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds