organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(4-Nitro­phen­yl)-5-(5-phenyl-1,2-oxazol-3-yl)-1,2,3,4-tetra­hydro­quinolin-4-yl]pyrrolidin-2-one monohydrate

aInstituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca, Chile, bInstituto de Química, Universidad Austral de Chile, Valdivia, Chile, cDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and dDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 6 December 2010; accepted 14 December 2010; online 18 December 2010)

The title compound, C28H24N4O4·H2O, crystallizes with two organic mol­ecules and two solvent water mol­ecules in the asymmetric unit. The most obvious difference between the mol­ecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2)/56.4 (2) and 33.3 (2)/11.0 (2)°, respectively]. Another important difference is observed in the rotation of the nitro group with respect to the phenyl groups [3.5 (6) and 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitro­phenyl fragment. In the crystal, mol­ecules are linked into centrosymmetric R42(8) and R44(20) motifs by O—H⋯O and N—H⋯O inter­actions.

Related literature

For pharmacological activity of quinoline, see: Shi et al. (2008[Shi, A., Nguyen, T. A., Battina, K. S., Rana, S., Takemoto, J. D., Chiang, K. P. & Hua, D. (2008). Bioorg. Med. Chem. Lett. 18, 3364-3368.]); Lunniss et al. (2009[Lunniss, J. C., Cooper, W. J. A., Eldred, D. C., Kranz, M., Lindvall, M., Lucas, S. F., Neu, M., Preston, A., Ranshaw, E. L., Redgrave, J. A., Robinson, E. J., Shimpley, J. T., Solanke, E. Y., Somers, O. D. & Wiseman, O. J. (2009). Bioorg. Med. Chem. Lett. 19, 1380-1385.]); He et al. (2005[He, F.-J., Yun, L.-H., Yang, R.-F., Xiao, Z.-Y., Cheng, J.-P., Zhou, W.-X. & Zhang, Y.-X. (2005). Bioorg. Med. Chem. Lett. 15, 2980-2985.]); Eswaran et al. (2010[Eswaran, S., Adhikari, V. A., Pal, K. N. & Chowdhury, H. I. (2010). Bioorg. Med. Chem. 20, 1040-1044.]). For the synthesis and medicinal uses of quinolines, see: Kalita et al. (2006[Kalita, P., Baruah, B. & Bhuyan, P. (2006). Tetrahedron Lett. 47, 7779-7782.]); Kouznetsov et al. (2005[Kouznetsov, V. V., Vargas, L. Y. & Melendez, C. C. (2005). Curr. Org. Chem. 9, 141-161.]); Sankaran et al. (2010[Sankaran, M., Kumarasamy, C., Chokkalingam, U. & Mohan, P. S. (2010). Bioorg. Med. Chem. Lett. 20, 7147-7151.]). For reactions of isoxazoles see: Taldone et al. (2008[Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370-374.]); Narlawar et al. (2008[Narlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem. 3, 165-172.]); Velaparthi et al. (2008[Velaparthi, S., Brunsteiner, M., Uddin, R., Wan, B., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999-2002.]); Rizzi et al. (2008[Rizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651-4654.]); Lautens & Roy (2000[Lautens, M. & Roy, A. (2000). Org. Lett. 2, 555-557.]); Broggini et al. (2005[Broggini, G., Chiesa, K., De Marchi, I., Martinelli, M., Pilati, T. & Zecchi, G. (2005). Tetrahedron, 61, 3525-3531.]); Kotera et al. (1970[Kotera, K., Takano, Y., Matsuura, A. & Kitahonoki, K. (1970). Tetrahedron, 26, 539-556.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24N4O4·H2O

  • Mr = 498.53

  • Triclinic, [P \overline 1]

  • a = 13.516 (8) Å

  • b = 14.193 (6) Å

  • c = 14.987 (11) Å

  • α = 70.151 (10)°

  • β = 79.62 (2)°

  • γ = 69.700 (9)°

  • V = 2530 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.39 × 0.17 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 21159 measured reflections

  • 11596 independent reflections

  • 7891 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.098

  • wR(F2) = 0.240

  • S = 1.16

  • 11596 reflections

  • 691 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.83 (7) 2.07 (7) 2.904 (5) 173 (6)
O1W—H1WB⋯O4ii 1.03 (8) 1.87 (8) 2.877 (5) 167 (6)
O2W—H2WB⋯O7 0.97 (8) 1.80 (9) 2.754 (5) 165 (8)
N6—H6N⋯O2Wiii 0.83 (4) 2.13 (4) 2.958 (5) 179 (5)
O2W—H2WA⋯O1W 0.80 (6) 2.09 (6) 2.883 (6) 175 (6)
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran et al., 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as structural frameworks in natural products (Kalita et al., 2006). They also have several pharmacological activities such as anti-breast cancer (Shi et al., 2008), selective PDE4 inhibition (Lunniss et al., 2009), immuno modulatory (He et al., 2005), antimycobacterial agents (Eswaran et al., 2010), among others.

Quinoline and derivatives represent the major class of heterocycles, and a number of preparations have been known since the late 1800's. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov et al., 2005).

The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008), Mycobacterium tuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008) and neuronal nicotinic acetylcholine receptor agonist effect (Rizzi et al., 2008).

A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometimes suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthesized by 1,3-dipolar cycloaddition reactions between nitrile oxide and alkyne, and that reaction may be catalyzed by copper(II). Cycloaddition reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini et al., 2005).

Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera et al., 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines, aldehydes and electron-rich alkenes to generate tetrahydroquinolines with different selected substitution patterns. Due to this fact, the combination of the two heterocycles rings into a new chemical entityis of interest as no examples are known on chemical literature to date. Many molecules widely used today consist of fusions of rings; an example is the case of penicillins, where in the isoxazole ring incorporation allowed obtaining stable derivatives catalyzed degradation by gastric acid level (flucloxacillin and cloxacillin).

We report here the crystal structure of a novel synthetic derivative cis quinoline-isoxazole by imino Diels-Alder cycloaddition, Fig. 2. The title compound, C28H24N4O4.H2O, crystallizes with two organic molecules and two solvent water molecule in the asymmetric unit., Fig. 1. The most obvious difference between the molecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)°] respectively. Anther important difference is observed in the rotation of the nitro group with respect to the phenyl group [3.5 (6)°; 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitrophenyl fragment. In the crystal the molecules are linked into centrosymmetric R24(8) and R44(20) motifs by O—H···O and N—H···O interactions, (Bernstein et al., 1995). There are six intramolecular hydrogen bonds which stabilized the molecular conformation in both molecules, Table 1.

Related literature top

For pharmacological activity of quinoline, see: Shi et al. (2008); Lunniss et al. (2009); He et al. (2005); Eswaran et al. (2010). For the synthesis and medicinal uses of quinolines, see: Kalita et al. (2006); Kouznetsov et al. (2005); Sankaran et al. (2010). For reactions of isoxazoles see: Taldone et al. (2008); Narlawar et al. (2008); Velaparthi et al. (2008); Rizzi et al. (2008); Lautens & Roy (2000); Broggini et al. (2005); Kotera et al. (1970). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-(3-aminophenyl)-5-phenylisoxazole (2.8 mmol) 3 and 4-nitrobenzaldehyde (3.4 mmol) 1 in anhydrous CH3CN (15 ml) was stirred at room temperature for 30 min. BiCl3 (20 mol%) was added. Over a period of 20 min, a solution the N-vinyl-2-pyrrolidone (NVP) (5.5 mmol) 4 in CH3CN (10 ml) was added dropwise. The resulting mixture was stirred for 10–14 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water (30 ml) and extracted with ethyl acetate (3× 15 ml). The organic layer was separated and dried (Na2SO4), concentrated in vacuum and the resulting product was purified by column chromatography (silica gel) using PE and EtOAc mixtures. Results for derivatives trans and cis quinoline-isoxazole 5 and the title compound, see Figure 2. Solid crystalline mp 215–217 °C. The crystals were obtaned by slow evaporation of a solution of the title compound in a THF:H2O (1:1v/v) mixture. RMN-1H(CDCl3), 400 MHz, δ): 8.14 (2H, d, J = 4.0); 7.77 (1H, d, J= 8.0); 7.59 (2H, d, J = 8.0); 7.42(2H, d, J = 8.0); 7.17 (1H, t, J = 8.0); 6.93 (1H, s); 6.86 (2H, dd, J = 8.0 and 2.0); 6.80 (1H, d, J = 8.0); 6.65 (1H, s); 4.59 (1H, d, J = 12.0 and 1.0); 4.51 (1H, br.s); 4.41 (1H, s); 2.93 (2H, m); 1.98 (2H, m); 1.71 (2H, m), 1.57 (2H, m). RMN-13H(CDCl3), 400 MHz,?d): 174.58, 168.95, 162.92, 149.97,147.26, 146.71, 130.03, 129.61, 128.87, 128.54, 127.13, 127.08, 127.08, 125.82,123.74, 117.35, 116.58, 100.24, 54.76, 46.93, 42.32, 34.92, 30.46, 17.25. MS m/z (EI): 480. Anal. Calcd. for C28H24N4O4: C, 69.99;H,5.03; N, 11.66. Found: C, 69.92; H, 5.05; N, 11.79.

Refinement top

The positions of the O1W, O2W, N2 and N6 H atoms were refined freely along with isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran et al., 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as structural frameworks in natural products (Kalita et al., 2006). They also have several pharmacological activities such as anti-breast cancer (Shi et al., 2008), selective PDE4 inhibition (Lunniss et al., 2009), immuno modulatory (He et al., 2005), antimycobacterial agents (Eswaran et al., 2010), among others.

Quinoline and derivatives represent the major class of heterocycles, and a number of preparations have been known since the late 1800's. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov et al., 2005).

The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone et al., 2008), tau aggregation inhibitors for treatment of Alzheimer's disease (Narlawar et al., 2008), Mycobacterium tuberculosis pantothenate synthetase inhibitors (Velaparthi et al., 2008) and neuronal nicotinic acetylcholine receptor agonist effect (Rizzi et al., 2008).

A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometimes suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthesized by 1,3-dipolar cycloaddition reactions between nitrile oxide and alkyne, and that reaction may be catalyzed by copper(II). Cycloaddition reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini et al., 2005).

Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera et al., 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines, aldehydes and electron-rich alkenes to generate tetrahydroquinolines with different selected substitution patterns. Due to this fact, the combination of the two heterocycles rings into a new chemical entityis of interest as no examples are known on chemical literature to date. Many molecules widely used today consist of fusions of rings; an example is the case of penicillins, where in the isoxazole ring incorporation allowed obtaining stable derivatives catalyzed degradation by gastric acid level (flucloxacillin and cloxacillin).

We report here the crystal structure of a novel synthetic derivative cis quinoline-isoxazole by imino Diels-Alder cycloaddition, Fig. 2. The title compound, C28H24N4O4.H2O, crystallizes with two organic molecules and two solvent water molecule in the asymmetric unit., Fig. 1. The most obvious difference between the molecules is the torsion angles between the isoxazole ring and the benzene and phenyl rings [47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)°] respectively. Anther important difference is observed in the rotation of the nitro group with respect to the phenyl group [3.5 (6)°; 31.1 (6)°]. The pyrrolidinone fragment is cis oriented with respect to the 4-nitrophenyl fragment. In the crystal the molecules are linked into centrosymmetric R24(8) and R44(20) motifs by O—H···O and N—H···O interactions, (Bernstein et al., 1995). There are six intramolecular hydrogen bonds which stabilized the molecular conformation in both molecules, Table 1.

For pharmacological activity of quinoline, see: Shi et al. (2008); Lunniss et al. (2009); He et al. (2005); Eswaran et al. (2010). For the synthesis and medicinal uses of quinolines, see: Kalita et al. (2006); Kouznetsov et al. (2005); Sankaran et al. (2010). For reactions of isoxazoles see: Taldone et al. (2008); Narlawar et al. (2008); Velaparthi et al. (2008); Rizzi et al. (2008); Lautens & Roy (2000); Broggini et al. (2005); Kotera et al. (1970). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level.
[Figure 2] Fig. 2. Synthesis scheme of the title compound.
1-[2-(4-Nitrophenyl)-5-(5-phenyl-1,2-oxazol-3-yl)-1,2,3,4- tetrahydroquinolin-4-yl]pyrrolidin-2-one monohydrate top
Crystal data top
C28H24N4O4·H2OZ = 4
Mr = 498.53F(000) = 1048
Triclinic, P1Dx = 1.309 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.516 (8) ÅCell parameters from 7466 reflections
b = 14.193 (6) Åθ = 1.6–27.7°
c = 14.987 (11) ŵ = 0.09 mm1
α = 70.151 (10)°T = 293 K
β = 79.62 (2)°Prism, yellow
γ = 69.700 (9)°0.39 × 0.17 × 0.12 mm
V = 2530 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
7891 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.090
Graphite monochromatorθmax = 27.7°, θmin = 1.6°
φ and ω scans with κ offsetsh = 017
21159 measured reflectionsk = 1618
11596 independent reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.098Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0836P)2 + 2.2406P]
where P = (Fo2 + 2Fc2)/3
11596 reflections(Δ/σ)max < 0.001
691 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C28H24N4O4·H2Oγ = 69.700 (9)°
Mr = 498.53V = 2530 (3) Å3
Triclinic, P1Z = 4
a = 13.516 (8) ÅMo Kα radiation
b = 14.193 (6) ŵ = 0.09 mm1
c = 14.987 (11) ÅT = 293 K
α = 70.151 (10)°0.39 × 0.17 × 0.12 mm
β = 79.62 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7891 reflections with I > 2σ(I)
21159 measured reflectionsRint = 0.090
11596 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0980 restraints
wR(F2) = 0.240H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.34 e Å3
11596 reflectionsΔρmin = 0.33 e Å3
691 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1893 (4)0.5828 (4)0.0899 (4)0.151 (2)
O20.2061 (4)0.4662 (4)0.0265 (4)0.1459 (19)
O31.18855 (17)0.0338 (2)0.28972 (19)0.0595 (7)
O40.9406 (2)0.1193 (2)0.07318 (17)0.0621 (7)
O50.4045 (3)0.5670 (3)0.1648 (3)0.1073 (13)
O60.3530 (3)0.7007 (3)0.0855 (3)0.0982 (11)
O70.1570 (2)0.12322 (19)0.5951 (2)0.0675 (7)
O80.49271 (17)0.14888 (18)0.61723 (17)0.0540 (6)
N10.2355 (3)0.4985 (3)0.0794 (3)0.0850 (11)
N20.6331 (2)0.2718 (2)0.3431 (2)0.0473 (7)
H2N0.589 (3)0.264 (3)0.388 (3)0.077 (14)*
N31.1088 (2)0.1043 (2)0.3322 (2)0.0582 (8)
N40.90577 (19)0.22917 (19)0.16467 (17)0.0405 (6)
N50.3424 (3)0.6164 (3)0.1471 (3)0.0681 (9)
N60.0703 (2)0.5391 (2)0.3501 (2)0.0548 (8)
H6N0.039 (3)0.603 (3)0.331 (3)0.060 (11)*
N70.2327 (2)0.21999 (18)0.46358 (18)0.0399 (6)
N80.4633 (2)0.2353 (2)0.5345 (2)0.0511 (7)
C10.3325 (3)0.4336 (3)0.1285 (3)0.0596 (9)
C20.3650 (3)0.4683 (3)0.1888 (3)0.0616 (10)
H20.32540.53180.20020.074*
C30.4581 (3)0.4079 (3)0.2332 (3)0.0538 (9)
H30.48110.43150.27420.065*
C40.5168 (2)0.3135 (3)0.2172 (2)0.0447 (7)
C50.4787 (3)0.2782 (4)0.1591 (3)0.0767 (13)
H50.51590.21280.15050.092*
C60.3876 (4)0.3372 (4)0.1137 (4)0.0863 (15)
H60.36330.31290.07410.104*
C70.6221 (2)0.2472 (3)0.2599 (2)0.0445 (7)
H70.62720.17260.27800.053*
C80.7137 (2)0.2665 (3)0.1879 (2)0.0460 (8)
H8A0.71180.33920.17280.055*
H8B0.70610.25480.12970.055*
C90.8203 (2)0.1933 (2)0.2269 (2)0.0382 (7)
H90.82880.12250.22530.046*
C100.8255 (2)0.1874 (2)0.3297 (2)0.0352 (6)
C110.7322 (2)0.2302 (2)0.3808 (2)0.0374 (7)
C120.7374 (3)0.2340 (2)0.4721 (2)0.0438 (7)
H120.67580.26280.50550.053*
C130.8327 (3)0.1955 (2)0.5127 (2)0.0464 (8)
H130.83540.20130.57210.056*
C140.9243 (3)0.1482 (2)0.4654 (2)0.0452 (7)
H140.98810.11970.49410.054*
C150.9209 (2)0.1434 (2)0.3746 (2)0.0380 (7)
C161.0207 (2)0.0866 (2)0.3289 (2)0.0402 (7)
C171.0388 (2)0.0063 (2)0.2874 (2)0.0407 (7)
H170.98880.02020.27790.049*
C181.1431 (2)0.0240 (2)0.2643 (2)0.0429 (7)
C191.2137 (2)0.1041 (2)0.2210 (2)0.0470 (8)
C201.1780 (3)0.1278 (3)0.1532 (3)0.0616 (10)
H201.10940.09250.13460.074*
C211.2446 (4)0.2045 (3)0.1127 (3)0.0763 (12)
H211.22050.22100.06730.092*
C221.3470 (4)0.2560 (3)0.1400 (4)0.0783 (13)
H221.39200.30650.11230.094*
C231.3819 (3)0.2328 (3)0.2078 (3)0.0695 (12)
H231.45080.26780.22590.083*
C241.3166 (3)0.1586 (3)0.2491 (3)0.0558 (9)
H241.34070.14430.29590.067*
C250.9335 (3)0.3197 (3)0.1655 (3)0.0564 (9)
H25A0.94960.31190.22870.068*
H25B0.87640.38470.14440.068*
C261.0301 (4)0.3184 (4)0.0966 (4)0.0884 (15)
H26A1.02480.38880.05460.106*
H26B1.09340.29210.13080.106*
C271.0343 (3)0.2479 (4)0.0412 (3)0.0712 (12)
H27A1.10480.19880.03860.085*
H27B1.01500.28860.02320.085*
C280.9561 (3)0.1901 (3)0.0928 (2)0.0475 (8)
C290.2518 (2)0.5753 (3)0.2061 (2)0.0485 (8)
C300.2560 (3)0.5056 (3)0.2951 (3)0.0528 (9)
H300.31410.48130.31770.063*
C310.1722 (3)0.4724 (2)0.3505 (2)0.0483 (8)
H310.17500.42650.41170.058*
C320.0837 (2)0.5060 (2)0.3171 (2)0.0404 (7)
C330.0809 (3)0.5730 (3)0.2250 (3)0.0583 (9)
H330.02100.59390.20020.070*
C340.1656 (3)0.6091 (3)0.1698 (3)0.0630 (10)
H340.16400.65560.10880.076*
C350.0048 (2)0.4706 (2)0.3819 (2)0.0433 (7)
H350.02720.47300.44550.052*
C360.0762 (2)0.3586 (2)0.3899 (2)0.0422 (7)
H36A0.11210.35520.32840.051*
H36B0.03380.31110.40950.051*
C370.1584 (2)0.3241 (2)0.4628 (2)0.0368 (7)
H370.12050.31720.52580.044*
C380.2140 (2)0.4068 (2)0.4446 (2)0.0340 (6)
C390.1663 (3)0.5109 (2)0.3872 (2)0.0411 (7)
C400.2179 (3)0.5872 (2)0.3665 (2)0.0515 (9)
H400.18640.65530.32870.062*
C410.3136 (3)0.5631 (3)0.4009 (3)0.0518 (8)
H410.34740.61430.38510.062*
C420.3605 (3)0.4633 (3)0.4591 (2)0.0472 (8)
H420.42490.44770.48330.057*
C430.3107 (2)0.3856 (2)0.4816 (2)0.0375 (7)
C440.3630 (2)0.2837 (2)0.5516 (2)0.0379 (7)
C450.3240 (2)0.2333 (2)0.6422 (2)0.0426 (7)
H450.25570.25270.66990.051*
C460.4071 (3)0.1506 (2)0.6807 (2)0.0443 (7)
C470.4233 (3)0.0707 (3)0.7737 (3)0.0532 (9)
C480.3381 (4)0.0623 (4)0.8380 (3)0.0809 (13)
H480.27020.10460.82090.097*
C490.3530 (5)0.0096 (5)0.9289 (4)0.0997 (17)
H490.29510.01550.97200.120*
C500.4522 (5)0.0710 (4)0.9544 (4)0.0913 (16)
H500.46180.11841.01510.110*
C510.5376 (5)0.0636 (3)0.8917 (4)0.0815 (14)
H510.60520.10520.90980.098*
C520.5234 (3)0.0061 (3)0.8010 (3)0.0646 (10)
H520.58170.00970.75780.077*
C530.3095 (3)0.2023 (3)0.3841 (3)0.0539 (9)
H53A0.35170.24980.36620.065*
H53B0.27470.21130.32920.065*
C540.3765 (4)0.0892 (3)0.4239 (3)0.0801 (13)
H54A0.39900.05430.37490.096*
H54B0.43860.08590.45030.096*
C550.3063 (3)0.0394 (3)0.4998 (3)0.0656 (11)
H55A0.34570.00950.55390.079*
H55B0.27450.00180.47590.079*
C560.2227 (3)0.1298 (2)0.5272 (3)0.0484 (8)
O1W0.0770 (3)0.0833 (3)0.9068 (2)0.0812 (9)
H1WA0.034 (5)0.092 (5)0.953 (5)0.13 (2)*
H1WB0.077 (5)0.012 (6)0.904 (5)0.16 (3)*
O2W0.0413 (3)0.2325 (2)0.7199 (3)0.1003 (13)
H2WA0.050 (4)0.194 (4)0.773 (4)0.092 (18)*
H2WB0.071 (6)0.191 (6)0.676 (6)0.17 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.112 (3)0.108 (3)0.223 (6)0.031 (3)0.097 (4)0.061 (3)
O20.110 (3)0.141 (4)0.199 (5)0.002 (3)0.100 (3)0.059 (4)
O30.0358 (12)0.0650 (15)0.0817 (18)0.0172 (11)0.0031 (12)0.0290 (14)
O40.0702 (17)0.0703 (17)0.0508 (15)0.0192 (13)0.0074 (12)0.0327 (13)
O50.066 (2)0.099 (3)0.153 (4)0.0306 (19)0.044 (2)0.009 (2)
O60.094 (2)0.085 (2)0.093 (2)0.0120 (18)0.047 (2)0.0057 (19)
O70.0827 (19)0.0509 (14)0.0628 (17)0.0323 (13)0.0064 (15)0.0031 (12)
O80.0400 (12)0.0549 (14)0.0518 (14)0.0061 (10)0.0069 (11)0.0043 (11)
N10.064 (2)0.083 (3)0.102 (3)0.009 (2)0.037 (2)0.018 (2)
N20.0372 (15)0.0636 (17)0.0402 (15)0.0123 (13)0.0027 (13)0.0208 (13)
N30.0425 (16)0.0625 (18)0.077 (2)0.0169 (14)0.0022 (15)0.0299 (16)
N40.0400 (14)0.0430 (13)0.0326 (13)0.0107 (11)0.0035 (11)0.0093 (11)
N50.0507 (19)0.063 (2)0.078 (2)0.0022 (16)0.0216 (17)0.0137 (18)
N60.0608 (19)0.0260 (13)0.071 (2)0.0093 (13)0.0264 (16)0.0001 (13)
N70.0441 (14)0.0292 (12)0.0431 (14)0.0093 (10)0.0047 (11)0.0081 (10)
N80.0393 (15)0.0532 (16)0.0481 (16)0.0086 (12)0.0032 (12)0.0052 (13)
C10.0437 (19)0.066 (2)0.068 (2)0.0122 (17)0.0178 (18)0.0163 (19)
C20.054 (2)0.057 (2)0.068 (3)0.0062 (17)0.0077 (19)0.0221 (19)
C30.052 (2)0.060 (2)0.054 (2)0.0148 (17)0.0061 (16)0.0252 (17)
C40.0364 (16)0.0546 (19)0.0473 (18)0.0152 (14)0.0011 (14)0.0204 (15)
C50.069 (3)0.072 (3)0.098 (3)0.001 (2)0.033 (2)0.046 (2)
C60.077 (3)0.087 (3)0.112 (4)0.006 (2)0.047 (3)0.050 (3)
C70.0393 (17)0.0489 (17)0.0470 (18)0.0125 (14)0.0029 (14)0.0178 (14)
C80.0408 (17)0.0587 (19)0.0368 (17)0.0098 (15)0.0060 (13)0.0163 (15)
C90.0369 (16)0.0419 (15)0.0348 (16)0.0123 (12)0.0016 (12)0.0121 (12)
C100.0404 (16)0.0344 (14)0.0307 (15)0.0147 (12)0.0011 (12)0.0069 (11)
C110.0413 (16)0.0367 (14)0.0335 (15)0.0160 (12)0.0009 (12)0.0073 (12)
C120.0503 (19)0.0446 (16)0.0335 (16)0.0141 (14)0.0039 (14)0.0121 (13)
C130.066 (2)0.0429 (16)0.0297 (16)0.0169 (15)0.0071 (15)0.0079 (13)
C140.0485 (18)0.0425 (16)0.0410 (18)0.0125 (14)0.0126 (14)0.0048 (14)
C150.0404 (16)0.0351 (14)0.0370 (16)0.0137 (12)0.0031 (13)0.0066 (12)
C160.0377 (16)0.0418 (16)0.0365 (16)0.0131 (13)0.0073 (13)0.0029 (13)
C170.0363 (16)0.0426 (16)0.0395 (17)0.0122 (13)0.0060 (13)0.0058 (13)
C180.0384 (16)0.0425 (16)0.0430 (18)0.0136 (13)0.0056 (13)0.0045 (13)
C190.0409 (17)0.0422 (16)0.0453 (19)0.0103 (14)0.0038 (14)0.0035 (14)
C200.055 (2)0.062 (2)0.062 (2)0.0146 (18)0.0012 (18)0.0163 (19)
C210.091 (3)0.072 (3)0.070 (3)0.028 (2)0.009 (2)0.030 (2)
C220.075 (3)0.057 (2)0.088 (3)0.014 (2)0.025 (3)0.026 (2)
C230.046 (2)0.058 (2)0.079 (3)0.0073 (17)0.011 (2)0.007 (2)
C240.0414 (18)0.0536 (19)0.058 (2)0.0124 (15)0.0034 (16)0.0050 (16)
C250.064 (2)0.0487 (19)0.054 (2)0.0239 (17)0.0065 (17)0.0111 (16)
C260.085 (3)0.094 (3)0.092 (3)0.054 (3)0.028 (3)0.026 (3)
C270.066 (3)0.082 (3)0.055 (2)0.028 (2)0.0201 (19)0.014 (2)
C280.0420 (17)0.0532 (19)0.0345 (17)0.0055 (14)0.0004 (14)0.0080 (14)
C290.0374 (17)0.0462 (17)0.053 (2)0.0043 (14)0.0078 (15)0.0109 (15)
C300.0391 (18)0.0516 (19)0.063 (2)0.0141 (15)0.0049 (16)0.0160 (17)
C310.0485 (19)0.0426 (17)0.0433 (18)0.0126 (14)0.0006 (15)0.0028 (14)
C320.0384 (16)0.0337 (14)0.0409 (17)0.0032 (12)0.0028 (13)0.0091 (12)
C330.0453 (19)0.072 (2)0.047 (2)0.0236 (17)0.0020 (16)0.0013 (17)
C340.058 (2)0.071 (2)0.041 (2)0.0227 (19)0.0103 (17)0.0115 (17)
C350.0453 (18)0.0355 (15)0.0422 (17)0.0048 (13)0.0077 (14)0.0083 (13)
C360.0415 (17)0.0330 (14)0.0496 (19)0.0109 (12)0.0063 (14)0.0084 (13)
C370.0369 (15)0.0288 (13)0.0393 (16)0.0077 (11)0.0008 (12)0.0080 (12)
C380.0372 (15)0.0289 (13)0.0346 (15)0.0093 (11)0.0011 (12)0.0107 (11)
C390.0509 (18)0.0309 (14)0.0405 (17)0.0116 (13)0.0046 (14)0.0098 (12)
C400.073 (2)0.0301 (15)0.049 (2)0.0182 (15)0.0061 (17)0.0053 (13)
C410.066 (2)0.0447 (18)0.054 (2)0.0321 (17)0.0001 (17)0.0122 (15)
C420.0481 (18)0.0510 (18)0.0490 (19)0.0236 (15)0.0006 (15)0.0159 (15)
C430.0403 (16)0.0349 (14)0.0363 (16)0.0123 (12)0.0033 (13)0.0119 (12)
C440.0344 (15)0.0398 (15)0.0414 (17)0.0125 (12)0.0012 (13)0.0139 (13)
C450.0382 (16)0.0457 (17)0.0423 (17)0.0137 (13)0.0010 (13)0.0113 (14)
C460.0464 (18)0.0449 (17)0.0445 (18)0.0192 (14)0.0052 (14)0.0109 (14)
C470.063 (2)0.0492 (18)0.049 (2)0.0230 (17)0.0108 (17)0.0072 (15)
C480.076 (3)0.083 (3)0.064 (3)0.026 (2)0.003 (2)0.001 (2)
C490.111 (4)0.105 (4)0.063 (3)0.044 (3)0.009 (3)0.003 (3)
C500.135 (5)0.076 (3)0.058 (3)0.040 (3)0.026 (3)0.004 (2)
C510.108 (4)0.060 (2)0.077 (3)0.029 (2)0.042 (3)0.000 (2)
C520.077 (3)0.050 (2)0.065 (2)0.0218 (19)0.024 (2)0.0033 (18)
C530.057 (2)0.0459 (18)0.056 (2)0.0086 (15)0.0027 (17)0.0228 (16)
C540.081 (3)0.049 (2)0.092 (3)0.007 (2)0.002 (3)0.030 (2)
C550.075 (3)0.0348 (17)0.082 (3)0.0026 (17)0.024 (2)0.0159 (18)
C560.059 (2)0.0346 (16)0.053 (2)0.0185 (15)0.0155 (17)0.0050 (14)
O1W0.082 (2)0.093 (2)0.066 (2)0.0288 (18)0.0151 (17)0.0289 (17)
O2W0.129 (3)0.0466 (16)0.083 (3)0.0045 (17)0.016 (2)0.0025 (17)
Geometric parameters (Å, º) top
O1—N11.191 (5)C23—H230.9300
O2—N11.217 (6)C24—H240.9300
O3—C181.357 (4)C25—C261.511 (5)
O3—N31.416 (4)C25—H25A0.9700
O4—C281.228 (4)C25—H25B0.9700
O5—N51.212 (5)C26—C271.483 (7)
O6—N51.217 (5)C26—H26A0.9700
O7—C561.225 (4)C26—H26B0.9700
O8—C461.358 (4)C27—C281.505 (5)
O8—N81.416 (4)C27—H27A0.9700
N1—C11.469 (5)C27—H27B0.9700
N2—C111.399 (4)C29—C341.365 (5)
N2—C71.449 (4)C29—C301.370 (5)
N2—H2N0.82 (4)C30—C311.377 (5)
N3—C161.311 (4)C30—H300.9300
N4—C281.345 (4)C31—C321.388 (5)
N4—C251.463 (4)C31—H310.9300
N4—C91.470 (4)C32—C331.387 (5)
N5—C291.472 (5)C32—C351.515 (5)
N6—C391.378 (4)C33—C341.381 (5)
N6—C351.446 (4)C33—H330.9300
N6—H6N0.83 (4)C34—H340.9300
N7—C561.346 (4)C35—C361.523 (4)
N7—C531.461 (4)C35—H350.9800
N7—C371.468 (3)C36—C371.538 (4)
N8—C441.312 (4)C36—H36A0.9700
C1—C21.360 (5)C36—H36B0.9700
C1—C61.384 (6)C37—C381.529 (4)
C2—C31.388 (5)C37—H370.9800
C2—H20.9300C38—C431.407 (4)
C3—C41.376 (5)C38—C391.420 (4)
C3—H30.9300C39—C401.404 (5)
C4—C51.382 (5)C40—C411.368 (5)
C4—C71.519 (5)C40—H400.9300
C5—C61.372 (6)C41—C421.380 (5)
C5—H50.9300C41—H410.9300
C6—H60.9300C42—C431.401 (4)
C7—C81.526 (4)C42—H420.9300
C7—H70.9800C43—C441.490 (4)
C8—C91.533 (4)C44—C451.407 (4)
C8—H8A0.9700C45—C461.352 (4)
C8—H8B0.9700C45—H450.9300
C9—C101.527 (4)C46—C471.464 (5)
C9—H90.9800C47—C481.373 (6)
C10—C151.405 (4)C47—C521.386 (5)
C10—C111.409 (4)C48—C491.396 (7)
C11—C121.402 (4)C48—H480.9300
C12—C131.376 (5)C49—C501.360 (8)
C12—H120.9300C49—H490.9300
C13—C141.385 (5)C50—C511.360 (7)
C13—H130.9300C50—H500.9300
C14—C151.395 (5)C51—C521.383 (6)
C14—H140.9300C51—H510.9300
C15—C161.493 (4)C52—H520.9300
C16—C171.407 (4)C53—C541.512 (5)
C17—C181.340 (4)C53—H53A0.9700
C17—H170.9300C53—H53B0.9700
C18—C191.466 (5)C54—C551.492 (6)
C19—C201.377 (5)C54—H54A0.9700
C19—C241.398 (5)C54—H54B0.9700
C20—C211.392 (6)C55—C561.509 (5)
C20—H200.9300C55—H55A0.9700
C21—C221.384 (7)C55—H55B0.9700
C21—H210.9300O1W—H1WA0.83 (7)
C22—C231.368 (7)O1W—H1WB1.02 (8)
C22—H220.9300O2W—H2WA0.80 (6)
C23—C241.369 (6)O2W—H2WB0.98 (8)
C18—O3—N3108.5 (2)H26A—C26—H26B108.6
C46—O8—N8108.4 (2)C26—C27—C28105.7 (3)
O1—N1—O2121.6 (4)C26—C27—H27A110.6
O1—N1—C1119.3 (4)C28—C27—H27A110.6
O2—N1—C1119.0 (4)C26—C27—H27B110.6
C11—N2—C7118.4 (3)C28—C27—H27B110.6
C11—N2—H2N107 (3)H27A—C27—H27B108.7
C7—N2—H2N117 (3)O4—C28—N4125.6 (3)
C16—N3—O3105.1 (3)O4—C28—C27126.2 (3)
C28—N4—C25113.5 (3)N4—C28—C27108.2 (3)
C28—N4—C9122.3 (3)C34—C29—C30122.0 (3)
C25—N4—C9123.6 (2)C34—C29—N5118.2 (3)
O5—N5—O6123.6 (4)C30—C29—N5119.8 (3)
O5—N5—C29118.5 (3)C29—C30—C31118.5 (3)
O6—N5—C29117.8 (4)C29—C30—H30120.7
C39—N6—C35121.3 (3)C31—C30—H30120.7
C39—N6—H6N116 (3)C30—C31—C32121.5 (3)
C35—N6—H6N117 (3)C30—C31—H31119.3
C56—N7—C53112.7 (3)C32—C31—H31119.3
C56—N7—C37123.1 (3)C33—C32—C31118.0 (3)
C53—N7—C37122.9 (2)C33—C32—C35122.4 (3)
C44—N8—O8105.4 (2)C31—C32—C35119.6 (3)
C2—C1—C6121.4 (4)C34—C33—C32121.0 (3)
C2—C1—N1119.5 (4)C34—C33—H33119.5
C6—C1—N1119.1 (4)C32—C33—H33119.5
C1—C2—C3119.3 (3)C29—C34—C33118.9 (3)
C1—C2—H2120.4C29—C34—H34120.5
C3—C2—H2120.4C33—C34—H34120.5
C4—C3—C2120.7 (3)N6—C35—C32111.8 (3)
C4—C3—H3119.7N6—C35—C36107.9 (3)
C2—C3—H3119.7C32—C35—C36112.7 (3)
C3—C4—C5118.5 (3)N6—C35—H35108.1
C3—C4—C7122.8 (3)C32—C35—H35108.1
C5—C4—C7118.7 (3)C36—C35—H35108.1
C6—C5—C4121.7 (4)C35—C36—C37110.2 (3)
C6—C5—H5119.1C35—C36—H36A109.6
C4—C5—H5119.1C37—C36—H36A109.6
C5—C6—C1118.3 (4)C35—C36—H36B109.6
C5—C6—H6120.9C37—C36—H36B109.6
C1—C6—H6120.9H36A—C36—H36B108.1
N2—C7—C4111.8 (3)N7—C37—C38112.6 (2)
N2—C7—C8107.4 (3)N7—C37—C36109.7 (2)
C4—C7—C8110.6 (3)C38—C37—C36111.5 (2)
N2—C7—H7109.0N7—C37—H37107.6
C4—C7—H7109.0C38—C37—H37107.6
C8—C7—H7109.0C36—C37—H37107.6
C7—C8—C9111.2 (3)C43—C38—C39117.7 (3)
C7—C8—H8A109.4C43—C38—C37123.6 (2)
C9—C8—H8A109.4C39—C38—C37118.7 (3)
C7—C8—H8B109.4N6—C39—C40118.8 (3)
C9—C8—H8B109.4N6—C39—C38121.5 (3)
H8A—C8—H8B108.0C40—C39—C38119.7 (3)
N4—C9—C10111.4 (2)C41—C40—C39121.1 (3)
N4—C9—C8109.1 (2)C41—C40—H40119.4
C10—C9—C8111.8 (2)C39—C40—H40119.4
N4—C9—H9108.1C40—C41—C42120.4 (3)
C10—C9—H9108.1C40—C41—H41119.8
C8—C9—H9108.1C42—C41—H41119.8
C15—C10—C11118.4 (3)C41—C42—C43119.9 (3)
C15—C10—C9122.4 (3)C41—C42—H42120.1
C11—C10—C9119.1 (3)C43—C42—H42120.1
N2—C11—C12118.0 (3)C42—C43—C38121.2 (3)
N2—C11—C10122.3 (3)C42—C43—C44115.5 (3)
C12—C11—C10119.7 (3)C38—C43—C44123.2 (3)
C13—C12—C11120.8 (3)N8—C44—C45111.6 (3)
C13—C12—H12119.6N8—C44—C43118.7 (3)
C11—C12—H12119.6C45—C44—C43129.3 (3)
C12—C13—C14120.2 (3)C46—C45—C44105.4 (3)
C12—C13—H13119.9C46—C45—H45127.3
C14—C13—H13119.9C44—C45—H45127.3
C13—C14—C15119.9 (3)C45—C46—O8109.1 (3)
C13—C14—H14120.1C45—C46—C47134.1 (3)
C15—C14—H14120.1O8—C46—C47116.7 (3)
C14—C15—C10120.8 (3)C48—C47—C52118.6 (4)
C14—C15—C16117.8 (3)C48—C47—C46119.5 (4)
C10—C15—C16121.4 (3)C52—C47—C46121.8 (3)
N3—C16—C17111.6 (3)C47—C48—C49120.1 (5)
N3—C16—C15118.9 (3)C47—C48—H48119.9
C17—C16—C15129.2 (3)C49—C48—H48119.9
C18—C17—C16105.6 (3)C50—C49—C48120.1 (5)
C18—C17—H17127.2C50—C49—H49120.0
C16—C17—H17127.2C48—C49—H49120.0
C17—C18—O3109.2 (3)C51—C50—C49120.6 (4)
C17—C18—C19133.9 (3)C51—C50—H50119.7
O3—C18—C19116.8 (3)C49—C50—H50119.7
C20—C19—C24119.4 (3)C50—C51—C52119.8 (5)
C20—C19—C18119.9 (3)C50—C51—H51120.1
C24—C19—C18120.7 (3)C52—C51—H51120.1
C19—C20—C21120.0 (4)C51—C52—C47120.8 (4)
C19—C20—H20120.0C51—C52—H52119.6
C21—C20—H20120.0C47—C52—H52119.6
C22—C21—C20119.8 (4)N7—C53—C54102.8 (3)
C22—C21—H21120.1N7—C53—H53A111.2
C20—C21—H21120.1C54—C53—H53A111.2
C23—C22—C21120.0 (4)N7—C53—H53B111.2
C23—C22—H22120.0C54—C53—H53B111.2
C21—C22—H22120.0H53A—C53—H53B109.1
C22—C23—C24120.6 (4)C55—C54—C53104.9 (3)
C22—C23—H23119.7C55—C54—H54A110.8
C24—C23—H23119.7C53—C54—H54A110.8
C23—C24—C19120.1 (4)C55—C54—H54B110.8
C23—C24—H24119.9C53—C54—H54B110.8
C19—C24—H24119.9H54A—C54—H54B108.8
N4—C25—C26103.4 (3)C54—C55—C56105.0 (3)
N4—C25—H25A111.1C54—C55—H55A110.8
C26—C25—H25A111.1C56—C55—H55A110.8
N4—C25—H25B111.1C54—C55—H55B110.8
C26—C25—H25B111.1C56—C55—H55B110.8
H25A—C25—H25B109.0H55A—C55—H55B108.8
C27—C26—C25106.8 (3)O7—C56—N7125.6 (3)
C27—C26—H26A110.4O7—C56—C55126.5 (3)
C25—C26—H26A110.4N7—C56—C55107.9 (3)
C27—C26—H26B110.4H1WA—O1W—H1WB102 (6)
C25—C26—H26B110.4H2WA—O2W—H2WB108 (6)
C18—O3—N3—C160.9 (4)C26—C27—C28—N44.8 (5)
C46—O8—N8—C440.3 (3)O5—N5—C29—C34159.1 (4)
O1—N1—C1—C23.3 (7)O6—N5—C29—C3423.9 (5)
O2—N1—C1—C2179.0 (5)O5—N5—C29—C3021.3 (6)
O1—N1—C1—C6178.1 (6)O6—N5—C29—C30155.7 (4)
O2—N1—C1—C60.4 (7)C34—C29—C30—C312.6 (5)
C6—C1—C2—C33.0 (7)N5—C29—C30—C31176.9 (3)
N1—C1—C2—C3178.4 (4)C29—C30—C31—C321.6 (5)
C1—C2—C3—C40.5 (6)C30—C31—C32—C331.1 (5)
C2—C3—C4—C52.6 (6)C30—C31—C32—C35177.7 (3)
C2—C3—C4—C7176.7 (3)C31—C32—C33—C342.9 (6)
C3—C4—C5—C63.3 (7)C35—C32—C33—C34175.9 (3)
C7—C4—C5—C6176.0 (4)C30—C29—C34—C330.9 (6)
C4—C5—C6—C10.9 (8)N5—C29—C34—C33178.6 (4)
C2—C1—C6—C52.3 (8)C32—C33—C34—C291.9 (6)
N1—C1—C6—C5179.1 (5)C39—N6—C35—C32167.4 (3)
C11—N2—C7—C4169.6 (3)C39—N6—C35—C3642.9 (4)
C11—N2—C7—C848.1 (4)C33—C32—C35—N619.1 (4)
C3—C4—C7—N221.5 (5)C31—C32—C35—N6159.7 (3)
C5—C4—C7—N2159.1 (4)C33—C32—C35—C36102.7 (4)
C3—C4—C7—C898.1 (4)C31—C32—C35—C3678.6 (4)
C5—C4—C7—C881.2 (4)N6—C35—C36—C3760.8 (3)
N2—C7—C8—C962.6 (3)C32—C35—C36—C37175.3 (2)
C4—C7—C8—C9175.2 (3)C56—N7—C37—C38138.2 (3)
C28—N4—C9—C10142.5 (3)C53—N7—C37—C3855.9 (4)
C25—N4—C9—C1046.8 (4)C56—N7—C37—C3696.9 (3)
C28—N4—C9—C893.6 (3)C53—N7—C37—C3668.9 (4)
C25—N4—C9—C877.1 (4)C35—C36—C37—N7174.8 (2)
C7—C8—C9—N4168.3 (3)C35—C36—C37—C3849.4 (3)
C7—C8—C9—C1044.7 (4)N7—C37—C38—C4337.9 (4)
N4—C9—C10—C1544.4 (4)C36—C37—C38—C43161.7 (3)
C8—C9—C10—C15166.7 (3)N7—C37—C38—C39142.0 (3)
N4—C9—C10—C11133.7 (3)C36—C37—C38—C3918.2 (4)
C8—C9—C10—C1111.4 (4)C35—N6—C39—C40169.0 (3)
C7—N2—C11—C12165.9 (3)C35—N6—C39—C3811.7 (5)
C7—N2—C11—C1015.5 (4)C43—C38—C39—N6178.4 (3)
C15—C10—C11—N2177.5 (3)C37—C38—C39—N61.7 (4)
C9—C10—C11—N24.4 (4)C43—C38—C39—C402.4 (4)
C15—C10—C11—C124.0 (4)C37—C38—C39—C40177.5 (3)
C9—C10—C11—C12174.1 (3)N6—C39—C40—C41179.5 (3)
N2—C11—C12—C13179.2 (3)C38—C39—C40—C410.2 (5)
C10—C11—C12—C130.6 (4)C39—C40—C41—C421.6 (5)
C11—C12—C13—C142.8 (5)C40—C41—C42—C431.2 (5)
C12—C13—C14—C152.7 (5)C41—C42—C43—C381.1 (5)
C13—C14—C15—C100.9 (5)C41—C42—C43—C44174.8 (3)
C13—C14—C15—C16176.8 (3)C39—C38—C43—C422.8 (4)
C11—C10—C15—C144.2 (4)C37—C38—C43—C42177.1 (3)
C9—C10—C15—C14173.9 (3)C39—C38—C43—C44172.8 (3)
C11—C10—C15—C16173.4 (3)C37—C38—C43—C447.3 (4)
C9—C10—C15—C168.5 (4)O8—N8—C44—C450.0 (4)
O3—N3—C16—C170.9 (4)O8—N8—C44—C43173.6 (3)
O3—N3—C16—C15175.7 (3)C42—C43—C44—N854.3 (4)
C14—C15—C16—N345.5 (4)C38—C43—C44—N8129.9 (3)
C10—C15—C16—N3136.9 (3)C42—C43—C44—C45118.0 (4)
C14—C15—C16—C17128.3 (3)C38—C43—C44—C4557.8 (5)
C10—C15—C16—C1749.4 (4)N8—C44—C45—C460.4 (4)
N3—C16—C17—C180.6 (4)C43—C44—C45—C46172.4 (3)
C15—C16—C17—C18174.7 (3)C44—C45—C46—O80.6 (4)
C16—C17—C18—O30.0 (3)C44—C45—C46—C47175.6 (4)
C16—C17—C18—C19178.8 (3)N8—O8—C46—C450.6 (4)
N3—O3—C18—C170.6 (4)N8—O8—C46—C47176.3 (3)
N3—O3—C18—C19178.4 (3)C45—C46—C47—C489.7 (6)
C17—C18—C19—C2033.9 (5)O8—C46—C47—C48174.3 (4)
O3—C18—C19—C20147.4 (3)C45—C46—C47—C52167.0 (4)
C17—C18—C19—C24144.8 (4)O8—C46—C47—C528.9 (5)
O3—C18—C19—C2433.9 (4)C52—C47—C48—C490.4 (7)
C24—C19—C20—C210.7 (5)C46—C47—C48—C49176.5 (4)
C18—C19—C20—C21179.4 (3)C47—C48—C49—C500.5 (9)
C19—C20—C21—C220.6 (6)C48—C49—C50—C510.4 (9)
C20—C21—C22—C231.0 (6)C49—C50—C51—C520.7 (8)
C21—C22—C23—C240.1 (6)C50—C51—C52—C471.7 (7)
C22—C23—C24—C191.2 (6)C48—C47—C52—C511.5 (6)
C20—C19—C24—C231.6 (5)C46—C47—C52—C51175.3 (4)
C18—C19—C24—C23179.7 (3)C56—N7—C53—C5420.9 (4)
C28—N4—C25—C2613.2 (4)C37—N7—C53—C54172.0 (3)
C9—N4—C25—C26175.3 (3)N7—C53—C54—C5525.6 (4)
N4—C25—C26—C2715.4 (5)C53—C54—C55—C5622.0 (5)
C25—C26—C27—C2812.7 (5)C53—N7—C56—O7172.8 (3)
C25—N4—C28—O4174.6 (3)C37—N7—C56—O75.7 (5)
C9—N4—C28—O43.0 (5)C53—N7—C56—C557.2 (4)
C25—N4—C28—C275.5 (4)C37—N7—C56—C55174.3 (3)
C9—N4—C28—C27177.1 (3)C54—C55—C56—O7170.2 (4)
C26—C27—C28—O4175.0 (4)C54—C55—C56—N79.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.83 (7)2.07 (7)2.904 (5)173 (6)
O1W—H1WB···O4ii1.03 (8)1.87 (8)2.877 (5)167 (6)
O2W—H2WB···O70.97 (8)1.80 (9)2.754 (5)165 (8)
N6—H6N···O2Wiii0.83 (4)2.13 (4)2.958 (5)179 (5)
O2W—H2WA···O1W0.80 (6)2.09 (6)2.883 (6)175 (6)
C3—H3···N20.932.522.848 (6)101
C9—H9···O40.982.502.857 (4)101
C33—H33···N60.932.512.830 (6)100
C37—H37···O70.982.492.872 (4)103
C52—H52···O80.932.502.811 (5)100
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC28H24N4O4·H2O
Mr498.53
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)13.516 (8), 14.193 (6), 14.987 (11)
α, β, γ (°)70.151 (10), 79.62 (2), 69.700 (9)
V3)2530 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.17 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21159, 11596, 7891
Rint0.090
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.098, 0.240, 1.16
No. of reflections11596
No. of parameters691
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.83 (7)2.07 (7)2.904 (5)173 (6)
O1W—H1WB···O4ii1.03 (8)1.87 (8)2.877 (5)167 (6)
O2W—H2WB···O70.97 (8)1.80 (9)2.754 (5)165 (8)
N6—H6N···O2Wiii0.83 (4)2.13 (4)2.958 (5)179 (5)
O2W—H2WA···O1W0.80 (6)2.09 (6)2.883 (6)175 (6)
C3—H3···N20.932.522.848 (6)101
C9—H9···O40.982.502.857 (4)101
C33—H33···N60.932.512.830 (6)100
C37—H37···O70.982.492.872 (4)103
C52—H52···O80.932.502.811 (5)100
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

LAS thanks FONDECYT (project No. 1100481) and PBCT ADI-38. We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBroggini, G., Chiesa, K., De Marchi, I., Martinelli, M., Pilati, T. & Zecchi, G. (2005). Tetrahedron, 61, 3525–3531.  Web of Science CSD CrossRef CAS Google Scholar
First citationEswaran, S., Adhikari, V. A., Pal, K. N. & Chowdhury, H. I. (2010). Bioorg. Med. Chem. 20, 1040–1044.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHe, F.-J., Yun, L.-H., Yang, R.-F., Xiao, Z.-Y., Cheng, J.-P., Zhou, W.-X. & Zhang, Y.-X. (2005). Bioorg. Med. Chem. Lett. 15, 2980–2985.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalita, P., Baruah, B. & Bhuyan, P. (2006). Tetrahedron Lett. 47, 7779–7782.  Web of Science CrossRef CAS Google Scholar
First citationKotera, K., Takano, Y., Matsuura, A. & Kitahonoki, K. (1970). Tetrahedron, 26, 539–556.  CrossRef CAS Google Scholar
First citationKouznetsov, V. V., Vargas, L. Y. & Melendez, C. C. (2005). Curr. Org. Chem. 9, 141–161.  Web of Science CrossRef CAS Google Scholar
First citationLautens, M. & Roy, A. (2000). Org. Lett. 2, 555–557.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLunniss, J. C., Cooper, W. J. A., Eldred, D. C., Kranz, M., Lindvall, M., Lucas, S. F., Neu, M., Preston, A., Ranshaw, E. L., Redgrave, J. A., Robinson, E. J., Shimpley, J. T., Solanke, E. Y., Somers, O. D. & Wiseman, O. J. (2009). Bioorg. Med. Chem. Lett. 19, 1380–1385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNarlawar, R., Pickhardt, M., Leuchtenberger, S., Baumann, K., Krause, S., Dyrks, T., Weggen, S., Mandelkow, E. & Schmidt, B. (2008). Chem. Med. Chem. 3, 165-172.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRizzi, L., Dallanoce, C., Matera, C., Magrone, P., Pucci, L., Gotti, C., Clementi, F. & De Amici, M. (2008). Bioorg. Med. Chem. Lett. 18, 4651–4654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSankaran, M., Kumarasamy, C., Chokkalingam, U. & Mohan, P. S. (2010). Bioorg. Med. Chem. Lett. 20, 7147–7151.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, A., Nguyen, T. A., Battina, K. S., Rana, S., Takemoto, J. D., Chiang, K. P. & Hua, D. (2008). Bioorg. Med. Chem. Lett. 18, 3364–3368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaldone, T., Gozman, A., Maharaj, R. & Chiosis, G. (2008). Curr. Opin. Pharmacol. 8, 370–374.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVelaparthi, S., Brunsteiner, M., Uddin, R., Wan, B., Franzblau, S. G. & Petukhov, P. A. (2008). J. Med. Chem. 51, 1999–2002.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds