metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,7,7,12,14,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene)nickel(II) bis­­[O,O′-bis­­(4-tert-butyl­phen­yl) di­thio­phosphate]

aCollege of Material and Chemical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China, and bResearch Institute of Functional Material, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: xiebinqhg@sina.com

(Received 21 November 2010; accepted 27 November 2010; online 4 December 2010)

The title salt, [Ni(C16H32N4)](C20H26O2PS2)2, comprises a centrosymmetric [Ni(Me6[14]dieneN4)]2+ dication (Me6[14]dieneN4 is 5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene) and two O,O′-bis­(4-tert-butyl­phen­yl) dithio­phosphate anions. The NiII ion lies on an inversion centre and displays a slightly distorted NiN4 square-planar chelation arrangement with four N atoms from the Me6[14]dieneN4 macrocycle. Two S atoms from symmetry-related anions are located in pseudo-axial positions with respect to the NiII ion, with Ni⋯S distances of 3.2991 (7) Å. Inter­molecular N—H⋯S and C—H⋯S hydrogen bonds link the complex cation and pair of anions into a 1:2 type salt.

Related literature

For synthetic procedures, see: Li & Xie (1997[Li, J.-S. & Xie, B. (1997). Acta Chim. Sin. 55, 892-896.]); Xie et al. (2009[Xie, B., Zhang, X.-L., Zou, L.-K., Wang, J., Lai, C., Wu, Y. & Feng, J.-S. (2009). Chem J Chin. Univ. 30, 2337-2343.]). For applications as mimetic enzymes of transition metal complexes of tetra­mine macrocycles, see: Aoki & Kimura (2002[Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129-155.]). For related structures, see: Feng et al. (2010[Feng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.]); He et al. (2010[He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.]); Zou et al. (2010[Zou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H32N4)](C20H26O2PS2)2

  • Mr = 1126.16

  • Triclinic, [P \overline 1]

  • a = 9.445 (2) Å

  • b = 12.168 (3) Å

  • c = 12.740 (3) Å

  • α = 95.965 (4)°

  • β = 91.360 (3)°

  • γ = 99.787 (4)°

  • V = 1433.7 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 103 K

  • 0.27 × 0.23 × 0.08 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.859, Tmax = 0.955

  • 14032 measured reflections

  • 6434 independent reflections

  • 4838 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.00

  • 6434 reflections

  • 335 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯S2i 0.88 (3) 2.70 (3) 3.542 (2) 162 (3)
C7—H7A⋯S2i 0.98 2.82 3.703 (3) 150
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis and structural investigation of tetramine macrocycle have attracted much attention due to their analogy to naturally occurring macrocyclic systems and the potential applications as mimetic enzymes of their transition metal complexes (Aoki et al., 2002). We have recently reported the crystal structures of tetramine macrocyclic transition metal adducts with O,O'-dialkyldithiophosphate (He et al., 2010; Feng et al., 2010; Zou et al., 2010). We report herein the synthesis and structure of an analogous adduct, [Ni(Me6[14]dieneN4)][S2P(OC6H4Me-4)2]2, where Me6[14]dieneN4 is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

In the centrosymmetric structure of the title adduct, NiII ion lies on an inversion centre and is accommodated in the tetradentatic 14-membered tetramine macrocycle cavity in a slightly distorted mononuclear NiN4 square-planar geometry (Fig. 1). The net charge on NiII ion is balanced by two symmetry related O,O'- bis(4-tert-butylphenyl)dithiophosphate anions, which are located in the pseudo-axial positions with respect to the inversion centre with Ni···S distances of 3.2991 (7) Å. The complex cations and anions interact with each other through intermolecular N—H···S and C—H···S hydrogen bonds (Table 1).

Related literature top

For synthetic procedures, see: Li & Xie (1997); Xie et al. (2009). For applications as mimetic enzymes of transition metal complexes of tetramine macrocycles, see: Aoki & Kimura (2002). For related structures, see: Feng et al. (2010); He et al. (2010); Zou et al. (2010).

Experimental top

[Et2NH2][S2P(OC6H4(Bu-t)-4)2] was synthesized according to the procedure described by Li & Xie (1997). [Ni(Me6[14]dieneN4)](ClO4)2 was prepared by the method reported by Xie et al. (2009). The title adduct was obtained by the reaction of [Ni(Me6[14]dieneN4)](ClO4)2 (0.541 g, 1 mmol) and [Et2NH2][S2P(OC6H4(Bu-t)-4)2] (0.936 g, 2 mmol) in refluxing methanol for 3 h. After cooling to room temperature, the precipitate was filtered off, washed with diethyl ether and recrystallized from benzene. The obtained solid was dissolved in hot methanol and filtered, the filtrate was slowly evaporated at room temperature for several days until the formation of orange platelet crystals of the title adduct.

Refinement top

H atoms on C atoms were fixed geometrically and treated as riding, with C—H = 0.99Å (methylene), 0.98Å (methyl), 0.95 Å(aromatic) and Uiso(H) = 1.2Ueq(C). The H atom on N atom was determined from a difference Fourier synthesis and refined isotropically.

Structure description top

The synthesis and structural investigation of tetramine macrocycle have attracted much attention due to their analogy to naturally occurring macrocyclic systems and the potential applications as mimetic enzymes of their transition metal complexes (Aoki et al., 2002). We have recently reported the crystal structures of tetramine macrocyclic transition metal adducts with O,O'-dialkyldithiophosphate (He et al., 2010; Feng et al., 2010; Zou et al., 2010). We report herein the synthesis and structure of an analogous adduct, [Ni(Me6[14]dieneN4)][S2P(OC6H4Me-4)2]2, where Me6[14]dieneN4 is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

In the centrosymmetric structure of the title adduct, NiII ion lies on an inversion centre and is accommodated in the tetradentatic 14-membered tetramine macrocycle cavity in a slightly distorted mononuclear NiN4 square-planar geometry (Fig. 1). The net charge on NiII ion is balanced by two symmetry related O,O'- bis(4-tert-butylphenyl)dithiophosphate anions, which are located in the pseudo-axial positions with respect to the inversion centre with Ni···S distances of 3.2991 (7) Å. The complex cations and anions interact with each other through intermolecular N—H···S and C—H···S hydrogen bonds (Table 1).

For synthetic procedures, see: Li & Xie (1997); Xie et al. (2009). For applications as mimetic enzymes of transition metal complexes of tetramine macrocycles, see: Aoki & Kimura (2002). For related structures, see: Feng et al. (2010); He et al. (2010); Zou et al. (2010).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-numbering scheme with displacement ellipsoids at 50% probability level. H atoms on N are represented as small spheres of arbitary radii and H atoms on C have been omitted for the sake of clarity. Atoms with the superscript i are generated by the symmetry operation (-x, -y + 1,-z + 1).
(5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)nickel(II) bis[O,O'-bis(4-tert-butylphenyl) dithiophosphate] top
Crystal data top
[Ni(C16H32N4)](C20H26O2PS2)2Z = 1
Mr = 1126.16F(000) = 602
Triclinic, P1Dx = 1.304 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.445 (2) ÅCell parameters from 3818 reflections
b = 12.168 (3) Åθ = 3.0–27.5°
c = 12.740 (3) ŵ = 0.59 mm1
α = 95.965 (4)°T = 103 K
β = 91.360 (3)°Plate, orange
γ = 99.787 (4)°0.27 × 0.23 × 0.08 mm
V = 1433.7 (5) Å3
Data collection top
Rigaku SPIDER
diffractometer
6434 independent reflections
Radiation source: Rotating Anode4838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.859, Tmax = 0.955k = 1514
14032 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.698P]
where P = (Fo2 + 2Fc2)/3
6434 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C16H32N4)](C20H26O2PS2)2γ = 99.787 (4)°
Mr = 1126.16V = 1433.7 (5) Å3
Triclinic, P1Z = 1
a = 9.445 (2) ÅMo Kα radiation
b = 12.168 (3) ŵ = 0.59 mm1
c = 12.740 (3) ÅT = 103 K
α = 95.965 (4)°0.27 × 0.23 × 0.08 mm
β = 91.360 (3)°
Data collection top
Rigaku SPIDER
diffractometer
6434 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4838 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.955Rint = 0.036
14032 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.36 e Å3
6434 reflectionsΔρmin = 0.35 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.01467 (11)
P10.38240 (6)0.74491 (5)0.59769 (5)0.01291 (13)
S10.18719 (6)0.75534 (5)0.55415 (5)0.01884 (14)
S20.41409 (6)0.65477 (5)0.71245 (4)0.01634 (13)
O10.47162 (17)0.69494 (13)0.50147 (12)0.0163 (3)
O20.46883 (16)0.87255 (13)0.62254 (12)0.0161 (3)
N10.11781 (19)0.56640 (16)0.59937 (15)0.0147 (4)
N20.1166 (2)0.54850 (17)0.39160 (15)0.0147 (4)
C10.2353 (2)0.6077 (2)0.54470 (19)0.0186 (5)
H1A0.26380.67180.58850.022*
H1B0.32030.54740.53120.022*
C20.1784 (2)0.6437 (2)0.44242 (18)0.0180 (5)
H2A0.25680.66020.39690.022*
H2B0.10360.71180.45550.022*
C30.0567 (2)0.56507 (19)0.28493 (18)0.0158 (5)
C40.0187 (2)0.4525 (2)0.24158 (18)0.0180 (5)
H4A0.10580.39440.24160.022*
H4B0.00750.45690.16720.022*
C50.1014 (2)0.41448 (19)0.29968 (19)0.0168 (5)
C60.0743 (2)0.6583 (2)0.29262 (18)0.0172 (5)
H6A0.04570.72980.31790.021*
H6B0.11470.66330.22280.021*
H6C0.14680.64170.34210.021*
C70.1720 (2)0.5932 (2)0.20931 (18)0.0176 (5)
H7A0.25880.53590.20770.021*
H7B0.13510.59500.13810.021*
H7C0.19540.66680.23410.021*
C80.1938 (3)0.3504 (2)0.2313 (2)0.0233 (5)
H8A0.29530.38190.24800.028*
H8B0.17100.35620.15680.028*
H8C0.17530.27140.24440.028*
C90.4542 (2)0.70913 (19)0.39500 (17)0.0135 (4)
C100.4612 (2)0.61550 (19)0.32408 (18)0.0148 (5)
H100.47300.54660.34920.018*
C110.4510 (2)0.62328 (19)0.21665 (18)0.0153 (5)
H110.45570.55900.16850.018*
C120.4338 (2)0.72341 (19)0.17723 (18)0.0155 (5)
C130.4277 (2)0.81515 (19)0.25037 (18)0.0167 (5)
H130.41610.88420.22560.020*
C140.4379 (2)0.80954 (19)0.35900 (18)0.0165 (5)
H140.43370.87370.40740.020*
C150.4216 (3)0.7279 (2)0.05768 (18)0.0190 (5)
C160.5521 (3)0.6889 (2)0.00546 (19)0.0248 (6)
H16A0.54420.69240.07090.030*
H16B0.55500.61150.01920.030*
H16C0.64040.73790.03480.030*
C170.4152 (3)0.8452 (2)0.0292 (2)0.0342 (7)
H17A0.40710.84370.04780.041*
H17B0.50300.89620.05640.041*
H17C0.33150.87120.06060.041*
C180.2848 (3)0.6490 (3)0.0122 (2)0.0341 (7)
H18A0.20040.67480.04280.041*
H18B0.28770.57280.02950.041*
H18C0.27900.64910.06470.041*
C190.6129 (2)0.89734 (18)0.65979 (18)0.0155 (5)
C200.6442 (2)0.90526 (19)0.76688 (18)0.0151 (5)
H200.57000.88750.81450.018*
C210.7862 (2)0.93967 (19)0.80414 (18)0.0162 (5)
H210.80800.94460.87780.019*
C220.8978 (2)0.96726 (19)0.73619 (18)0.0167 (5)
C230.8612 (3)0.9561 (2)0.62884 (19)0.0220 (5)
H230.93490.97240.58040.026*
C240.7195 (3)0.9215 (2)0.59016 (19)0.0208 (5)
H240.69700.91480.51640.025*
C251.0515 (2)1.0085 (2)0.78141 (19)0.0192 (5)
C261.1533 (3)1.0529 (2)0.6975 (2)0.0265 (6)
H26A1.16270.99130.64360.032*
H26B1.24791.08480.73080.032*
H26C1.11421.11110.66430.032*
C271.0506 (3)1.1031 (2)0.8708 (2)0.0261 (6)
H27A1.01001.16400.84360.031*
H27B1.14921.13170.89840.031*
H27C0.99191.07410.92760.031*
C281.1095 (3)0.9114 (2)0.8255 (2)0.0258 (6)
H28A1.04680.88260.88030.031*
H28B1.20700.93830.85600.031*
H28C1.11170.85130.76840.031*
H2N0.185 (3)0.490 (3)0.379 (2)0.046 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0110 (2)0.0202 (2)0.0153 (2)0.00699 (16)0.00251 (16)0.00626 (17)
P10.0122 (3)0.0134 (3)0.0131 (3)0.0027 (2)0.0002 (2)0.0005 (2)
S10.0125 (3)0.0244 (3)0.0195 (3)0.0046 (2)0.0016 (2)0.0007 (2)
S20.0169 (3)0.0166 (3)0.0154 (3)0.0011 (2)0.0002 (2)0.0047 (2)
O10.0179 (8)0.0211 (9)0.0119 (8)0.0091 (6)0.0002 (6)0.0024 (7)
O20.0155 (8)0.0124 (8)0.0199 (9)0.0017 (6)0.0031 (7)0.0018 (7)
N10.0100 (9)0.0168 (10)0.0182 (10)0.0036 (7)0.0015 (7)0.0045 (8)
N20.0113 (9)0.0162 (10)0.0185 (10)0.0045 (7)0.0029 (8)0.0064 (8)
C10.0118 (11)0.0243 (13)0.0225 (13)0.0089 (9)0.0019 (9)0.0062 (10)
C20.0159 (11)0.0198 (12)0.0204 (12)0.0089 (9)0.0018 (9)0.0033 (10)
C30.0126 (11)0.0187 (12)0.0169 (12)0.0027 (8)0.0019 (9)0.0059 (9)
C40.0148 (11)0.0220 (12)0.0167 (12)0.0028 (9)0.0010 (9)0.0012 (10)
C50.0113 (11)0.0167 (12)0.0217 (12)0.0002 (8)0.0015 (9)0.0031 (10)
C60.0137 (11)0.0225 (12)0.0157 (12)0.0017 (9)0.0006 (9)0.0055 (10)
C70.0144 (11)0.0211 (12)0.0184 (12)0.0038 (9)0.0025 (9)0.0074 (10)
C80.0204 (13)0.0244 (13)0.0251 (13)0.0080 (10)0.0006 (10)0.0040 (11)
C90.0095 (10)0.0197 (12)0.0111 (11)0.0022 (8)0.0003 (8)0.0016 (9)
C100.0122 (11)0.0139 (11)0.0185 (12)0.0031 (8)0.0022 (9)0.0020 (9)
C110.0131 (11)0.0153 (11)0.0174 (12)0.0034 (8)0.0014 (9)0.0009 (9)
C120.0099 (10)0.0211 (12)0.0153 (11)0.0026 (8)0.0005 (8)0.0011 (9)
C130.0186 (12)0.0150 (11)0.0168 (12)0.0028 (9)0.0005 (9)0.0026 (9)
C140.0154 (11)0.0167 (12)0.0167 (12)0.0023 (9)0.0008 (9)0.0005 (9)
C150.0185 (12)0.0232 (13)0.0157 (12)0.0047 (9)0.0004 (9)0.0029 (10)
C160.0221 (13)0.0367 (16)0.0158 (12)0.0057 (11)0.0045 (10)0.0017 (11)
C170.056 (2)0.0365 (17)0.0163 (13)0.0209 (14)0.0063 (13)0.0094 (12)
C180.0226 (14)0.060 (2)0.0152 (13)0.0037 (13)0.0026 (11)0.0036 (13)
C190.0134 (11)0.0118 (11)0.0208 (12)0.0013 (8)0.0024 (9)0.0013 (9)
C200.0175 (11)0.0139 (11)0.0141 (11)0.0016 (8)0.0041 (9)0.0026 (9)
C210.0201 (12)0.0180 (12)0.0093 (11)0.0007 (9)0.0002 (9)0.0004 (9)
C220.0162 (11)0.0143 (11)0.0189 (12)0.0003 (8)0.0008 (9)0.0036 (9)
C230.0187 (12)0.0285 (14)0.0164 (12)0.0029 (10)0.0044 (10)0.0019 (10)
C240.0231 (13)0.0241 (13)0.0135 (12)0.0012 (10)0.0013 (10)0.0027 (10)
C250.0142 (11)0.0217 (13)0.0203 (12)0.0019 (9)0.0006 (9)0.0039 (10)
C260.0156 (12)0.0319 (15)0.0289 (14)0.0044 (10)0.0004 (10)0.0033 (12)
C270.0246 (13)0.0222 (14)0.0261 (14)0.0069 (10)0.0025 (11)0.0036 (11)
C280.0201 (13)0.0314 (15)0.0266 (14)0.0054 (10)0.0015 (11)0.0061 (11)
Geometric parameters (Å, º) top
Ni1—N11.9114 (19)C11—C121.398 (3)
Ni1—N1i1.9114 (19)C11—H110.9500
Ni1—N21.9457 (19)C12—C131.388 (3)
Ni1—N2i1.9457 (19)C12—C151.532 (3)
Ni1—S13.2990 (9)C13—C141.394 (3)
P1—O21.6226 (16)C13—H130.9500
P1—O11.6281 (17)C14—H140.9500
P1—S11.9413 (9)C15—C171.519 (4)
P1—S21.9632 (9)C15—C181.534 (3)
O1—C91.394 (3)C15—C161.536 (3)
O2—C191.403 (3)C16—H16A0.9800
N1—C5i1.284 (3)C16—H16B0.9800
N1—C11.481 (3)C16—H16C0.9800
N2—C21.481 (3)C17—H17A0.9800
N2—C31.504 (3)C17—H17B0.9800
N2—H2N0.88 (3)C17—H17C0.9800
C1—C21.500 (3)C18—H18A0.9800
C1—H1A0.9900C18—H18B0.9800
C1—H1B0.9900C18—H18C0.9800
C2—H2A0.9900C19—C241.372 (3)
C2—H2B0.9900C19—C201.379 (3)
C3—C61.524 (3)C20—C211.392 (3)
C3—C41.526 (3)C20—H200.9500
C3—C71.542 (3)C21—C221.399 (3)
C4—C51.503 (3)C21—H210.9500
C4—H4A0.9900C22—C231.390 (3)
C4—H4B0.9900C22—C251.531 (3)
C5—N1i1.284 (3)C23—C241.395 (3)
C5—C81.501 (3)C23—H230.9500
C6—H6A0.9800C24—H240.9500
C6—H6B0.9800C25—C261.534 (3)
C6—H6C0.9800C25—C281.534 (4)
C7—H7A0.9800C25—C271.535 (3)
C7—H7B0.9800C26—H26A0.9800
C7—H7C0.9800C26—H26B0.9800
C8—H8A0.9800C26—H26C0.9800
C8—H8B0.9800C27—H27A0.9800
C8—H8C0.9800C27—H27B0.9800
C9—C141.380 (3)C27—H27C0.9800
C9—C101.390 (3)C28—H28A0.9800
C10—C111.384 (3)C28—H28B0.9800
C10—H100.9500C28—H28C0.9800
N1—Ni1—N1i180.0C10—C11—C12121.6 (2)
N1—Ni1—N286.13 (8)C10—C11—H11119.2
N1i—Ni1—N293.87 (8)C12—C11—H11119.2
N1—Ni1—N2i93.87 (8)C13—C12—C11117.2 (2)
N1i—Ni1—N2i86.13 (8)C13—C12—C15123.0 (2)
N2—Ni1—N2i180.0C11—C12—C15119.8 (2)
N1—Ni1—S178.48 (6)C12—C13—C14122.3 (2)
N1i—Ni1—S1101.52 (6)C12—C13—H13118.8
N2—Ni1—S191.63 (6)C14—C13—H13118.8
N2i—Ni1—S188.37 (6)C9—C14—C13118.8 (2)
O2—P1—O1101.95 (9)C9—C14—H14120.6
O2—P1—S1106.69 (7)C13—C14—H14120.6
O1—P1—S1112.73 (6)C17—C15—C12112.5 (2)
O2—P1—S2111.23 (6)C17—C15—C18108.5 (2)
O1—P1—S2103.62 (7)C12—C15—C18109.3 (2)
S1—P1—S2119.33 (4)C17—C15—C16108.0 (2)
P1—S1—Ni1109.04 (3)C12—C15—C16109.77 (19)
C9—O1—P1126.04 (15)C18—C15—C16108.7 (2)
C19—O2—P1122.48 (14)C15—C16—H16A109.5
C5i—N1—C1119.43 (19)C15—C16—H16B109.5
C5i—N1—Ni1129.37 (16)H16A—C16—H16B109.5
C1—N1—Ni1110.98 (14)C15—C16—H16C109.5
C2—N2—C3115.10 (18)H16A—C16—H16C109.5
C2—N2—Ni1106.77 (14)H16B—C16—H16C109.5
C3—N2—Ni1119.71 (14)C15—C17—H17A109.5
C2—N2—H2N109 (2)C15—C17—H17B109.5
C3—N2—H2N104 (2)H17A—C17—H17B109.5
Ni1—N2—H2N101 (2)C15—C17—H17C109.5
N1—C1—C2106.80 (18)H17A—C17—H17C109.5
N1—C1—H1A110.4H17B—C17—H17C109.5
C2—C1—H1A110.4C15—C18—H18A109.5
N1—C1—H1B110.4C15—C18—H18B109.5
C2—C1—H1B110.4H18A—C18—H18B109.5
H1A—C1—H1B108.6C15—C18—H18C109.5
N2—C2—C1105.96 (19)H18A—C18—H18C109.5
N2—C2—H2A110.5H18B—C18—H18C109.5
C1—C2—H2A110.5C24—C19—C20121.0 (2)
N2—C2—H2B110.5C24—C19—O2119.5 (2)
C1—C2—H2B110.5C20—C19—O2119.3 (2)
H2A—C2—H2B108.7C19—C20—C21119.0 (2)
N2—C3—C6111.51 (19)C19—C20—H20120.5
N2—C3—C4106.03 (19)C21—C20—H20120.5
C6—C3—C4111.42 (19)C20—C21—C22121.9 (2)
N2—C3—C7110.55 (18)C20—C21—H21119.1
C6—C3—C7109.24 (19)C22—C21—H21119.1
C4—C3—C7107.99 (18)C23—C22—C21116.9 (2)
C5—C4—C3116.19 (19)C23—C22—C25123.1 (2)
C5—C4—H4A108.2C21—C22—C25119.9 (2)
C3—C4—H4A108.2C22—C23—C24121.9 (2)
C5—C4—H4B108.2C22—C23—H23119.1
C3—C4—H4B108.2C24—C23—H23119.1
H4A—C4—H4B107.4C19—C24—C23119.3 (2)
N1i—C5—C8124.0 (2)C19—C24—H24120.4
N1i—C5—C4121.0 (2)C23—C24—H24120.4
C8—C5—C4114.9 (2)C22—C25—C26112.07 (19)
C3—C6—H6A109.5C22—C25—C28109.5 (2)
C3—C6—H6B109.5C26—C25—C28108.1 (2)
H6A—C6—H6B109.5C22—C25—C27109.1 (2)
C3—C6—H6C109.5C26—C25—C27108.7 (2)
H6A—C6—H6C109.5C28—C25—C27109.3 (2)
H6B—C6—H6C109.5C25—C26—H26A109.5
C3—C7—H7A109.5C25—C26—H26B109.5
C3—C7—H7B109.5H26A—C26—H26B109.5
H7A—C7—H7B109.5C25—C26—H26C109.5
C3—C7—H7C109.5H26A—C26—H26C109.5
H7A—C7—H7C109.5H26B—C26—H26C109.5
H7B—C7—H7C109.5C25—C27—H27A109.5
C5—C8—H8A109.5C25—C27—H27B109.5
C5—C8—H8B109.5H27A—C27—H27B109.5
H8A—C8—H8B109.5C25—C27—H27C109.5
C5—C8—H8C109.5H27A—C27—H27C109.5
H8A—C8—H8C109.5H27B—C27—H27C109.5
H8B—C8—H8C109.5C25—C28—H28A109.5
C14—C9—C10120.5 (2)C25—C28—H28B109.5
C14—C9—O1123.8 (2)H28A—C28—H28B109.5
C10—C9—O1115.6 (2)C25—C28—H28C109.5
C11—C10—C9119.6 (2)H28A—C28—H28C109.5
C11—C10—H10120.2H28B—C28—H28C109.5
C9—C10—H10120.2
O2—P1—S1—Ni1179.72 (6)C3—C4—C5—N1i36.6 (3)
O1—P1—S1—Ni168.62 (7)C3—C4—C5—C8145.5 (2)
S2—P1—S1—Ni153.26 (5)P1—O1—C9—C1442.9 (3)
N1—Ni1—S1—P1126.44 (7)P1—O1—C9—C10140.20 (18)
N1i—Ni1—S1—P153.56 (7)C14—C9—C10—C110.3 (3)
N2—Ni1—S1—P1147.85 (6)O1—C9—C10—C11177.36 (19)
N2i—Ni1—S1—P132.15 (6)C9—C10—C11—C120.1 (3)
O2—P1—O1—C982.29 (18)C10—C11—C12—C130.1 (3)
S1—P1—O1—C931.73 (19)C10—C11—C12—C15179.4 (2)
S2—P1—O1—C9162.11 (15)C11—C12—C13—C140.0 (3)
O1—P1—O2—C1963.81 (18)C15—C12—C13—C14179.5 (2)
S1—P1—O2—C19177.78 (15)C10—C9—C14—C130.4 (3)
S2—P1—O2—C1946.09 (18)O1—C9—C14—C13177.2 (2)
N2—Ni1—N1—C5i169.7 (2)C12—C13—C14—C90.2 (3)
N2i—Ni1—N1—C5i10.3 (2)C13—C12—C15—C174.9 (3)
S1—Ni1—N1—C5i77.3 (2)C11—C12—C15—C17175.5 (2)
N2—Ni1—N1—C14.72 (15)C13—C12—C15—C18115.6 (3)
N2i—Ni1—N1—C1175.28 (15)C11—C12—C15—C1863.9 (3)
S1—Ni1—N1—C197.18 (14)C13—C12—C15—C16125.3 (2)
N1—Ni1—N2—C223.67 (14)C11—C12—C15—C1655.2 (3)
N1i—Ni1—N2—C2156.33 (14)P1—O2—C19—C2498.6 (2)
S1—Ni1—N2—C254.67 (14)P1—O2—C19—C2086.2 (2)
N1—Ni1—N2—C3156.67 (17)C24—C19—C20—C210.8 (4)
N1i—Ni1—N2—C323.33 (17)O2—C19—C20—C21174.3 (2)
S1—Ni1—N2—C378.33 (16)C19—C20—C21—C220.5 (4)
C5i—N1—C1—C2143.3 (2)C20—C21—C22—C231.6 (4)
Ni1—N1—C1—C231.7 (2)C20—C21—C22—C25177.9 (2)
C3—N2—C2—C1178.12 (18)C21—C22—C23—C241.5 (4)
Ni1—N2—C2—C146.42 (19)C25—C22—C23—C24178.0 (2)
N1—C1—C2—N250.7 (2)C20—C19—C24—C230.9 (4)
C2—N2—C3—C666.1 (2)O2—C19—C24—C23174.2 (2)
Ni1—N2—C3—C663.2 (2)C22—C23—C24—C190.3 (4)
C2—N2—C3—C4172.42 (17)C23—C22—C25—C269.1 (3)
Ni1—N2—C3—C458.2 (2)C21—C22—C25—C26170.4 (2)
C2—N2—C3—C755.6 (2)C23—C22—C25—C28110.9 (3)
Ni1—N2—C3—C7175.03 (14)C21—C22—C25—C2869.6 (3)
N2—C3—C4—C566.3 (2)C23—C22—C25—C27129.5 (3)
C6—C3—C4—C555.2 (3)C21—C22—C25—C2750.0 (3)
C7—C3—C4—C5175.17 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S2i0.88 (3)2.70 (3)3.542 (2)162 (3)
C7—H7A···S2i0.982.823.703 (3)150
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C16H32N4)](C20H26O2PS2)2
Mr1126.16
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)9.445 (2), 12.168 (3), 12.740 (3)
α, β, γ (°)95.965 (4), 91.360 (3), 99.787 (4)
V3)1433.7 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.27 × 0.23 × 0.08
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.859, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
14032, 6434, 4838
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.00
No. of reflections6434
No. of parameters335
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···S2i0.88 (3)2.70 (3)3.542 (2)162 (3)
C7—H7A···S2i0.982.823.703 (3)150
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Education Committee (No. 09ZA057) and the Science and Technology Committee (No. 2010GZ0130) of Sichuan Province, and the Science and Technology Office of Zigong City (Nos. 08X01 and 10X05).

References

First citationAoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, J.-S., Zou, L.-K., Xie, B., Xiang, Y.-G. & Lai, C. (2010). Acta Cryst. E66, m1593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, J.-S. & Xie, B. (1997). Acta Chim. Sin. 55, 892–896.  CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B., Zhang, X.-L., Zou, L.-K., Wang, J., Lai, C., Wu, Y. & Feng, J.-S. (2009). Chem J Chin. Univ. 30, 2337–2343.  CAS Google Scholar
First citationZou, L.-K., Xie, B., Feng, J.-S. & Lai, C. (2010). Acta Cryst. E66, m1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds