metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido{N′-[1-(2-pyridin-2-yl)ethyl­­idene]acetohydrazide-κ2N′,O}copper(II)

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: leehm@cc.ncue.edu.tw

(Received 16 December 2010; accepted 18 December 2010; online 24 December 2010)

In the title compound, [CuCl2(C9H11N3O)], the CuII atom is in a distorted square-pyramidal CuCl2N2O coordination geometry. The tridentate acetohydrazide ligand chelates in a meridional fashion. The chloride ligand in the axial position forms a long Cu—Cl distance of 2.4892 (9) Å. In contrast, the Cu—Cl distance from the equatorial chloride ligand is much shorter [2.2110 (7) Å]. Inter­molecular N—H⋯Cl and C—H⋯Cl hydrogen bonds link the complexes into a three-dimensional network.

Related literature

For a related copper(II) complex with a similar tridentate ligand, see: Recio Despaigne et al. (2009[Recio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct. 920, 97-102.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C9H11N3O)]

  • Mr = 311.65

  • Monoclinic, P 21 /c

  • a = 6.6501 (15) Å

  • b = 15.680 (3) Å

  • c = 13.103 (2) Å

  • β = 118.769 (12)°

  • V = 1197.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.25 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.603, Tmax = 0.674

  • 16039 measured reflections

  • 3081 independent reflections

  • 2534 reflections with I > 2.0σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.02

  • 3081 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.89 2.34 3.226 (2) 170
C1—H1A⋯Cl1ii 0.98 2.63 3.529 (3) 153
C3—H3A⋯Cl2i 0.98 2.81 3.785 (3) 176
C3—H3C⋯Cl1iii 0.98 2.75 3.703 (3) 165
C7—H7⋯Cl1iv 0.95 2.68 3.529 (3) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

In the title compound (Fig. 1), the copper atom is in distorted square coordination geometry with the ligand, 2-benzoylpyridine-methyl hydrazone (L) coordinated in meridional fashion via the pyridyl N, imine N, and keto O atoms. The equatorial chloride is trans to the imine N. Another chloride ligand occupies the axial position. Interestingly, the two Cu—Cl distances are unequal in length. The chloride ligand in the axial position forms a long Cu—Cl distance of 2.4892 (9) Å. In contrast, the Cu—Cl distance from the equatorial chloride ligand is much shorter (2.2110 (7) Å). The ligand is in keto form as indicated by the short C2—O1 distance of 1.240 (3) Å. Classical intermolecular hydrogen bonds of the type N—H···Cl and non-classical intermolecular hydrogen bonds of the type C—H···Cl link the complexes into a three dimensional network.

The structure of a copper(II) dichloride complex with a similar tridentate hydrazone ligand has been reported in the literature (Recio Despaigne et al., 2009).

Related literature top

For a related copper(II) complex with a similar tridentate ligand, see: Recio Despaigne et al. (2009).

Experimental top

The tridenate hydrazone ligand was prepared by the condensation of acetyl hydrazide (0.074 g, 1.0 mmol) with 2-acetylpyridine (0.112 ml, 1.0 mmol) in methanol (15 ml). On refluxing the methanolic solution for 2 h a pale yellow color was observed, an indication of the formation of Schiff base ligand. On removal of the solvent, the resultant light yellow liquid was used without further purification. To a hot methanolic solution (30 ml) of anhydrous CuCl2 (0.134 g, 1.0 mmol), the ligand (0.177 g, 1.0 mmol) was added. The solution immediately turned to a green color. Then the mixture was heated to boiling for 10 min. After cooling, it was placed inside a refrigerator. Dark green prismatic crystals were formed in 7 days. The crystals were filtered off, washed with water and dried in air.

Refinement top

All the hydrogen atoms could have been discerned in the difference Fourier map, nevertheless, all the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl —H = 0.98 and NH = 0.89 Å while Uiso(H) = 1.2Ueq(Cmethine and N) and Uiso(H) = 1.5 Ueq (Cmethyl).

Structure description top

In the title compound (Fig. 1), the copper atom is in distorted square coordination geometry with the ligand, 2-benzoylpyridine-methyl hydrazone (L) coordinated in meridional fashion via the pyridyl N, imine N, and keto O atoms. The equatorial chloride is trans to the imine N. Another chloride ligand occupies the axial position. Interestingly, the two Cu—Cl distances are unequal in length. The chloride ligand in the axial position forms a long Cu—Cl distance of 2.4892 (9) Å. In contrast, the Cu—Cl distance from the equatorial chloride ligand is much shorter (2.2110 (7) Å). The ligand is in keto form as indicated by the short C2—O1 distance of 1.240 (3) Å. Classical intermolecular hydrogen bonds of the type N—H···Cl and non-classical intermolecular hydrogen bonds of the type C—H···Cl link the complexes into a three dimensional network.

The structure of a copper(II) dichloride complex with a similar tridentate hydrazone ligand has been reported in the literature (Recio Despaigne et al., 2009).

For a related copper(II) complex with a similar tridentate ligand, see: Recio Despaigne et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are dipicted by circles of an arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis, displaying the hydrogen bonds as dashed lines; H-atoms not involved in hydrogen bonding have been excluded.
Dichlorido{N'-[1-(2-pyridin-2-yl)ethylidene]acetohydrazide- κ2N',O}copper(II) top
Crystal data top
[CuCl2(C9H11N3O)]F(000) = 628
Mr = 311.65Dx = 1.728 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6047 reflections
a = 6.6501 (15) Åθ = 2.2–27.7°
b = 15.680 (3) ŵ = 2.25 mm1
c = 13.103 (2) ÅT = 150 K
β = 118.769 (12)°Prism, green
V = 1197.7 (4) Å30.25 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEXII
diffractometer
3081 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2.0σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 28.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 78
Tmin = 0.603, Tmax = 0.674k = 2121
16039 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0302P)2 + 1.0145P]
where P = (Fo2 + 2Fc2)/3
3081 reflections(Δ/σ)max = 0.001
147 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[CuCl2(C9H11N3O)]V = 1197.7 (4) Å3
Mr = 311.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6501 (15) ŵ = 2.25 mm1
b = 15.680 (3) ÅT = 150 K
c = 13.103 (2) Å0.25 × 0.20 × 0.19 mm
β = 118.769 (12)°
Data collection top
Bruker SMART APEXII
diffractometer
3081 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2534 reflections with I > 2.0σ(I)
Tmin = 0.603, Tmax = 0.674Rint = 0.027
16039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
3081 reflectionsΔρmin = 0.54 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.95537 (5)0.835509 (17)0.19694 (2)0.03082 (9)
Cl10.77693 (11)0.94146 (4)0.23143 (6)0.04312 (15)
Cl21.30421 (10)0.81769 (4)0.38962 (5)0.04150 (15)
O11.0897 (3)0.90737 (10)0.11255 (15)0.0412 (4)
N11.1191 (3)0.77854 (12)0.04581 (16)0.0331 (4)
H11.15810.74620.00180.040*
N21.0103 (3)0.74896 (11)0.10466 (15)0.0293 (4)
N30.7804 (3)0.73440 (12)0.21178 (16)0.0324 (4)
C11.2447 (5)0.90327 (18)0.0185 (2)0.0453 (6)
H1A1.39340.92940.03330.068*
H1B1.13930.94700.06990.068*
H1C1.26510.85900.06560.068*
C21.1484 (4)0.86451 (15)0.05182 (19)0.0335 (5)
C30.9627 (5)0.60109 (15)0.0319 (2)0.0457 (6)
H3A1.05620.61970.00330.069*
H3B0.81110.58340.02950.069*
H3C1.03800.55290.08420.069*
C40.9369 (4)0.67248 (13)0.09883 (18)0.0304 (4)
C50.8118 (4)0.66154 (14)0.16587 (19)0.0309 (4)
C60.7298 (4)0.58379 (16)0.1791 (2)0.0424 (6)
H60.75340.53340.14600.051*
C70.6118 (5)0.58128 (19)0.2426 (3)0.0532 (7)
H70.55660.52860.25510.064*
C80.5757 (5)0.6552 (2)0.2867 (3)0.0529 (7)
H80.49160.65460.32820.063*
C90.6626 (4)0.73087 (18)0.2702 (2)0.0425 (6)
H90.63770.78200.30150.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03910 (16)0.02660 (14)0.03380 (15)0.00029 (11)0.02316 (12)0.00381 (11)
Cl10.0510 (4)0.0394 (3)0.0457 (3)0.0123 (3)0.0286 (3)0.0023 (2)
Cl20.0372 (3)0.0551 (4)0.0348 (3)0.0009 (3)0.0194 (2)0.0016 (3)
O10.0604 (11)0.0295 (8)0.0477 (10)0.0026 (7)0.0372 (9)0.0024 (7)
N10.0447 (11)0.0317 (9)0.0341 (10)0.0001 (8)0.0280 (9)0.0009 (8)
N20.0362 (9)0.0288 (9)0.0295 (9)0.0012 (7)0.0211 (8)0.0011 (7)
N30.0328 (9)0.0363 (10)0.0328 (9)0.0008 (8)0.0196 (8)0.0005 (8)
C10.0559 (16)0.0463 (14)0.0428 (13)0.0087 (12)0.0310 (12)0.0032 (11)
C20.0381 (12)0.0335 (11)0.0308 (11)0.0005 (9)0.0180 (9)0.0019 (9)
C30.0772 (19)0.0281 (11)0.0453 (14)0.0010 (12)0.0402 (14)0.0053 (10)
C40.0382 (11)0.0272 (10)0.0275 (10)0.0020 (9)0.0173 (9)0.0001 (8)
C50.0311 (10)0.0319 (11)0.0285 (10)0.0003 (9)0.0134 (8)0.0004 (9)
C60.0414 (13)0.0364 (13)0.0509 (14)0.0033 (10)0.0234 (11)0.0045 (11)
C70.0456 (15)0.0498 (16)0.0685 (19)0.0052 (12)0.0309 (14)0.0175 (14)
C80.0440 (15)0.067 (2)0.0615 (18)0.0006 (13)0.0366 (14)0.0145 (15)
C90.0393 (13)0.0541 (16)0.0443 (14)0.0026 (11)0.0282 (11)0.0022 (12)
Geometric parameters (Å, º) top
Cu1—N21.9653 (18)C1—H1C0.9800
Cu1—N32.0305 (19)C3—C41.482 (3)
Cu1—O12.0592 (17)C3—H3A0.9800
Cu1—Cl12.2110 (7)C3—H3B0.9800
Cu1—Cl22.4892 (9)C3—H3C0.9800
O1—C21.240 (3)C4—C51.482 (3)
N1—C21.359 (3)C5—C61.380 (3)
N1—N21.367 (3)C6—C71.392 (4)
N1—H10.8900C6—H60.9500
N2—C41.283 (3)C7—C81.367 (4)
N3—C91.334 (3)C7—H70.9500
N3—C51.353 (3)C8—C91.381 (4)
C1—C21.483 (3)C8—H80.9500
C1—H1A0.9800C9—H90.9500
C1—H1B0.9800
N2—Cu1—N378.73 (8)O1—C2—C1122.7 (2)
N2—Cu1—O177.90 (7)N1—C2—C1117.6 (2)
N3—Cu1—O1153.54 (7)C4—C3—H3A109.5
N2—Cu1—Cl1157.16 (6)C4—C3—H3B109.5
N3—Cu1—Cl1100.28 (6)H3A—C3—H3B109.5
O1—Cu1—Cl196.47 (5)C4—C3—H3C109.5
N2—Cu1—Cl2100.84 (6)H3A—C3—H3C109.5
N3—Cu1—Cl296.46 (6)H3B—C3—H3C109.5
O1—Cu1—Cl299.95 (6)N2—C4—C3126.3 (2)
Cl1—Cu1—Cl2101.94 (3)N2—C4—C5112.26 (19)
C2—O1—Cu1113.58 (15)C3—C4—C5121.4 (2)
C2—N1—N2113.82 (18)N3—C5—C6122.3 (2)
C2—N1—H1121.4N3—C5—C4114.61 (19)
N2—N1—H1124.6C6—C5—C4123.0 (2)
C4—N2—N1124.94 (19)C5—C6—C7118.1 (3)
C4—N2—Cu1120.27 (15)C5—C6—H6121.0
N1—N2—Cu1114.72 (14)C7—C6—H6121.0
C9—N3—C5118.6 (2)C8—C7—C6119.5 (3)
C9—N3—Cu1127.53 (18)C8—C7—H7120.2
C5—N3—Cu1113.48 (15)C6—C7—H7120.2
C2—C1—H1A109.5C7—C8—C9119.4 (3)
C2—C1—H1B109.5C7—C8—H8120.3
H1A—C1—H1B109.5C9—C8—H8120.3
C2—C1—H1C109.5N3—C9—C8122.0 (3)
H1A—C1—H1C109.5N3—C9—H9119.0
H1B—C1—H1C109.5C8—C9—H9119.0
O1—C2—N1119.6 (2)
N2—Cu1—O1—C23.14 (17)Cu1—O1—C2—C1178.65 (18)
N3—Cu1—O1—C231.6 (3)N2—N1—C2—O14.0 (3)
Cl1—Cu1—O1—C2160.69 (16)N2—N1—C2—C1174.3 (2)
Cl2—Cu1—O1—C295.94 (17)N1—N2—C4—C32.5 (4)
C2—N1—N2—C4170.3 (2)Cu1—N2—C4—C3179.18 (19)
C2—N1—N2—Cu16.6 (2)N1—N2—C4—C5175.88 (19)
N3—Cu1—N2—C44.33 (17)Cu1—N2—C4—C50.8 (3)
O1—Cu1—N2—C4171.84 (19)C9—N3—C5—C61.2 (3)
Cl1—Cu1—N2—C494.1 (2)Cu1—N3—C5—C6172.25 (18)
Cl2—Cu1—N2—C490.18 (17)C9—N3—C5—C4177.8 (2)
N3—Cu1—N2—N1172.68 (16)Cu1—N3—C5—C48.8 (2)
O1—Cu1—N2—N15.18 (14)N2—C4—C5—N35.4 (3)
Cl1—Cu1—N2—N182.9 (2)C3—C4—C5—N3173.0 (2)
Cl2—Cu1—N2—N192.80 (14)N2—C4—C5—C6175.6 (2)
N2—Cu1—N3—C9179.8 (2)C3—C4—C5—C65.9 (4)
O1—Cu1—N3—C9151.88 (19)N3—C5—C6—C70.2 (4)
Cl1—Cu1—N3—C923.5 (2)C4—C5—C6—C7179.1 (2)
Cl2—Cu1—N3—C980.0 (2)C5—C6—C7—C81.7 (4)
N2—Cu1—N3—C57.08 (15)C6—C7—C8—C91.8 (4)
O1—Cu1—N3—C535.4 (3)C5—N3—C9—C81.1 (4)
Cl1—Cu1—N3—C5163.84 (14)Cu1—N3—C9—C8171.3 (2)
Cl2—Cu1—N3—C592.74 (15)C7—C8—C9—N30.4 (4)
Cu1—O1—C2—N10.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.892.343.226 (2)170
C1—H1A···Cl1ii0.982.633.529 (3)153
C3—H3A···N10.982.562.945 (3)104
C3—H3A···Cl2i0.982.813.785 (3)176
C3—H3C···Cl1iii0.982.753.703 (3)165
C7—H7···Cl1iv0.952.683.529 (3)149
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl2(C9H11N3O)]
Mr311.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)6.6501 (15), 15.680 (3), 13.103 (2)
β (°) 118.769 (12)
V3)1197.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.25
Crystal size (mm)0.25 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.603, 0.674
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
16039, 3081, 2534
Rint0.027
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.02
No. of reflections3081
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.892.343.226 (2)170
C1—H1A···Cl1ii0.982.633.529 (3)153
C3—H3A···N10.982.562.945 (3)104
C3—H3A···Cl2i0.982.813.785 (3)176
C3—H3C···Cl1iii0.982.753.703 (3)165
C7—H7···Cl1iv0.952.683.529 (3)149
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+2, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

We are grateful to the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRecio Despaigne, A. A., Da Silva, J. G., Do Carmo, A. C. M., Piro, O. E., Castellano, E. E. & Beraldo, H. (2009). J. Mol. Struct. 920, 97–102.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds