metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­cobalt(II)]-μ-(3,5-di­nitro-2-oxidobenzoato)-κ3O1,O2:O1′-[tetra­aqua­cobalt(II)]-μ-(3,5-di­nitro-2-oxidobenzoato)-κ3O1:O1′,O2] dihydrate]

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, and bSchool of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 22 November 2010; accepted 15 December 2010; online 24 December 2010)

In polymeric title compound, {[Co2(C7H2N2O7)2(H2O)6]·2H2O}n, obtained from the reaction of 3,5-dinitro­salicylic acid with cobalt(II) acetate, both CoII atoms are located on inversion centres and exhibit a distorted octahedral coordination geometry. The coordin­ation sphere about one CoII atom comprises four O-atom donors from two bidentate chelate (Ophenolate and Ocarbox­yl) and bridging dianionic ligands and two water mol­ecules [Co—O range = 2.0249 (11)–2.1386 (14) Å], while that about the second CoII atom has four water mol­ecules and two bridging carboxyl­ate O-donor atoms [Co—O range = 2.0690 (14)–2.1364 (11) Å]. The coordinated water mol­ecules as well as the water mol­ecules of solvation give O—H⋯O water–water and water–carboxyl hydrogen-bonding inter­actions in the three-dimensional framework structure.

Related literature

For the structures of similar hydrated complexes of CoII, see: Deng et al. (2008[Deng, Z.-P., Gao, S., Huo, L.-H. & Ng, S. W. (2008). Acta Cryst. E64, m446.]); Sobolev et al. (2003[Sobolev, A. N., Miminoshvili, E. B., Miminoshvili, K. E. & Sakvarelidze, T. N. (2003). Acta Cryst. E59, m836-m837.]); Tahir et al. (1996[Tahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392-1394.], 1997[Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176-179.]). For the structure of a mixed-ligand CoII complex with 3,5-dinitro­salicylic acid and the structures of the acid and its salts, see: Zhong et al. (2009[Zhong, C.-L., Jiang, X.-R. & Wen, D.-C. (2009). Acta Cryst. E65, m79.]); Kumar et al. (1999[Kumar, V. S. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069-1073.]); Smith et al. (2003[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707-713.], 2007[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264-277.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C7H2N2O7)2(H2O)6]·2H2O

  • Mr = 714.20

  • Triclinic, [P \overline 1]

  • a = 6.8188 (3) Å

  • b = 7.7366 (4) Å

  • c = 11.3671 (5) Å

  • α = 92.658 (4)°

  • β = 96.313 (4)°

  • γ = 94.515 (4)°

  • V = 593.26 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 200 K

  • 0.30 × 0.30 × 0.18 mm

Data collection
  • Oxford Diffraction Gemini-S Ultra CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.865, Tmax = 0.980

  • 7532 measured reflections

  • 2560 independent reflections

  • 2236 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.061

  • S = 1.07

  • 2560 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯O2Wi 0.79 (3) 2.13 (3) 2.918 (2) 175 (2)
O1W—H12W⋯O4W 0.76 (3) 2.11 (3) 2.844 (2) 163 (3)
O2W—H21W⋯O2ii 0.75 (3) 2.08 (3) 2.7837 (18) 158 (3)
O2W—H22W⋯O51iii 0.78 (3) 2.21 (3) 2.8962 (19) 146 (3)
O3W—H31W⋯O12iv 0.84 (3) 1.94 (3) 2.6666 (19) 145 (2)
O3W—H32W⋯O4Wv 0.72 (3) 2.31 (3) 2.927 (2) 145 (3)
O4W—H41W⋯O11vi 0.77 (3) 2.18 (3) 2.851 (2) 146 (2)
O4W—H42W⋯O32vii 0.74 (3) 2.51 (3) 3.178 (2) 152 (3)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1; (iv) -x+1, -y, -z+1; (v) x-1, y, z; (vi) x+1, y, z; (vii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

3,5-Dinitrosalicylic acid (DNSA) has proved to be a useful synthon in crystal engineering (Kumar et al., 1999) and the structures of a large number of its proton-transfer compounds with Lewis bases have been reported (Smith et al., 2003, 2007). However, the structures of the transition metal complexes of DNSA are not so common and in particular, with CoII, there is only one example, a monomeric mixed-ligand complex with 2,2'-bipyridine (Zhong et al. , 2009), in which the DNSA ligand is dianionic and chelates through carboxyl and phenolate O donors. We obtained the title compound, having an empirical formula [Co(DNSA)(H2O)4], from the reaction of cobalt(II) acetate with 3,5-dinitrosalicylic acid in aqueous ethanol. This CoII complex might have been expected to be typically octahedral and have a simple monomeric molecular formula involving the dianionic DNSA ligand in a bidentate chelate form, such as found in other similar hydrated cobalt(II) carboxylates, e.g. the acetate (Sobolev et al., 2003), the 4-nitrosalicylate (Tahir et al., 1997), the 4-formylbenzoate (Deng et al., 2008) or the 3,5-dinitrobenzoate (Tahir et al., 1996). However, the structure of (I) reported here showed the presence of a polymeric complex hydrate, {[Co2(C7H2N2O7)2(H2O)6]. 2H2O}n (I), based on two slightly distorted octahedral but different CoII centres.

In the structure (Fig. 1), the two separate six-coordinate CoO6 complex centres lie on crystallographic inversion centres at (1, 1/2, 1/2) (Co1) and (1/2, 0, 1/2) (Co2). The coordination sphere about Co1 comprises four O donors (Ophenolate, Ocarboxyl) from two trans-related bidentate chelate dianionic DNSA ligands [Co—O, 2.0249 (11), 2.0508 (11) Å] and two water molecules [Co—O1W, 2.1386 (14) Å]. The second carboxyl O of each DNSA ligand (O11, O11ii) [for symmetry code (ii), see Table 1], provide trans-related bridges to the second Co centre [Co—O, 2.1364 (11) Å], with four water molecules (O2W, O3W) completing the coordination [Co—O, 2.1122 (14), 2.0690 (14) Å]. This results in polymer chain substructures which extend along the b cell direction (Fig. 2). The coordinated water molecules as well as the water molecule of solvation (O4W) give both water–water and inter-chain OH···Ocarboxyl, nitro hydrogen-bonding associations (Table 1), giving an overall three-dimensional framework structure.

Related literature top

For the structures of similar hydrated complexes of CoII, see: Deng et al. (2008); Sobolev et al. (2003); Tahir et al. (1996, 1997). For the structure of a mixed-ligand CoII complex with 3,5-dinitrosalicylic acid and the structures of the acid and its salts, see: Zhong et al. (2009); Kumar et al. (1999); Smith et al. (2003, 2007).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol of cobalt(II) acetate and 2 mmol of 3,5-dinitrosalicylic acid in 50 ml of 50% ethanol–water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave large well formed red block crystals of (I).

Refinement top

Hydrogen atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement in calculated positions with C–H = 0.93 Å and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Structure description top

3,5-Dinitrosalicylic acid (DNSA) has proved to be a useful synthon in crystal engineering (Kumar et al., 1999) and the structures of a large number of its proton-transfer compounds with Lewis bases have been reported (Smith et al., 2003, 2007). However, the structures of the transition metal complexes of DNSA are not so common and in particular, with CoII, there is only one example, a monomeric mixed-ligand complex with 2,2'-bipyridine (Zhong et al. , 2009), in which the DNSA ligand is dianionic and chelates through carboxyl and phenolate O donors. We obtained the title compound, having an empirical formula [Co(DNSA)(H2O)4], from the reaction of cobalt(II) acetate with 3,5-dinitrosalicylic acid in aqueous ethanol. This CoII complex might have been expected to be typically octahedral and have a simple monomeric molecular formula involving the dianionic DNSA ligand in a bidentate chelate form, such as found in other similar hydrated cobalt(II) carboxylates, e.g. the acetate (Sobolev et al., 2003), the 4-nitrosalicylate (Tahir et al., 1997), the 4-formylbenzoate (Deng et al., 2008) or the 3,5-dinitrobenzoate (Tahir et al., 1996). However, the structure of (I) reported here showed the presence of a polymeric complex hydrate, {[Co2(C7H2N2O7)2(H2O)6]. 2H2O}n (I), based on two slightly distorted octahedral but different CoII centres.

In the structure (Fig. 1), the two separate six-coordinate CoO6 complex centres lie on crystallographic inversion centres at (1, 1/2, 1/2) (Co1) and (1/2, 0, 1/2) (Co2). The coordination sphere about Co1 comprises four O donors (Ophenolate, Ocarboxyl) from two trans-related bidentate chelate dianionic DNSA ligands [Co—O, 2.0249 (11), 2.0508 (11) Å] and two water molecules [Co—O1W, 2.1386 (14) Å]. The second carboxyl O of each DNSA ligand (O11, O11ii) [for symmetry code (ii), see Table 1], provide trans-related bridges to the second Co centre [Co—O, 2.1364 (11) Å], with four water molecules (O2W, O3W) completing the coordination [Co—O, 2.1122 (14), 2.0690 (14) Å]. This results in polymer chain substructures which extend along the b cell direction (Fig. 2). The coordinated water molecules as well as the water molecule of solvation (O4W) give both water–water and inter-chain OH···Ocarboxyl, nitro hydrogen-bonding associations (Table 1), giving an overall three-dimensional framework structure.

For the structures of similar hydrated complexes of CoII, see: Deng et al. (2008); Sobolev et al. (2003); Tahir et al. (1996, 1997). For the structure of a mixed-ligand CoII complex with 3,5-dinitrosalicylic acid and the structures of the acid and its salts, see: Zhong et al. (2009); Kumar et al. (1999); Smith et al. (2003, 2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I), with non-H atoms drawn as 40% probability ellipsoids. Both Co1 and Co2 lie on crystallographic inversion centres. For symmetry codes: (i) and (ii), see Table 1.
[Figure 2] Fig. 2. The coordination polymer structure of (I) extending across the b cell direction showing intra-unit hydrogen-bonding associations as dashed lines.
catena-Poly[[[diaquacobalt(II)]-µ-(3,5-dinitro-2-oxidobenzoato)- κ3O1,O2:O1'-[tetraaquacobalt(II)]-µ-(3,5- dinitro-2-oxidobenzoato)-κ3O1:O1',O2] dihydrate] top
Crystal data top
[Co2(C7H2N2O7)2(H2O)6]·2H2OZ = 1
Mr = 714.20F(000) = 362
Triclinic, P1Dx = 1.999 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8188 (3) ÅCell parameters from 5528 reflections
b = 7.7366 (4) Åθ = 3.3–28.7°
c = 11.3671 (5) ŵ = 1.52 mm1
α = 92.658 (4)°T = 200 K
β = 96.313 (4)°Plate, red
γ = 94.515 (4)°0.30 × 0.30 × 0.18 mm
V = 593.26 (5) Å3
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
2560 independent reflections
Radiation source: fine-focus sealed tube2236 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 88
Tmin = 0.865, Tmax = 0.980k = 99
7532 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0341P)2 + 0.1689P]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Co2(C7H2N2O7)2(H2O)6]·2H2Oγ = 94.515 (4)°
Mr = 714.20V = 593.26 (5) Å3
Triclinic, P1Z = 1
a = 6.8188 (3) ÅMo Kα radiation
b = 7.7366 (4) ŵ = 1.52 mm1
c = 11.3671 (5) ÅT = 200 K
α = 92.658 (4)°0.30 × 0.30 × 0.18 mm
β = 96.313 (4)°
Data collection top
Oxford Diffraction Gemini-S Ultra CCD-detector
diffractometer
2560 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2236 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 0.980Rint = 0.020
7532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
2560 reflectionsΔρmin = 0.47 e Å3
225 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11.000000.500000.500000.0121 (1)
Co20.500000.000000.500000.0130 (1)
O1W1.2442 (2)0.45126 (19)0.40373 (13)0.0250 (4)
O20.85747 (18)0.60915 (14)0.36011 (10)0.0176 (3)
O2W0.4854 (2)0.23727 (17)0.59704 (13)0.0210 (4)
O3W0.2062 (2)0.0052 (2)0.43256 (14)0.0276 (4)
O110.57060 (17)0.13604 (14)0.34878 (10)0.0147 (3)
O120.85493 (18)0.26657 (14)0.43617 (10)0.0179 (3)
O310.8352 (2)0.89467 (15)0.24132 (12)0.0270 (4)
O320.9601 (2)0.86453 (16)0.07589 (12)0.0299 (4)
O510.6887 (2)0.35705 (18)0.17303 (11)0.0335 (4)
O520.5849 (2)0.12456 (17)0.09262 (12)0.0325 (4)
N30.8741 (2)0.80472 (17)0.15690 (12)0.0165 (4)
N50.6572 (2)0.2756 (2)0.08527 (13)0.0208 (4)
C10.7367 (2)0.3493 (2)0.24300 (14)0.0125 (4)
C20.8069 (2)0.5305 (2)0.25828 (14)0.0121 (4)
C30.8144 (2)0.6185 (2)0.15038 (14)0.0133 (4)
C40.7721 (2)0.5375 (2)0.03877 (14)0.0154 (5)
C50.7072 (2)0.3626 (2)0.03086 (14)0.0153 (5)
C60.6860 (2)0.2692 (2)0.13166 (14)0.0139 (4)
C110.7191 (2)0.24360 (19)0.35023 (14)0.0122 (4)
O4W1.2050 (3)0.1926 (2)0.21463 (14)0.0317 (5)
H40.786700.598200.028900.0180*
H60.637600.153000.123700.0170*
H11W1.316 (4)0.536 (4)0.399 (2)0.044 (8)*
H12W1.230 (4)0.399 (4)0.345 (3)0.050 (8)*
H21W0.380 (5)0.258 (4)0.597 (3)0.049 (9)*
H22W0.516 (5)0.231 (4)0.665 (3)0.077 (11)*
H31W0.146 (4)0.086 (4)0.451 (2)0.050 (8)*
H32W0.158 (5)0.044 (4)0.382 (3)0.058 (9)*
H41W1.310 (4)0.161 (3)0.224 (2)0.045 (8)*
H42W1.148 (5)0.140 (4)0.165 (3)0.070 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0155 (2)0.0109 (2)0.0091 (2)0.0016 (1)0.0011 (1)0.0015 (1)
Co20.0146 (2)0.0127 (2)0.0120 (2)0.0006 (1)0.0018 (1)0.0030 (1)
O1W0.0272 (7)0.0233 (7)0.0241 (7)0.0054 (6)0.0098 (6)0.0056 (6)
O20.0282 (7)0.0128 (5)0.0106 (6)0.0011 (5)0.0032 (5)0.0007 (4)
O2W0.0238 (7)0.0198 (6)0.0203 (7)0.0034 (5)0.0061 (6)0.0004 (5)
O3W0.0180 (6)0.0312 (8)0.0339 (8)0.0007 (6)0.0009 (6)0.0201 (7)
O110.0166 (6)0.0136 (5)0.0135 (6)0.0024 (4)0.0011 (4)0.0028 (4)
O120.0230 (6)0.0147 (6)0.0137 (6)0.0046 (5)0.0046 (5)0.0042 (4)
O310.0455 (8)0.0141 (6)0.0228 (7)0.0028 (6)0.0109 (6)0.0007 (5)
O320.0448 (8)0.0199 (6)0.0272 (7)0.0054 (6)0.0164 (6)0.0084 (5)
O510.0532 (9)0.0363 (8)0.0093 (6)0.0044 (7)0.0014 (6)0.0025 (6)
O520.0432 (9)0.0287 (7)0.0214 (7)0.0152 (6)0.0017 (6)0.0080 (6)
N30.0194 (7)0.0139 (7)0.0161 (7)0.0002 (6)0.0008 (6)0.0049 (5)
N50.0220 (7)0.0268 (8)0.0123 (7)0.0005 (6)0.0002 (6)0.0025 (6)
C10.0122 (7)0.0136 (7)0.0118 (7)0.0003 (6)0.0019 (6)0.0027 (6)
C20.0116 (7)0.0132 (7)0.0117 (7)0.0016 (6)0.0009 (6)0.0023 (6)
C30.0149 (8)0.0107 (7)0.0144 (8)0.0003 (6)0.0017 (6)0.0033 (6)
C40.0165 (8)0.0185 (8)0.0118 (8)0.0021 (6)0.0026 (6)0.0047 (6)
C50.0160 (8)0.0193 (8)0.0098 (8)0.0004 (6)0.0000 (6)0.0019 (6)
C60.0135 (7)0.0128 (7)0.0149 (8)0.0008 (6)0.0011 (6)0.0010 (6)
C110.0163 (8)0.0091 (7)0.0116 (8)0.0014 (6)0.0030 (6)0.0004 (6)
O4W0.0266 (8)0.0380 (9)0.0288 (8)0.0067 (7)0.0036 (6)0.0078 (7)
Geometric parameters (Å, º) top
Co1—O1W2.1386 (14)O1W—H12W0.76 (3)
Co1—O22.0249 (11)O1W—H11W0.79 (3)
Co1—O122.0508 (11)O2W—H21W0.75 (3)
Co1—O1Wi2.1386 (14)O2W—H22W0.78 (3)
Co1—O2i2.0249 (11)O3W—H32W0.72 (3)
Co1—O12i2.0508 (11)O3W—H31W0.84 (3)
Co2—O2W2.1122 (14)O4W—H42W0.74 (3)
Co2—O3W2.0690 (14)O4W—H41W0.77 (3)
Co2—O112.1364 (11)N3—C31.462 (2)
Co2—O2Wii2.1122 (14)N5—C51.447 (2)
Co2—O3Wii2.0690 (14)C1—C111.509 (2)
Co2—O11ii2.1364 (11)C1—C21.442 (2)
O2—C21.2817 (19)C1—C61.379 (2)
O11—C111.2572 (18)C2—C31.434 (2)
O12—C111.2660 (19)C3—C41.379 (2)
O31—N31.2242 (19)C4—C51.386 (2)
O32—N31.2335 (19)C5—C61.397 (2)
O51—N51.234 (2)C4—H40.9300
O52—N51.228 (2)C6—H60.9300
O1W—Co1—O291.94 (5)Co1—O1W—H12W122 (2)
O1W—Co1—O1290.72 (5)H21W—O2W—H22W101 (4)
O1W—Co1—O1Wi180.00Co2—O2W—H21W110 (2)
O1W—Co1—O2i88.06 (5)Co2—O2W—H22W113 (2)
O1W—Co1—O12i89.28 (5)H31W—O3W—H32W114 (3)
O2—Co1—O1287.76 (4)Co2—O3W—H31W107.2 (19)
O1Wi—Co1—O288.06 (5)Co2—O3W—H32W133 (3)
O2—Co1—O2i180.00H41W—O4W—H42W108 (3)
O2—Co1—O12i92.24 (4)O31—N3—O32122.86 (14)
O1Wi—Co1—O1289.28 (5)O32—N3—C3118.20 (13)
O2i—Co1—O1292.24 (4)O31—N3—C3118.94 (13)
O12—Co1—O12i180.00O51—N5—C5118.39 (14)
O1Wi—Co1—O2i91.94 (5)O51—N5—O52122.71 (15)
O1Wi—Co1—O12i90.72 (5)O52—N5—C5118.90 (14)
O2i—Co1—O12i87.76 (4)C2—C1—C11119.84 (14)
O2W—Co2—O3W89.80 (6)C6—C1—C11118.89 (14)
O2W—Co2—O1190.74 (5)C2—C1—C6121.27 (14)
O2W—Co2—O2Wii180.00C1—C2—C3114.96 (14)
O2W—Co2—O3Wii90.20 (6)O2—C2—C1123.15 (14)
O2W—Co2—O11ii89.26 (5)O2—C2—C3121.88 (14)
O3W—Co2—O1186.59 (5)C2—C3—C4123.97 (14)
O2Wii—Co2—O3W90.20 (6)N3—C3—C2119.02 (13)
O3W—Co2—O3Wii180.00N3—C3—C4116.99 (14)
O3W—Co2—O11ii93.41 (5)C3—C4—C5117.76 (14)
O2Wii—Co2—O1189.26 (5)N5—C5—C6119.33 (14)
O3Wii—Co2—O1193.41 (5)C4—C5—C6121.83 (15)
O11—Co2—O11ii180.00N5—C5—C4118.84 (14)
O2Wii—Co2—O3Wii89.80 (6)C1—C6—C5120.05 (14)
O2Wii—Co2—O11ii90.74 (5)O12—C11—C1118.49 (13)
O3Wii—Co2—O11ii86.59 (5)O11—C11—O12123.51 (14)
Co1—O2—C2124.09 (10)O11—C11—C1118.00 (13)
Co2—O11—C11123.33 (10)C3—C4—H4121.00
Co1—O12—C11126.18 (10)C5—C4—H4121.00
H11W—O1W—H12W110 (3)C1—C6—H6120.00
Co1—O1W—H11W112.7 (19)C5—C6—H6120.00
O1W—Co1—O2—C259.16 (12)O51—N5—C5—C6175.47 (14)
O12—Co1—O2—C231.48 (12)O52—N5—C5—C4174.28 (14)
O1Wi—Co1—O2—C2120.84 (12)O52—N5—C5—C64.8 (2)
O12i—Co1—O2—C2148.52 (12)C6—C1—C2—O2179.22 (14)
O1W—Co1—O12—C1199.19 (13)C6—C1—C2—C31.4 (2)
O2—Co1—O12—C117.27 (13)C11—C1—C2—O20.3 (2)
O1Wi—Co1—O12—C1180.81 (13)C11—C1—C2—C3179.01 (12)
O2i—Co1—O12—C11172.73 (13)C2—C1—C6—C51.7 (2)
O2W—Co2—O11—C1158.56 (12)C11—C1—C6—C5177.86 (13)
O3W—Co2—O11—C11148.31 (12)C2—C1—C11—O11139.77 (14)
O2Wii—Co2—O11—C11121.44 (12)C2—C1—C11—O1240.9 (2)
O3Wii—Co2—O11—C1131.69 (12)C6—C1—C11—O1140.7 (2)
Co1—O2—C2—C137.23 (19)C6—C1—C11—O12138.71 (14)
Co1—O2—C2—C3143.47 (11)O2—C2—C3—N32.4 (2)
Co2—O11—C11—O129.1 (2)O2—C2—C3—C4176.25 (14)
Co2—O11—C11—C1171.53 (10)C1—C2—C3—N3176.94 (12)
Co1—O12—C11—O11141.37 (12)C1—C2—C3—C44.4 (2)
Co1—O12—C11—C139.30 (19)N3—C3—C4—C5177.33 (13)
O31—N3—C3—C231.2 (2)C2—C3—C4—C54.0 (2)
O31—N3—C3—C4150.07 (14)C3—C4—C5—N5178.51 (13)
O32—N3—C3—C2149.57 (14)C3—C4—C5—C60.5 (2)
O32—N3—C3—C429.2 (2)N5—C5—C6—C1178.72 (13)
O51—N5—C5—C45.5 (2)C4—C5—C6—C12.3 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2Wi0.79 (3)2.13 (3)2.918 (2)175 (2)
O1W—H12W···O4W0.76 (3)2.11 (3)2.844 (2)163 (3)
O2W—H21W···O2iii0.75 (3)2.08 (3)2.7837 (18)158 (3)
O2W—H22W···O51iv0.78 (3)2.21 (3)2.8962 (19)146 (3)
O3W—H31W···O12ii0.84 (3)1.94 (3)2.6666 (19)145 (2)
O3W—H32W···O4Wv0.72 (3)2.31 (3)2.927 (2)145 (3)
O4W—H41W···O11vi0.77 (3)2.18 (3)2.851 (2)146 (2)
O4W—H42W···O32vii0.74 (3)2.51 (3)3.178 (2)152 (3)
C6—H6···O52viii0.932.523.420 (2)164
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y1, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Co2(C7H2N2O7)2(H2O)6]·2H2O
Mr714.20
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)6.8188 (3), 7.7366 (4), 11.3671 (5)
α, β, γ (°)92.658 (4), 96.313 (4), 94.515 (4)
V3)593.26 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.30 × 0.30 × 0.18
Data collection
DiffractometerOxford Diffraction Gemini-S Ultra CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.865, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7532, 2560, 2236
Rint0.020
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.07
No. of reflections2560
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.47

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O2Wi0.79 (3)2.13 (3)2.918 (2)175 (2)
O1W—H12W···O4W0.76 (3)2.11 (3)2.844 (2)163 (3)
O2W—H21W···O2ii0.75 (3)2.08 (3)2.7837 (18)158 (3)
O2W—H22W···O51iii0.78 (3)2.21 (3)2.8962 (19)146 (3)
O3W—H31W···O12iv0.84 (3)1.94 (3)2.6666 (19)145 (2)
O3W—H32W···O4Wv0.72 (3)2.31 (3)2.927 (2)145 (3)
O4W—H41W···O11vi0.77 (3)2.18 (3)2.851 (2)146 (2)
O4W—H42W···O32vii0.74 (3)2.51 (3)3.178 (2)152 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x+1, y, z; (vii) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Committee, the Faculty of Science and Technology and the University Library, Queensland University of Technology and Griffith University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Ng, S. W. (2008). Acta Cryst. E64, m446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, V. S. S., Kuduva, S. S. & Desiraju, G. R. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 1069–1073.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2003). Aust. J. Chem. 56, 707–713.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, 264–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationSobolev, A. N., Miminoshvili, E. B., Miminoshvili, K. E. & Sakvarelidze, T. N. (2003). Acta Cryst. E59, m836–m837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392–1394.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZhong, C.-L., Jiang, X.-R. & Wen, D.-C. (2009). Acta Cryst. E65, m79.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds