organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-Fluoro-N′-(4-nitro­benzyl­­idene)benzo­hydrazide

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 5 December 2010; accepted 13 December 2010; online 18 December 2010)

In the title hydrazone compound, C14H10FN3O3, the dihedral angle between the two substituted benzene rings is 13.7 (3)°. The mol­ecule exists in a trans configuration with respect to the central methyl­idene unit. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun, Patil, Jebas et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Fun, Patil, Rao et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10FN3O3

  • Mr = 287.25

  • Monoclinic, P 21 /n

  • a = 7.077 (2) Å

  • b = 25.718 (4) Å

  • c = 7.6844 (17) Å

  • β = 111.640 (3)°

  • V = 1300.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.983

  • 6999 measured reflections

  • 2810 independent reflections

  • 1155 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.173

  • S = 0.98

  • 2810 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O3i 0.90 (1) 2.04 (3) 2.928 (3) 168 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban, 2010; Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the crystal structure of the title new compound.

In the title hydrazone compound, Fig. 1, the dihedral angle between the two substituted benzene rings C1—C6 and C9—C14 is 13.7 (3)°. The molecule exists in a trans configuration with respect to the central methylidene unit.

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban (2010); Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The title compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 2-fluorobenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

Atom H3A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in calculated positions (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a large number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun, Patil, Jebas et al., 2008; Fun, Patil, Rao et al., 2008; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban, 2010; Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the crystal structure of the title new compound.

In the title hydrazone compound, Fig. 1, the dihedral angle between the two substituted benzene rings C1—C6 and C9—C14 is 13.7 (3)°. The molecule exists in a trans configuration with respect to the central methylidene unit.

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis (Fig. 2).

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban (2010); Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun, Patil, Jebas et al. (2008); Fun, Patil, Rao et al. (2008); Yang et al. (2008); Ejsmont et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-2-Fluoro-N'-(4-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H10FN3O3F(000) = 592
Mr = 287.25Dx = 1.468 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 680 reflections
a = 7.077 (2) Åθ = 2.5–24.5°
b = 25.718 (4) ŵ = 0.12 mm1
c = 7.6844 (17) ÅT = 298 K
β = 111.640 (3)°Block, colourless
V = 1300.1 (5) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2810 independent reflections
Radiation source: fine-focus sealed tube1155 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 27.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.981, Tmax = 0.983k = 3227
6999 measured reflectionsl = 59
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
2810 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C14H10FN3O3V = 1300.1 (5) Å3
Mr = 287.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.077 (2) ŵ = 0.12 mm1
b = 25.718 (4) ÅT = 298 K
c = 7.6844 (17) Å0.17 × 0.15 × 0.15 mm
β = 111.640 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2810 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1155 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.983Rint = 0.074
6999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0671 restraint
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.25 e Å3
2810 reflectionsΔρmin = 0.22 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2225 (4)0.24829 (9)0.4967 (3)0.0822 (8)
N10.2495 (5)0.48648 (15)0.5057 (5)0.0631 (10)
N20.2488 (4)0.29033 (11)0.0113 (4)0.0432 (8)
N30.2828 (5)0.25789 (11)0.1631 (4)0.0464 (8)
O10.2201 (5)0.47230 (12)0.6636 (4)0.0978 (12)
O20.2646 (6)0.53203 (12)0.4634 (5)0.1069 (13)
O30.0937 (4)0.19271 (9)0.0144 (3)0.0547 (8)
C10.2637 (5)0.44701 (14)0.3635 (5)0.0438 (9)
C20.2406 (6)0.39574 (14)0.4128 (5)0.0486 (10)
H20.21830.38550.53480.058*
C30.2511 (5)0.35963 (14)0.2776 (5)0.0465 (10)
H30.23250.32460.30940.056*
C40.2891 (5)0.37471 (13)0.0952 (5)0.0374 (8)
C50.3140 (5)0.42716 (14)0.0505 (5)0.0474 (10)
H50.34190.43760.07230.057*
C60.2981 (5)0.46400 (13)0.1853 (5)0.0494 (10)
H60.31030.49930.15640.059*
C70.3085 (5)0.33691 (14)0.0518 (5)0.0448 (10)
H70.36520.34700.17660.054*
C80.2013 (5)0.21010 (13)0.1394 (5)0.0404 (9)
C90.2475 (5)0.17828 (13)0.3115 (5)0.0361 (8)
C100.2603 (5)0.19735 (14)0.4817 (5)0.0484 (10)
C110.3020 (6)0.16713 (18)0.6393 (5)0.0627 (12)
H110.31000.18150.75290.075*
C120.3310 (6)0.11534 (18)0.6222 (6)0.0658 (12)
H120.35970.09400.72660.079*
C130.3190 (5)0.09383 (15)0.4558 (6)0.0595 (11)
H130.33990.05840.44780.071*
C140.2757 (5)0.12515 (13)0.2996 (6)0.0489 (10)
H140.26530.11050.18580.059*
H3A0.374 (4)0.2695 (13)0.272 (3)0.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.130 (2)0.0599 (16)0.0721 (18)0.0116 (15)0.0550 (17)0.0204 (13)
N10.084 (3)0.055 (2)0.051 (2)0.003 (2)0.026 (2)0.009 (2)
N20.0457 (18)0.0456 (19)0.0314 (18)0.0036 (15)0.0062 (15)0.0066 (15)
N30.058 (2)0.0411 (19)0.0300 (17)0.0090 (16)0.0044 (15)0.0041 (16)
O10.163 (3)0.085 (2)0.053 (2)0.007 (2)0.048 (2)0.0113 (18)
O20.190 (4)0.051 (2)0.084 (3)0.003 (2)0.054 (2)0.0158 (19)
O30.0665 (18)0.0531 (17)0.0306 (15)0.0094 (14)0.0017 (13)0.0006 (13)
C10.049 (2)0.043 (2)0.039 (2)0.0089 (18)0.0158 (19)0.0104 (19)
C20.060 (3)0.051 (3)0.032 (2)0.002 (2)0.0141 (19)0.0050 (19)
C30.055 (2)0.041 (2)0.040 (2)0.0008 (18)0.014 (2)0.0036 (19)
C40.035 (2)0.038 (2)0.036 (2)0.0016 (16)0.0090 (17)0.0017 (17)
C50.062 (3)0.041 (2)0.036 (2)0.0033 (19)0.015 (2)0.0045 (18)
C60.065 (3)0.034 (2)0.050 (3)0.0008 (19)0.023 (2)0.0022 (19)
C70.045 (2)0.054 (2)0.033 (2)0.0012 (19)0.0104 (18)0.0002 (19)
C80.045 (2)0.040 (2)0.033 (2)0.0036 (18)0.0109 (18)0.0010 (18)
C90.037 (2)0.039 (2)0.031 (2)0.0037 (16)0.0101 (16)0.0021 (16)
C100.056 (2)0.043 (2)0.047 (3)0.010 (2)0.020 (2)0.010 (2)
C110.070 (3)0.082 (3)0.035 (2)0.023 (3)0.018 (2)0.003 (2)
C120.058 (3)0.076 (3)0.054 (3)0.008 (2)0.009 (2)0.025 (3)
C130.053 (3)0.053 (3)0.070 (3)0.003 (2)0.020 (2)0.015 (2)
C140.043 (2)0.046 (3)0.056 (3)0.0008 (18)0.016 (2)0.004 (2)
Geometric parameters (Å, º) top
F1—C101.350 (4)C4—C71.458 (5)
N1—O21.210 (4)C5—C61.377 (5)
N1—O11.210 (4)C5—H50.9300
N1—C11.468 (5)C6—H60.9300
N2—C71.270 (4)C7—H70.9300
N2—N31.381 (4)C8—C91.485 (4)
N3—C81.341 (4)C9—C101.368 (4)
N3—H3A0.900 (10)C9—C141.389 (4)
O3—C81.230 (4)C10—C111.376 (5)
C1—C21.365 (4)C11—C121.361 (5)
C1—C61.370 (4)C11—H110.9300
C2—C31.375 (5)C12—C131.367 (5)
C2—H20.9300C12—H120.9300
C3—C41.382 (4)C13—C141.383 (5)
C3—H30.9300C13—H130.9300
C4—C51.387 (4)C14—H140.9300
O2—N1—O1121.8 (4)N2—C7—C4120.8 (3)
O2—N1—C1119.7 (4)N2—C7—H7119.6
O1—N1—C1118.5 (4)C4—C7—H7119.6
C7—N2—N3115.1 (3)O3—C8—N3123.1 (3)
C8—N3—N2120.4 (3)O3—C8—C9120.7 (3)
C8—N3—H3A124 (2)N3—C8—C9116.2 (3)
N2—N3—H3A115 (2)C10—C9—C14117.1 (3)
C2—C1—C6123.0 (3)C10—C9—C8124.7 (3)
C2—C1—N1119.6 (3)C14—C9—C8118.3 (3)
C6—C1—N1117.5 (3)F1—C10—C9118.9 (3)
C1—C2—C3118.4 (3)F1—C10—C11117.3 (4)
C1—C2—H2120.8C9—C10—C11123.8 (4)
C3—C2—H2120.8C12—C11—C10117.3 (4)
C2—C3—C4120.8 (3)C12—C11—H11121.3
C2—C3—H3119.6C10—C11—H11121.3
C4—C3—H3119.6C11—C12—C13121.8 (4)
C3—C4—C5118.9 (3)C11—C12—H12119.1
C3—C4—C7121.7 (3)C13—C12—H12119.1
C5—C4—C7119.3 (3)C12—C13—C14119.6 (4)
C6—C5—C4121.0 (3)C12—C13—H13120.2
C6—C5—H5119.5C14—C13—H13120.2
C4—C5—H5119.5C13—C14—C9120.5 (4)
C1—C6—C5117.8 (3)C13—C14—H14119.8
C1—C6—H6121.1C9—C14—H14119.8
C5—C6—H6121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.90 (1)2.04 (3)2.928 (3)168 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10FN3O3
Mr287.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.077 (2), 25.718 (4), 7.6844 (17)
β (°) 111.640 (3)
V3)1300.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6999, 2810, 1155
Rint0.074
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.173, 0.98
No. of reflections2810
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.900 (10)2.04 (3)2.928 (3)168 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the support of the Scientific and Technological Training Fund for undergraduates from the University of Science and Technology Liaoning.

References

First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds