organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(1-Adamant­yl)carbamo­yl]pyridinium chloride

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: wyingchun0107@126.com

(Received 15 October 2010; accepted 14 December 2010; online 24 December 2010)

In the title compound, C16H21N2O+·Cl, the amide group makes a dihedral angle of 25.9 (1)° with respect to the pyridine ring. In the crystal, inter­molecular N—H⋯Cl bonds and weak C—H⋯Cl and C—H⋯O contacts link the cations and the anions into layers parallel to the ac plane. The layers are packed along [010] by hydro­phobic inter­actions between adamantane units.

Related literature

For biomedical properties of adamantane-1-amine derivatives, see: Lees (2005[Lees, A. (2005). Drugs Aging, 22, 731-740.]); Nayyar et al. (2007[Nayyar, A., Monga, V., Malde, A., Coutinho, E. & Jain, R. (2007). Bioorg. Med. Chem. 15, 626-640.]). For ferroelectric properties of pyridinium salts, see: Ye et al. (2010[Ye, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387-395.]); Zhang et al. (2010[Zhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. D. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • C16H21N2O+·Cl

  • Mr = 292.80

  • Monoclinic, P 21 /c

  • a = 7.117 (4) Å

  • b = 23.093 (13) Å

  • c = 11.241 (5) Å

  • β = 127.56 (2)°

  • V = 1464.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.950, Tmax = 0.950

  • 14193 measured reflections

  • 3377 independent reflections

  • 2910 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.139

  • S = 1.11

  • 3377 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.16 3.017 (2) 160
N2—H2A⋯Cl1ii 0.90 2.50 3.293 (2) 147
C2—H2B⋯Cl1iii 0.96 2.79 3.535 (3) 136
C3—H3A⋯Cl1iv 0.96 2.78 3.536 (3) 136
C4—H4A⋯O1ii 0.96 2.35 3.203 (3) 147
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y, z; (iii) -x, -y, -z+1; (iv) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The study of amantadine and its derivatives has attracted much attention owing to their multifunction and technological applications in many areas, such as biomedicine (Lees 2005; Nayyar et al.2007). Amantadine can crystallize in different space groups owing to its randomness. As one part of our systematic research on dielectric, ferroelectric, and phase-transition materials (Ye et al. 2010; Zhang et al. 2010), we synthesize the title compound and investigated its dielectric property. In the range of 110 K to its melting point (428–432 K), the dielectric constant increases smoothly as a function of temperature. It means that this compound might not undergo a distinct structural phase transition in the measured temperature range.

The asymmetric unit of the title compound contains one protonated N- (1-adamantyl)isonicotinamide basic ion and one negative chlorine ion (Fig. 1). The torsion angles of C2—C1—C6—O1 and C2—C1—C6—N2 are 24.5 (3) ånd -157.5 (2) °, C5—C1—C6—O1 and C5—C1—C6—N2 are -151.3 (2) ° and 26.7 (3) °. Intermolecular N—H···Cl bonds and weak C—H···Cl and C—H···O contacts link cationic molecules parallel to (1 0 1) (Table 1). The layers are packed by hydrophobic interactions between adamantane units along the b-axis (Fig 2).

Related literature top

For biomedical properties of adamantane-1-amine derivatives, see: Lees (2005); Nayyar et al. (2007). For magnetic and ferroelectric properties of pyridinium salts, see: Ye et al. (2010); Zhang et al. (2010).

Experimental top

Isonicotinic acid 5 g was added in thionyl chloride (50 ml), and the mixture reacted at 353 K for 5 h. Then the solvate was removed under reduced pressure, the isonicotinoyl chloride was obtained. The l-aminodiamantane hydrochloride (10 mmol) and triethylamine 2.02 g (20 mmol) dissolved in chloroform (40 ml) at 273 K, then the isonicotinoyl chloride 1.51 g (10 mmol) was added. Then the reactant mixture was stired for 7 h at room temperature and some flaxen solid appeared. After filtering the mixture, the solid was dissolved in water and was neutralized with sodium carbonate, The mixed solution was extracted by dichloromethane. The N-(1-adamantyl)isonicotinamide was obtained when the dichloromethane was evaporated under reduced pressure.

The N(1-adamantyl)isonicotinamide 2.56 g (10 mmol) was dissolved in methanol and the chlorhydric acid 1 ml (12 mmol/ml) was added. The crystals suitable for structure determination were grown by slow evaporation of the filter solution at room temperature.

Refinement top

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with N–H and C–H distances 0.90 Å and 0.96 Å, respectively. The isotropic displace ment parameters of the H atoms were refined freely with Uiso(H) = 1.7Ueq(N), and the Uiso(H) at carbon atoms range between 1.1 and 1.6Ueq(C).

Structure description top

The study of amantadine and its derivatives has attracted much attention owing to their multifunction and technological applications in many areas, such as biomedicine (Lees 2005; Nayyar et al.2007). Amantadine can crystallize in different space groups owing to its randomness. As one part of our systematic research on dielectric, ferroelectric, and phase-transition materials (Ye et al. 2010; Zhang et al. 2010), we synthesize the title compound and investigated its dielectric property. In the range of 110 K to its melting point (428–432 K), the dielectric constant increases smoothly as a function of temperature. It means that this compound might not undergo a distinct structural phase transition in the measured temperature range.

The asymmetric unit of the title compound contains one protonated N- (1-adamantyl)isonicotinamide basic ion and one negative chlorine ion (Fig. 1). The torsion angles of C2—C1—C6—O1 and C2—C1—C6—N2 are 24.5 (3) ånd -157.5 (2) °, C5—C1—C6—O1 and C5—C1—C6—N2 are -151.3 (2) ° and 26.7 (3) °. Intermolecular N—H···Cl bonds and weak C—H···Cl and C—H···O contacts link cationic molecules parallel to (1 0 1) (Table 1). The layers are packed by hydrophobic interactions between adamantane units along the b-axis (Fig 2).

For biomedical properties of adamantane-1-amine derivatives, see: Lees (2005); Nayyar et al. (2007). For magnetic and ferroelectric properties of pyridinium salts, see: Ye et al. (2010); Zhang et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of a packing section of the title compound, stacking along the b axis. Dashed lines indicate hydrogen bonds.
4-[(1-Adamantyl)carbamoyl]pyridinium chloride top
Crystal data top
C16H21N2O+·ClF(000) = 624
Mr = 292.80Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3642 reflections
a = 7.117 (4) Åθ = 2.9–27.6°
b = 23.093 (13) ŵ = 0.26 mm1
c = 11.241 (5) ÅT = 293 K
β = 127.56 (2)°Prism, colourless
V = 1464.5 (13) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3377 independent reflections
Radiation source: fine-focus sealed tube2910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 13.6612 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 3030
Tmin = 0.950, Tmax = 0.950l = 1414
14193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.5955P]
where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max = 0.041
202 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H21N2O+·ClV = 1464.5 (13) Å3
Mr = 292.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.117 (4) ŵ = 0.26 mm1
b = 23.093 (13) ÅT = 293 K
c = 11.241 (5) Å0.20 × 0.20 × 0.20 mm
β = 127.56 (2)°
Data collection top
Rigaku SCXmini
diffractometer
3377 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2910 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.950Rint = 0.042
14193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.11Δρmax = 0.23 e Å3
3377 reflectionsΔρmin = 0.22 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13642 (10)0.01867 (2)0.85883 (6)0.03808 (17)
O10.3301 (3)0.12489 (9)0.51605 (18)0.0531 (5)
N10.6627 (4)0.03832 (8)0.2831 (2)0.0406 (5)
H1A0.68650.02280.21980.070 (9)*
N20.7203 (3)0.11813 (8)0.71977 (19)0.0345 (4)
H2A0.86120.10360.75120.059 (8)*
C10.5926 (4)0.08374 (9)0.4772 (2)0.0307 (4)
C20.4096 (4)0.05633 (10)0.3459 (2)0.0375 (5)
H2B0.25550.05320.32210.050 (7)*
C30.4491 (4)0.03368 (10)0.2503 (3)0.0412 (5)
H3A0.32370.01440.15990.053 (8)*
C40.8423 (4)0.06503 (10)0.4063 (3)0.0426 (5)
H4A0.99310.06800.42540.053 (8)*
C50.8118 (4)0.08820 (10)0.5065 (3)0.0384 (5)
H5A0.94100.10720.59590.050 (7)*
C60.5359 (4)0.11061 (10)0.5753 (2)0.0349 (5)
C70.7100 (3)0.14894 (8)0.8312 (2)0.0286 (4)
C80.6137 (4)0.21041 (9)0.7764 (2)0.0381 (5)
H8A0.45490.20860.68470.043 (7)*
H8B0.70990.23070.75680.059 (8)*
C90.9648 (4)0.15297 (10)0.9762 (2)0.0404 (5)
H9A1.06170.17310.95690.057 (8)*
H9B1.02840.11471.01110.044 (7)*
C100.5588 (4)0.11689 (9)0.8641 (3)0.0376 (5)
H10A0.61920.07840.89890.050 (7)*
H10B0.39890.11390.77380.046 (7)*
C110.6166 (4)0.24278 (9)0.8968 (3)0.0415 (5)
H11A0.55510.28110.86150.057 (8)*
C120.4621 (4)0.21057 (10)0.9256 (3)0.0427 (5)
H12A0.30330.20800.83410.060 (8)*
H12B0.45750.23130.99780.060 (8)*
C130.5605 (4)0.15005 (10)0.9832 (3)0.0403 (5)
H13A0.46500.13001.00370.064 (8)*
C140.8703 (5)0.24643 (10)1.0405 (3)0.0463 (6)
H14A0.87340.26751.11530.056 (8)*
H14B0.96680.26681.02110.067 (9)*
C150.9674 (4)0.18568 (11)1.0960 (2)0.0419 (5)
H15A1.12710.18791.18670.053 (7)*
C160.8150 (5)0.15348 (11)1.1268 (3)0.0450 (6)
H16A0.87710.11521.16290.050 (7)*
H16B0.81800.17351.20280.059 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0399 (3)0.0436 (3)0.0357 (3)0.0034 (2)0.0256 (3)0.0040 (2)
O10.0297 (9)0.0891 (13)0.0340 (9)0.0059 (8)0.0160 (7)0.0178 (8)
N10.0554 (12)0.0444 (10)0.0346 (10)0.0066 (9)0.0340 (10)0.0014 (8)
N20.0293 (9)0.0497 (10)0.0246 (8)0.0055 (7)0.0166 (8)0.0054 (7)
C10.0320 (10)0.0365 (10)0.0262 (10)0.0031 (8)0.0189 (9)0.0004 (8)
C20.0336 (11)0.0460 (12)0.0328 (11)0.0025 (9)0.0203 (10)0.0092 (9)
C30.0462 (13)0.0443 (12)0.0306 (11)0.0007 (10)0.0220 (11)0.0076 (9)
C40.0419 (13)0.0553 (14)0.0440 (13)0.0019 (10)0.0331 (12)0.0004 (10)
C50.0339 (11)0.0497 (13)0.0333 (11)0.0041 (9)0.0213 (10)0.0064 (9)
C60.0307 (11)0.0459 (12)0.0296 (11)0.0006 (8)0.0191 (9)0.0068 (8)
C70.0291 (10)0.0354 (10)0.0229 (9)0.0015 (8)0.0166 (8)0.0036 (7)
C80.0458 (13)0.0383 (12)0.0332 (11)0.0039 (9)0.0257 (11)0.0036 (9)
C90.0295 (11)0.0546 (14)0.0319 (11)0.0049 (9)0.0160 (10)0.0079 (10)
C100.0453 (13)0.0372 (11)0.0369 (12)0.0088 (9)0.0286 (11)0.0078 (9)
C110.0527 (14)0.0303 (11)0.0400 (12)0.0070 (9)0.0274 (11)0.0006 (9)
C120.0372 (12)0.0569 (14)0.0361 (12)0.0047 (10)0.0233 (11)0.0091 (10)
C130.0492 (14)0.0478 (13)0.0382 (12)0.0093 (10)0.0340 (12)0.0066 (9)
C140.0523 (15)0.0427 (13)0.0482 (14)0.0117 (10)0.0328 (13)0.0168 (10)
C150.0294 (11)0.0583 (14)0.0267 (11)0.0015 (9)0.0112 (9)0.0122 (9)
C160.0571 (15)0.0491 (14)0.0297 (12)0.0087 (11)0.0270 (12)0.0011 (9)
Geometric parameters (Å, º) top
O1—C61.228 (3)C9—C151.535 (3)
N1—C31.332 (3)C9—H9A0.9600
N1—C41.332 (3)C9—H9B0.9601
N1—H1A0.9000C10—C131.536 (3)
N2—C61.339 (3)C10—H10A0.9602
N2—C71.480 (2)C10—H10B0.9599
N2—H2A0.9000C11—C121.517 (3)
C1—C51.388 (3)C11—C141.523 (4)
C1—C21.390 (3)C11—H11A0.9599
C1—C61.519 (3)C12—C131.520 (3)
C2—C31.369 (3)C12—H12A0.9599
C2—H2B0.9601C12—H12B0.9600
C3—H3A0.9599C13—C161.526 (3)
C4—C51.379 (3)C13—H13A0.9601
C4—H4A0.9601C14—C151.520 (4)
C5—H5A0.9599C14—H14A0.9601
C7—C101.526 (3)C14—H14B0.9600
C7—C81.533 (3)C15—C161.518 (3)
C7—C91.533 (3)C15—H15A0.9600
C8—C111.535 (3)C16—H16A0.9599
C8—H8A0.9600C16—H16B0.9599
C8—H8B0.9600
C3—N1—C4122.33 (19)C7—C10—C13109.73 (17)
C3—N1—H1A118.9C7—C10—H10A109.9
C4—N1—H1A118.8C13—C10—H10A110.0
C6—N2—C7124.82 (18)C7—C10—H10B109.6
C6—N2—H2A117.5C13—C10—H10B109.4
C7—N2—H2A117.7H10A—C10—H10B108.2
C5—C1—C2118.42 (19)C12—C11—C14110.2 (2)
C5—C1—C6123.72 (18)C12—C11—C8109.11 (19)
C2—C1—C6117.73 (19)C14—C11—C8109.4 (2)
C3—C2—C1120.0 (2)C12—C11—H11A109.5
C3—C2—H2B119.9C14—C11—H11A109.5
C1—C2—H2B120.1C8—C11—H11A109.1
N1—C3—C2119.8 (2)C11—C12—C13109.63 (18)
N1—C3—H3A119.8C11—C12—H12A109.6
C2—C3—H3A120.3C13—C12—H12A109.5
N1—C4—C5120.0 (2)C11—C12—H12B109.8
N1—C4—H4A119.9C13—C12—H12B110.1
C5—C4—H4A120.1H12A—C12—H12B108.2
C4—C5—C1119.4 (2)C12—C13—C16110.15 (19)
C4—C5—H5A120.3C12—C13—C10109.30 (19)
C1—C5—H5A120.2C16—C13—C10108.74 (19)
O1—C6—N2125.90 (19)C12—C13—H13A109.7
O1—C6—C1118.23 (19)C16—C13—H13A109.2
N2—C6—C1115.83 (18)C10—C13—H13A109.8
N2—C7—C10112.20 (17)C15—C14—C11109.43 (18)
N2—C7—C8110.26 (16)C15—C14—H14A110.2
C10—C7—C8109.73 (17)C11—C14—H14A109.7
N2—C7—C9107.00 (16)C15—C14—H14B109.6
C10—C7—C9108.87 (18)C11—C14—H14B109.7
C8—C7—C9108.68 (17)H14A—C14—H14B108.2
C11—C8—C7109.54 (17)C16—C15—C14109.7 (2)
C11—C8—H8A110.0C16—C15—C9109.31 (19)
C7—C8—H8A109.7C14—C15—C9109.5 (2)
C11—C8—H8B109.7C16—C15—H15A109.4
C7—C8—H8B109.7C14—C15—H15A109.5
H8A—C8—H8B108.2C9—C15—H15A109.4
C15—C9—C7109.69 (17)C15—C16—C13109.68 (19)
C15—C9—H9A109.6C15—C16—H16A109.8
C7—C9—H9A109.6C13—C16—H16A110.1
C15—C9—H9B110.1C15—C16—H16B109.6
C7—C9—H9B109.6C13—C16—H16B109.5
H9A—C9—H9B108.2H16A—C16—H16B108.1
C5—C1—C2—C31.1 (3)C8—C7—C9—C1559.8 (2)
C6—C1—C2—C3177.1 (2)N2—C7—C10—C13178.48 (17)
C4—N1—C3—C20.7 (3)C8—C7—C10—C1358.6 (2)
C1—C2—C3—N10.4 (3)C9—C7—C10—C1360.2 (2)
C3—N1—C4—C51.1 (4)C7—C8—C11—C1260.1 (2)
N1—C4—C5—C10.4 (4)C7—C8—C11—C1460.6 (2)
C2—C1—C5—C40.6 (3)C14—C11—C12—C1358.8 (2)
C6—C1—C5—C4176.4 (2)C8—C11—C12—C1361.3 (2)
C7—N2—C6—O14.6 (4)C11—C12—C13—C1658.4 (2)
C7—N2—C6—C1173.26 (18)C11—C12—C13—C1061.0 (2)
C5—C1—C6—O1151.3 (2)C7—C10—C13—C1259.5 (2)
C2—C1—C6—O124.5 (3)C7—C10—C13—C1660.8 (2)
C5—C1—C6—N226.7 (3)C12—C11—C14—C1559.6 (2)
C2—C1—C6—N2157.5 (2)C8—C11—C14—C1560.4 (3)
C6—N2—C7—C1066.8 (3)C11—C14—C15—C1659.8 (2)
C6—N2—C7—C855.8 (3)C11—C14—C15—C960.2 (3)
C6—N2—C7—C9173.9 (2)C7—C9—C15—C1659.9 (2)
N2—C7—C8—C11177.02 (18)C7—C9—C15—C1460.2 (3)
C10—C7—C8—C1158.9 (2)C14—C15—C16—C1359.6 (2)
C9—C7—C8—C1160.0 (2)C9—C15—C16—C1360.6 (2)
N2—C7—C9—C15178.89 (18)C12—C13—C16—C1559.0 (2)
C10—C7—C9—C1559.6 (2)C10—C13—C16—C1560.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.163.017 (2)160
N2—H2A···Cl1ii0.902.503.293 (2)147
C2—H2B···Cl1iii0.962.793.535 (3)136
C3—H3A···Cl1iv0.962.783.536 (3)136
C4—H4A···O1ii0.962.353.203 (3)147
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H21N2O+·Cl
Mr292.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.117 (4), 23.093 (13), 11.241 (5)
β (°) 127.56 (2)
V3)1464.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.950, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
14193, 3377, 2910
Rint0.042
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.11
No. of reflections3377
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.163.017 (2)160.0
N2—H2A···Cl1ii0.902.503.293 (2)146.9
C2—H2B···Cl1iii0.962.793.535 (3)135.5
C3—H3A···Cl1iv0.962.783.536 (3)136.0
C4—H4A···O1ii0.962.353.203 (3)147.3
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y, z+1; (iv) x, y, z1.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationLees, A. (2005). Drugs Aging, 22, 731–740.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNayyar, A., Monga, V., Malde, A., Coutinho, E. & Jain, R. (2007). Bioorg. Med. Chem. 15, 626–640.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Chen, L.-Z. & Xiong, R.-G. (2010). Acta Cryst. B66, 387–395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Ye, H. Y., Cai, H. L., Ge, J. Z., Xiong, R. G. & Huang, S. P. D. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds