organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(4-Methyl­phen­yl)imino­meth­yl]-6-(morpholin-4-ylmeth­yl)phenol

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 8 December 2010; accepted 13 December 2010; online 18 December 2010)

In the title compound, C19H22N2O2, the morpholine ring adopts an almost perfect normal chair conformation with puckering parameters QT, θ and φ of 0.5642 (18) Å, 177.32 (17) and φ = 10 (4)°, respectively. The two benzene rings make a dihedral angle of 42.67 (8)° with each other. An intra­molecular O—H⋯N hydrogen bond helps to stabilize the mol­ecular conformation. Aromatic C—H⋯π inter­actions and ππ stacking inter­actions [centroid–centroid distance = 3.6155 (15) Å] between the benzene rings contribute to the stabilization of the crystal structure.

Related literature

For general background to Schiff bases with an azomethine or imine group (—C=N—), see: Akkurt et al. (2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]); Dhar & Taploo (1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]); Emregül et al. (2006[Emregül, K. C., Düzgün, E. & Atakol, O. (2006). Corros. Sci. 48, 3243-3260.]); Jarrahpour & Khalili (2006[Jarrahpour, A. & Khalili, D. (2006). Molecules, 11, 59-63.]); Jarrahpour et al. (2007[Jarrahpour, A., Khalili, D., Clercq, E. D., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720-1730.]); Mladenova et al. (2002[Mladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989-999.]); Przybylski et al. (2009[Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]); Sessler et al. (2006[Sessler, J. L., Melfi, P. J. & Dan Pantos, G. (2006). Coord. Chem. Rev. 250, 816-843.]); Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.]). For a similar structure, see: Akkurt et al. (2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O2

  • Mr = 310.39

  • Triclinic, [P \overline 1]

  • a = 9.807 (3) Å

  • b = 10.091 (3) Å

  • c = 10.528 (3) Å

  • α = 99.78 (2)°

  • β = 109.34 (2)°

  • γ = 115.18 (2)°

  • V = 828.7 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.53 × 0.40 × 0.23 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.958, Tmax = 0.982

  • 15421 measured reflections

  • 3443 independent reflections

  • 2894 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.08

  • 3443 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.6261 (18) 147
C19—H19ACg2i 0.97 2.96 3.732 (3) 137
Symmetry code: (i) x-1, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases, named for Hugo Schiff with the azomethine or imine group (—C N—) usually synthesized by condensation of a primary amine and an active carbonyl group under specific conditions. These compounds show a broad range of applications such as corrosion inhibitors (Emregül et al., 2006), catalysts (Sessler et al., 2006), pigments and polymer stabilizers. Schiff bases possess high biological activities including antibacterial (Jarrahpour et al., 2006), antifungal (Singh et al., 2006), antitumor (Mladenova et al., 2002), antimalarial (Przybylski et al., 2009), antiviral (Jarrahpour et al., 2007) and antipyretic properties (Dhar et al., 1982). Schiff bases are also good intermediates for the synthesis of other chemical substances such as 2-azetidinones.

As shown in Fig. 1, the morpholine ring (N2/O2/C16–C19) of the title compound (I) adopts a chair conformation with puckering parameters QT, θ and φ of 0.5642 (18) Å, 177.32 (17) ° and φ = 10 (4) ° (Cremer & Pople (1975). The dihedral angle between the (C1–C6) and (C9–C14) benzene rings in (I) is 42.67 (8)°. The bond lengths exhibit normal values (Allen et al. 1987) and are comparable with those in our similar structure previously published (Akkurt et al., 2008).

The molecular conformation of (I) is stabilized by intramolecular weak C12—H12···N2 and strong O1—H1···N1 hydrogen bonds (Table 1). In the crystal structure, a C—H···π interaction (Table 1) and a π-π stacking interaction between the C9–C14 benzene rings contribute to the stabilization of the crystal packing [Cg3···Cg3ii(symmetry code ii = 1 - x, 1 - y, -z) = 3.6155 (15) Å, where Cg3 is a centroid of the C9–C14 benzene ring]. Fig. 2 shows the crystal packing of (I) down the a axis.

Related literature top

For general background to Schiff bases with an azomethine or imine group (—CN—), see: Akkurt et al. (2008); Dhar & Taploo (1982); Emregül et al. (2006); Jarrahpour & Khalili (2006); Jarrahpour et al. (2007); Mladenova et al. (2002); Przybylski et al. (2009); Sessler et al. (2006); Singh et al. (2006). For a similar structure, see: Akkurt et al. (2008). For reference structural data, see: Allen et al. (1987). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

Reaction of 2-hydroxy-3-(morpholinomethyl)benzaldehyde with 4-methylaniline in refluxing ethanol gave Schiff base (I) that recrystallized from ethanol to give orange crystals in 85% yield. [mp: 377–379 K]. IR (KBr, cm-1): 1615.2 (CN), 3170.6–3310.5 (OH). 1H-NMR (250 MHz, CDCl3) δ (p.p.m): 2.30 (Me, s, 3H), 2.51 (CH2, t, 4H, J = 4.5), 3.60 (CH2, s, 2H), 3.69 (CH2, t, 4H, J = 4.5), 6.81–7.38 (m, ArH, 7H), 8.56 (HCN, s, 1H), 13.68 (OH, s, 1H). 13C-NMR (CDCl3) δ (p.p.m): 21.0 (Me), 53.5 (N—CH2), 56.4 (CH2), 66.8 (O—CH2), 118.5–159.7 (C=C aromatic carbons), 161.3 (C=N).

Refinement top

All H atoms were placed at calculated positions and were treated as riding on their parent atoms with O—H = 0.82 Å, C—H = 0.93 (aromatic), 0.96(methyl) and 0.97 Å (methylene), and with Uiso(H) = 1.5Ueq(O,C) for hydroxy and methyl and Uiso(H) = 1.2Ueq(C) for aromatic, methylene.

Structure description top

Schiff bases, named for Hugo Schiff with the azomethine or imine group (—C N—) usually synthesized by condensation of a primary amine and an active carbonyl group under specific conditions. These compounds show a broad range of applications such as corrosion inhibitors (Emregül et al., 2006), catalysts (Sessler et al., 2006), pigments and polymer stabilizers. Schiff bases possess high biological activities including antibacterial (Jarrahpour et al., 2006), antifungal (Singh et al., 2006), antitumor (Mladenova et al., 2002), antimalarial (Przybylski et al., 2009), antiviral (Jarrahpour et al., 2007) and antipyretic properties (Dhar et al., 1982). Schiff bases are also good intermediates for the synthesis of other chemical substances such as 2-azetidinones.

As shown in Fig. 1, the morpholine ring (N2/O2/C16–C19) of the title compound (I) adopts a chair conformation with puckering parameters QT, θ and φ of 0.5642 (18) Å, 177.32 (17) ° and φ = 10 (4) ° (Cremer & Pople (1975). The dihedral angle between the (C1–C6) and (C9–C14) benzene rings in (I) is 42.67 (8)°. The bond lengths exhibit normal values (Allen et al. 1987) and are comparable with those in our similar structure previously published (Akkurt et al., 2008).

The molecular conformation of (I) is stabilized by intramolecular weak C12—H12···N2 and strong O1—H1···N1 hydrogen bonds (Table 1). In the crystal structure, a C—H···π interaction (Table 1) and a π-π stacking interaction between the C9–C14 benzene rings contribute to the stabilization of the crystal packing [Cg3···Cg3ii(symmetry code ii = 1 - x, 1 - y, -z) = 3.6155 (15) Å, where Cg3 is a centroid of the C9–C14 benzene ring]. Fig. 2 shows the crystal packing of (I) down the a axis.

For general background to Schiff bases with an azomethine or imine group (—CN—), see: Akkurt et al. (2008); Dhar & Taploo (1982); Emregül et al. (2006); Jarrahpour & Khalili (2006); Jarrahpour et al. (2007); Mladenova et al. (2002); Przybylski et al. (2009); Sessler et al. (2006); Singh et al. (2006). For a similar structure, see: Akkurt et al. (2008). For reference structural data, see: Allen et al. (1987). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the packing of (I) down the a axis. All H atoms are omitted for clarity.
2-[(E)-(4-Methylphenyl)iminomethyl]-6-(morpholin-4-ylmethyl)phenol top
Crystal data top
C19H22N2O2Z = 2
Mr = 310.39F(000) = 332
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.807 (3) ÅCell parameters from 2924 reflections
b = 10.091 (3) Åθ = 2.2–28.0°
c = 10.528 (3) ŵ = 0.08 mm1
α = 99.78 (2)°T = 296 K
β = 109.34 (2)°Prism, yellow
γ = 115.18 (2)°0.53 × 0.40 × 0.23 mm
V = 828.7 (5) Å3
Data collection top
Stoe IPDS 2
diffractometer
3443 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2894 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.026
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.2°
ω scansh = 1212
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1212
Tmin = 0.958, Tmax = 0.982l = 1313
15421 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1054P]
where P = (Fo2 + 2Fc2)/3
3443 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H22N2O2γ = 115.18 (2)°
Mr = 310.39V = 828.7 (5) Å3
Triclinic, P1Z = 2
a = 9.807 (3) ÅMo Kα radiation
b = 10.091 (3) ŵ = 0.08 mm1
c = 10.528 (3) ÅT = 296 K
α = 99.78 (2)°0.53 × 0.40 × 0.23 mm
β = 109.34 (2)°
Data collection top
Stoe IPDS 2
diffractometer
3443 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2894 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.982Rint = 0.026
15421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
3443 reflectionsΔρmin = 0.17 e Å3
208 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68415 (12)0.65889 (11)0.31759 (10)0.0605 (3)
O20.25927 (15)0.05310 (13)0.37129 (14)0.0731 (4)
N10.70908 (14)0.89705 (12)0.23661 (12)0.0509 (3)
N20.39377 (13)0.18806 (12)0.26385 (12)0.0470 (3)
C10.80432 (16)1.05345 (14)0.24513 (14)0.0460 (4)
C20.90410 (18)1.17249 (16)0.38095 (15)0.0529 (4)
C31.00285 (17)1.32583 (15)0.39579 (15)0.0541 (4)
C41.00833 (16)1.36570 (15)0.27667 (15)0.0508 (4)
C50.90948 (17)1.24557 (15)0.14201 (15)0.0515 (4)
C60.80862 (16)1.09138 (14)0.12519 (14)0.0492 (4)
C71.1219 (2)1.53245 (17)0.29286 (19)0.0719 (5)
C80.56247 (17)0.80217 (15)0.13084 (15)0.0496 (4)
C90.46275 (16)0.63836 (14)0.11187 (14)0.0464 (4)
C100.52758 (16)0.57282 (14)0.20561 (13)0.0461 (4)
C110.43183 (16)0.41315 (14)0.18260 (14)0.0469 (4)
C120.27222 (17)0.32268 (15)0.06675 (15)0.0503 (4)
C130.20689 (17)0.38570 (16)0.02683 (15)0.0538 (4)
C140.30183 (17)0.54185 (16)0.00456 (15)0.0529 (4)
C150.51246 (18)0.34623 (16)0.28015 (16)0.0565 (4)
C160.48127 (18)0.10773 (17)0.31696 (16)0.0555 (5)
C170.3568 (2)0.05472 (17)0.29914 (17)0.0625 (5)
C180.1757 (2)0.0270 (2)0.3227 (2)0.0783 (7)
C190.2971 (2)0.19116 (18)0.34212 (18)0.0620 (5)
H10.728400.749900.320900.0910*
H20.904201.148400.462400.0630*
H31.067101.404200.487200.0650*
H50.911101.269400.060800.0620*
H60.743701.013200.033600.0590*
H7A1.237401.566000.352300.0860*
H7B1.092301.600300.337200.0860*
H7C1.108101.536900.199300.0860*
H80.517700.839400.063200.0600*
H120.207000.216900.051100.0600*
H130.099400.322500.104200.0650*
H140.258400.583700.067800.0630*
H15A0.601100.344300.259600.0680*
H15B0.564600.415300.379800.0680*
H16A0.561300.167300.418200.0670*
H16B0.543600.101200.263800.0670*
H17A0.282300.116000.197100.0750*
H17B0.417300.105400.336600.0750*
H18A0.112600.030900.375900.0940*
H18B0.095900.031100.221200.0940*
H19A0.235300.241500.306600.0740*
H19B0.373300.251700.444000.0740*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0572 (6)0.0439 (5)0.0533 (5)0.0144 (4)0.0117 (4)0.0177 (4)
O20.0841 (8)0.0696 (7)0.0967 (8)0.0459 (6)0.0539 (7)0.0551 (6)
N10.0570 (7)0.0382 (5)0.0558 (6)0.0216 (5)0.0276 (5)0.0173 (5)
N20.0482 (6)0.0411 (5)0.0550 (6)0.0236 (5)0.0240 (5)0.0224 (5)
C10.0463 (6)0.0371 (6)0.0536 (7)0.0211 (5)0.0225 (5)0.0160 (5)
C20.0569 (8)0.0476 (7)0.0503 (7)0.0247 (6)0.0234 (6)0.0174 (6)
C30.0514 (7)0.0434 (7)0.0511 (7)0.0203 (6)0.0157 (6)0.0082 (5)
C40.0447 (7)0.0383 (6)0.0602 (8)0.0189 (5)0.0184 (6)0.0156 (5)
C50.0531 (7)0.0445 (7)0.0542 (7)0.0225 (6)0.0237 (6)0.0207 (6)
C60.0499 (7)0.0396 (6)0.0486 (7)0.0193 (5)0.0192 (6)0.0120 (5)
C70.0678 (10)0.0419 (7)0.0777 (10)0.0143 (7)0.0231 (8)0.0184 (7)
C80.0541 (7)0.0432 (7)0.0566 (7)0.0257 (6)0.0280 (6)0.0218 (6)
C90.0490 (7)0.0404 (6)0.0527 (7)0.0218 (5)0.0269 (6)0.0188 (5)
C100.0473 (7)0.0406 (6)0.0444 (6)0.0186 (5)0.0206 (5)0.0138 (5)
C110.0502 (7)0.0410 (6)0.0506 (7)0.0216 (5)0.0256 (6)0.0190 (5)
C120.0487 (7)0.0384 (6)0.0585 (8)0.0177 (5)0.0249 (6)0.0183 (5)
C130.0436 (7)0.0474 (7)0.0583 (8)0.0180 (6)0.0174 (6)0.0196 (6)
C140.0504 (7)0.0511 (7)0.0605 (8)0.0268 (6)0.0246 (6)0.0271 (6)
C150.0509 (7)0.0475 (7)0.0601 (8)0.0194 (6)0.0192 (6)0.0240 (6)
C160.0567 (8)0.0581 (8)0.0620 (8)0.0354 (7)0.0271 (7)0.0282 (6)
C170.0816 (10)0.0525 (8)0.0645 (9)0.0414 (8)0.0325 (8)0.0284 (7)
C180.0730 (10)0.0819 (11)0.1191 (15)0.0480 (9)0.0605 (11)0.0659 (11)
C190.0761 (10)0.0610 (8)0.0774 (10)0.0451 (8)0.0470 (8)0.0364 (7)
Geometric parameters (Å, º) top
O1—C101.3492 (18)C16—C171.501 (2)
O2—C171.408 (3)C18—C191.500 (3)
O2—C181.419 (3)C2—H20.9300
O1—H10.8200C3—H30.9300
N1—C81.277 (2)C5—H50.9300
N1—C11.4189 (19)C6—H60.9300
N2—C151.458 (2)C7—H7A0.9600
N2—C161.461 (2)C7—H7B0.9600
N2—C191.454 (3)C7—H7C0.9600
C1—C21.391 (2)C8—H80.9300
C1—C61.3887 (19)C12—H120.9300
C2—C31.378 (2)C13—H130.9300
C3—C41.391 (2)C14—H140.9300
C4—C71.511 (2)C15—H15A0.9700
C4—C51.388 (2)C15—H15B0.9700
C5—C61.383 (2)C16—H16A0.9700
C8—C91.453 (2)C16—H16B0.9700
C9—C101.407 (2)C17—H17A0.9700
C9—C141.395 (2)C17—H17B0.9700
C10—C111.402 (2)C18—H18A0.9700
C11—C151.513 (2)C18—H18B0.9700
C11—C121.383 (2)C19—H19A0.9700
C12—C131.388 (2)C19—H19B0.9700
C13—C141.373 (2)
O1···N12.6261 (18)H6···C82.7300
O2···N22.852 (2)H6···H82.3300
O1···H15B2.5400H6···N2ii2.9100
O1···H19Bi2.8300H7C···H52.3500
O1···H15A2.8200H8···C62.6600
O2···H2i2.7700H8···H62.3300
N1···O12.6261 (18)H8···H142.4300
N2···O22.852 (2)H12···N22.5300
N1···H11.9000H12···C192.9800
N2···H122.5300H12···H19A2.5700
N2···H6ii2.9100H13···H18Bvii2.5000
C1···C18iii3.596 (3)H14···H82.4300
C8···C12ii3.409 (3)H14···C5vi2.8800
C10···C14ii3.432 (3)H15A···O12.8200
C12···C8ii3.409 (3)H15A···H16B2.2800
C12···C193.368 (2)H15B···O12.5400
C14···C10ii3.432 (3)H15B···H16A2.5900
C18···C1iv3.596 (3)H15B···H19B2.3000
C19···C123.368 (2)H16A···H15B2.5900
C1···H16Bv2.8600H16A···H19B2.4100
C1···H18Aiii3.0000H16B···C1viii2.8600
C2···H18Aiii2.9600H16B···C2viii3.0300
C2···H16Bv3.0300H16B···H15A2.2800
C3···H19Aiii3.1000H17A···H18B2.3900
C4···H19Aiii2.9400H17A···H5ii2.4600
C5···H14vi2.8800H18A···C1iv3.0000
C6···H82.6600H18A···C2iv2.9600
C8···H12.4200H18B···H17A2.3900
C8···H62.7300H18B···H13vii2.5000
C11···H19A2.8300H19A···C3iv3.1000
C12···H19A2.8700H19A···C4iv2.9400
C19···H122.9800H19A···C112.8300
H1···N11.9000H19A···C122.8700
H1···C82.4200H19A···H122.5700
H2···O2i2.7700H19B···H15B2.3000
H5···H7C2.3500H19B···H16A2.4100
H5···H17Aii2.4600H19B···O1i2.8300
C17—O2—C18110.04 (14)C5—C6—H6120.00
C10—O1—H1109.00C4—C7—H7A109.00
C1—N1—C8120.07 (13)C4—C7—H7B109.00
C15—N2—C19111.36 (13)C4—C7—H7C109.00
C16—N2—C19108.24 (13)H7A—C7—H7B110.00
C15—N2—C16111.27 (14)H7A—C7—H7C109.00
N1—C1—C6122.95 (12)H7B—C7—H7C109.00
C2—C1—C6118.83 (13)N1—C8—H8119.00
N1—C1—C2118.13 (12)C9—C8—H8119.00
C1—C2—C3120.53 (13)C11—C12—H12119.00
C2—C3—C4121.30 (13)C13—C12—H12119.00
C3—C4—C5117.56 (14)C12—C13—H13120.00
C5—C4—C7120.84 (14)C14—C13—H13120.00
C3—C4—C7121.57 (13)C9—C14—H14120.00
C4—C5—C6121.83 (13)C13—C14—H14120.00
C1—C6—C5119.93 (13)N2—C15—H15A109.00
N1—C8—C9122.64 (14)N2—C15—H15B109.00
C8—C9—C10121.32 (13)C11—C15—H15A109.00
C8—C9—C14119.69 (13)C11—C15—H15B109.00
C10—C9—C14118.95 (13)H15A—C15—H15B108.00
O1—C10—C11117.69 (13)N2—C16—H16A110.00
C9—C10—C11120.53 (13)N2—C16—H16B110.00
O1—C10—C9121.76 (13)C17—C16—H16A110.00
C10—C11—C12118.40 (13)C17—C16—H16B110.00
C12—C11—C15123.20 (13)H16A—C16—H16B108.00
C10—C11—C15118.29 (13)O2—C17—H17A109.00
C11—C12—C13121.68 (14)O2—C17—H17B109.00
C12—C13—C14119.68 (15)C16—C17—H17A109.00
C9—C14—C13120.76 (14)C16—C17—H17B109.00
N2—C15—C11113.61 (14)H17A—C17—H17B108.00
N2—C16—C17110.36 (15)O2—C18—H18A109.00
O2—C17—C16112.22 (15)O2—C18—H18B109.00
O2—C18—C19112.08 (17)C19—C18—H18A109.00
N2—C19—C18110.12 (15)C19—C18—H18B109.00
C1—C2—H2120.00H18A—C18—H18B108.00
C3—C2—H2120.00N2—C19—H19A110.00
C2—C3—H3119.00N2—C19—H19B110.00
C4—C3—H3119.00C18—C19—H19A110.00
C4—C5—H5119.00C18—C19—H19B110.00
C6—C5—H5119.00H19A—C19—H19B108.00
C1—C6—H6120.00
C17—O2—C18—C1956.61 (19)N1—C8—C9—C103.8 (3)
C18—O2—C17—C1656.19 (18)N1—C8—C9—C14178.64 (17)
C8—N1—C1—C639.4 (3)C10—C9—C14—C130.8 (3)
C8—N1—C1—C2143.89 (18)C14—C9—C10—C110.2 (2)
C1—N1—C8—C9176.53 (15)C8—C9—C10—O10.5 (2)
C19—N2—C15—C1179.79 (16)C14—C9—C10—O1178.05 (15)
C15—N2—C16—C17180.00 (13)C8—C9—C14—C13178.35 (16)
C16—N2—C15—C11159.35 (13)C8—C9—C10—C11177.71 (15)
C15—N2—C19—C18179.71 (14)C9—C10—C11—C120.6 (2)
C19—N2—C16—C1757.33 (16)O1—C10—C11—C152.6 (2)
C16—N2—C19—C1857.68 (17)O1—C10—C11—C12178.89 (15)
N1—C1—C6—C5177.41 (17)C9—C10—C11—C15175.65 (15)
N1—C1—C2—C3178.14 (17)C12—C11—C15—N214.1 (2)
C2—C1—C6—C50.7 (3)C10—C11—C15—N2169.80 (14)
C6—C1—C2—C31.3 (3)C15—C11—C12—C13175.25 (16)
C1—C2—C3—C41.2 (3)C10—C11—C12—C130.8 (3)
C2—C3—C4—C50.6 (3)C11—C12—C13—C140.2 (3)
C2—C3—C4—C7177.38 (18)C12—C13—C14—C90.6 (3)
C3—C4—C5—C60.0 (3)N2—C16—C17—O257.79 (17)
C7—C4—C5—C6177.97 (18)O2—C18—C19—N258.52 (19)
C4—C5—C6—C10.1 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z; (iv) x1, y1, z; (v) x, y+1, z; (vi) x+1, y+2, z; (vii) x, y, z; (viii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.6261 (18)147
C12—H12···N20.932.532.876 (2)102
C19—H19A···Cg2iv0.972.963.732 (3)137
Symmetry code: (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H22N2O2
Mr310.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.807 (3), 10.091 (3), 10.528 (3)
α, β, γ (°)99.78 (2), 109.34 (2), 115.18 (2)
V3)828.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.53 × 0.40 × 0.23
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.958, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
15421, 3443, 2894
Rint0.026
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.08
No. of reflections3443
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.6261 (18)147
C19—H19A···Cg2i0.972.963.732 (3)137
Symmetry code: (i) x1, y1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ, HS, SATB and MA thank the Shiraz University Research Council for financial support (grant No. 89-GR—SC-23).

References

First citationAkkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationEmregül, K. C., Düzgün, E. & Atakol, O. (2006). Corros. Sci. 48, 3243–3260.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJarrahpour, A. & Khalili, D. (2006). Molecules, 11, 59–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJarrahpour, A., Khalili, D., Clercq, E. D., Salmi, C. & Brunel, J. M. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMladenova, R., Ignatova, M., Manolova, N., Petrova, T. & Rashkov, I. (2002). Eur. Polym. J. 38, 989–999.  Web of Science CrossRef CAS Google Scholar
First citationPrzybylski, P., Huczynski, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  Web of Science CrossRef CAS Google Scholar
First citationSessler, J. L., Melfi, P. J. & Dan Pantos, G. (2006). Coord. Chem. Rev. 250, 816–843.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds