organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Fluoro­phen­­oxy)propanoic acid

aKey Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: rambo1265@sina.com

(Received 22 November 2010; accepted 30 November 2010; online 15 December 2010)

In the title compound, C9H9FO3, the dihedral angle between the carboxyl group and the benzene ring is 79.4 (3)°. In the crystal, mol­ecules form centrosymmetric dimers through pairs of classical O—H⋯O hydrogen bonds. These are further linked by weaker C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For a related structure, see: Potrzebowski & Chruszcz (2007[Potrzebowski, W. & Chruszcz, M. (2007). Acta Cryst. E63, o2754.]). For the synthesis, see: Bäurle et al. (2006[Bäurle, S., Berger, M. & Jaroch, S. (2006). WO Patent 2006/027236.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9FO3

  • Mr = 184.16

  • Monoclinic, P 21 /c

  • a = 13.934 (16) Å

  • b = 4.974 (5) Å

  • c = 13.098 (14) Å

  • β = 110.546 (12)°

  • V = 850.0 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 153 K

  • 0.45 × 0.30 × 0.08 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.990

  • 5881 measured reflections

  • 1518 independent reflections

  • 1034 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.189

  • S = 0.98

  • 1518 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H4O⋯O2i 0.91 (7) 1.77 (7) 2.671 (6) 177 (7)
C4—H4⋯O1 0.95 2.57 3.519 (7) 176
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound,(I), is an important intermediate in the synthesis of 8-fluorochroman-4-one (Bäurle et al., 2006). We report herein its structure (Fig.1).

The bond lengths and angles in (I) are within normal ranges (Potrzebowski & Chruszcz, 2007). The dihedral angle between the C1—C6 benzene ring and the C9/O2/O3 plane is 79.4 (3) °. In the crystal, molecules form centrosymmetric dimers through classical O3—H4O···O2 hydrogen bonds (Table 1). These are further linked by weaker C4—H4···O1 contacts forming a three-dimensional network.

Related literature top

For a related structure, see: Potrzebowski & Chruszcz (2007). For the synthesis, see: Bäurle et al. (2006).

Experimental top

The title compound was crystallized from dichloromethane and hexane (1:1); colorless block-shaped crystals were obtained after several days.

Refinement top

The crystals were not of good quality resulting in uncertainties in unit cell dimensions and other metrical data being somewhat higher than normal. Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they were bonded, with C—H distances of 0.95Å (CH), 0.99Å (CH2), and with Uiso(H) =1.2Ueq of the parent atoms. The H-atom of the OH group was located in a difference map and allowed to refine freely with an isotropic displacement parameter.

Structure description top

The title compound,(I), is an important intermediate in the synthesis of 8-fluorochroman-4-one (Bäurle et al., 2006). We report herein its structure (Fig.1).

The bond lengths and angles in (I) are within normal ranges (Potrzebowski & Chruszcz, 2007). The dihedral angle between the C1—C6 benzene ring and the C9/O2/O3 plane is 79.4 (3) °. In the crystal, molecules form centrosymmetric dimers through classical O3—H4O···O2 hydrogen bonds (Table 1). These are further linked by weaker C4—H4···O1 contacts forming a three-dimensional network.

For a related structure, see: Potrzebowski & Chruszcz (2007). For the synthesis, see: Bäurle et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
3-(2-Fluorophenoxy)propanoic acid top
Crystal data top
C9H9FO3F(000) = 384
Mr = 184.16Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2182 reflections
a = 13.934 (16) Åθ = 3.1–27.5°
b = 4.974 (5) ŵ = 0.12 mm1
c = 13.098 (14) ÅT = 153 K
β = 110.546 (12)°Block, colorless
V = 850.0 (16) Å30.45 × 0.30 × 0.08 mm
Z = 4
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
1518 independent reflections
Radiation source: Rotating Anode1034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 28.5714 pixels mm-1θmax = 25.5°, θmin = 3.1°
φ and ω scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 66
Tmin = 0.947, Tmax = 0.990l = 1515
5881 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0106P)2 + 5.690P]
where P = (Fo2 + 2Fc2)/3
1518 reflections(Δ/σ)max < 0.001
122 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H9FO3V = 850.0 (16) Å3
Mr = 184.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.934 (16) ŵ = 0.12 mm1
b = 4.974 (5) ÅT = 153 K
c = 13.098 (14) Å0.45 × 0.30 × 0.08 mm
β = 110.546 (12)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
1518 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
1034 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.990Rint = 0.070
5881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.189H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.42 e Å3
1518 reflectionsΔρmin = 0.38 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1148 (2)0.0797 (6)0.0408 (2)0.0401 (7)
O10.2551 (2)0.4195 (6)0.1573 (2)0.0279 (7)
O20.4656 (2)0.4357 (6)0.1091 (3)0.0358 (8)
O30.4220 (2)0.7887 (6)0.0035 (3)0.0350 (8)
C80.3591 (3)0.7823 (8)0.1414 (4)0.0279 (10)
H8A0.29460.85080.08730.034*
H8B0.39810.93920.18150.034*
C60.2124 (3)0.2528 (8)0.2131 (4)0.0239 (9)
C50.2368 (3)0.2465 (8)0.3253 (3)0.0264 (9)
H50.28690.36630.37050.032*
C10.1372 (3)0.0743 (9)0.1491 (4)0.0281 (10)
C30.1149 (3)0.1099 (9)0.3076 (4)0.0339 (11)
H30.08200.23340.33990.041*
C90.4201 (3)0.6507 (8)0.0816 (4)0.0279 (10)
C70.3327 (3)0.6037 (8)0.2214 (4)0.0288 (10)
H7A0.39410.50420.26770.035*
H7B0.30640.71290.26910.035*
C40.1878 (3)0.0641 (9)0.3721 (4)0.0301 (10)
H40.20500.06030.44900.036*
C20.0898 (3)0.1050 (9)0.1967 (4)0.0304 (10)
H20.03950.22550.15230.036*
H4O0.462 (5)0.712 (14)0.037 (5)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0365 (15)0.0424 (16)0.0402 (16)0.0105 (12)0.0121 (12)0.0004 (13)
O10.0313 (15)0.0225 (15)0.0344 (17)0.0050 (12)0.0170 (13)0.0010 (13)
O20.0391 (18)0.0272 (16)0.052 (2)0.0124 (14)0.0289 (16)0.0122 (15)
O30.0405 (18)0.0250 (16)0.050 (2)0.0084 (14)0.0291 (16)0.0076 (15)
C80.029 (2)0.0163 (19)0.044 (3)0.0018 (17)0.0197 (19)0.0018 (18)
C60.024 (2)0.0166 (19)0.036 (2)0.0033 (15)0.0168 (17)0.0019 (17)
C50.032 (2)0.019 (2)0.030 (2)0.0035 (16)0.0134 (18)0.0005 (17)
C10.024 (2)0.025 (2)0.037 (3)0.0029 (17)0.0131 (18)0.0024 (19)
C30.033 (2)0.025 (2)0.057 (3)0.0042 (18)0.031 (2)0.009 (2)
C90.027 (2)0.020 (2)0.041 (3)0.0025 (17)0.0175 (19)0.0010 (19)
C70.034 (2)0.017 (2)0.043 (3)0.0003 (17)0.023 (2)0.0049 (19)
C40.033 (2)0.026 (2)0.035 (2)0.0088 (18)0.0168 (19)0.0066 (19)
C20.022 (2)0.025 (2)0.045 (3)0.0006 (17)0.0131 (19)0.006 (2)
Geometric parameters (Å, º) top
F1—C11.342 (5)C6—C11.405 (6)
O1—C61.372 (5)C5—C41.399 (6)
O1—C71.441 (5)C5—H50.9500
O2—C91.231 (5)C1—C21.381 (6)
O3—C91.317 (5)C3—C21.370 (7)
O3—H4O0.90 (7)C3—C41.376 (7)
C8—C91.494 (6)C3—H30.9500
C8—C71.515 (6)C7—H7A0.9900
C8—H8A0.9900C7—H7B0.9900
C8—H8B0.9900C4—H40.9500
C6—C51.387 (6)C2—H20.9500
C6—O1—C7116.8 (3)C2—C3—H3120.0
C9—O3—H4O113 (4)C4—C3—H3120.0
C9—C8—C7115.3 (3)O2—C9—O3122.7 (4)
C9—C8—H8A108.4O2—C9—C8123.8 (4)
C7—C8—H8A108.4O3—C9—C8113.5 (4)
C9—C8—H8B108.4O1—C7—C8106.5 (4)
C7—C8—H8B108.4O1—C7—H7A110.4
H8A—C8—H8B107.5C8—C7—H7A110.4
O1—C6—C5126.0 (4)O1—C7—H7B110.4
O1—C6—C1115.9 (4)C8—C7—H7B110.4
C5—C6—C1118.2 (4)H7A—C7—H7B108.6
C6—C5—C4120.2 (4)C3—C4—C5120.5 (4)
C6—C5—H5119.9C3—C4—H4119.8
C4—C5—H5119.9C5—C4—H4119.8
F1—C1—C2121.3 (4)C3—C2—C1120.3 (4)
F1—C1—C6117.8 (4)C3—C2—H2119.8
C2—C1—C6120.9 (4)C1—C2—H2119.8
C2—C3—C4119.9 (4)
C7—O1—C6—C50.3 (6)C7—C8—C9—O3165.5 (4)
C7—O1—C6—C1179.8 (3)C6—O1—C7—C8174.2 (3)
O1—C6—C5—C4179.4 (4)C9—C8—C7—O172.7 (5)
C1—C6—C5—C40.7 (6)C2—C3—C4—C50.1 (6)
O1—C6—C1—F10.8 (5)C6—C5—C4—C30.2 (6)
C5—C6—C1—F1179.3 (3)C4—C3—C2—C10.1 (6)
O1—C6—C1—C2179.2 (4)F1—C1—C2—C3179.0 (4)
C5—C6—C1—C20.9 (6)C6—C1—C2—C30.6 (6)
C7—C8—C9—O215.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4O···O2i0.91 (7)1.77 (7)2.671 (6)177 (7)
C4—H4···O10.952.573.519 (7)176
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H9FO3
Mr184.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)13.934 (16), 4.974 (5), 13.098 (14)
β (°) 110.546 (12)
V3)850.0 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.45 × 0.30 × 0.08
Data collection
DiffractometerRigaku AFC10/Saturn724+
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.947, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5881, 1518, 1034
Rint0.070
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.189, 0.98
No. of reflections1518
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.38

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4O···O2i0.91 (7)1.77 (7)2.671 (6)177 (7)
C4—H4···O10.952.573.519 (7)176
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

This work was supported financially by the Key Medical Talents Program of Jiangsu Province (No. RC2007097).

References

First citationBäurle, S., Berger, M. & Jaroch, S. (2006). WO Patent 2006/027236.  Google Scholar
First citationPotrzebowski, W. & Chruszcz, M. (2007). Acta Cryst. E63, o2754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds