organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-1-(3-nitro­phen­yl)ethanone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 23 November 2010; accepted 26 November 2010; online 4 December 2010)

In the title compound, C8H6BrNO3, there are two mol­ecules, A and B, in the asymmetric unit. The nitro and ethanone groups lie close to the plane of the benzene ring and the bromine atom is twisted slightly: the dihedral angles between the mean planes of the nitro and ethanone groups and the benzene ring are 4.6 (4) (A) and 2.8 (3) (B), and 0.8 (8) (A) and 5.5 (8)° (B), respectively. An extensive array of weak C—H⋯O hydrogen bonds, ππ ring stacking [centroid–centroid distances = 3.710 (5) and 3.677 (5) Å] and short non-hydrogen Br⋯O and O⋯Br inter­molecular inter­actions [3.16 (6)and 3.06 (8) Å] contribute to the crystal stability, forming a supermolecular three-dimensional network structure along 110. These inter­actions give rise to a variety of cyclic graph-set motifs and form inter­connected sheets in the three-dimensional structure.

Related literature

For the use of α-haloketones in the synthesis of pharmaceuticals, see: Erian et al. (2003[Erian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793-865.]). For related structures, see: Gupta & Prasad (1971[Gupta, M. P. & Prasad, S. M. (1971). Acta Cryst. B27, 1649-1653.]); Sim (1986[Sim, G. A. (1986). Acta Cryst. C42, 1411-1413.]); Sutherland & Hoy (1968[Sutherland, H. H. & Hoy, T. G. (1968). Acta Cryst. B24, 1207-1213.], 1969[Sutherland, H. H. & Hoy, T. G. (1969). Acta Cryst. B25, 2385-2391.]); Sutherland et al. (1974[Sutherland, H. H., Hogg, J. H. C. & Williams, D. J. (1974). Acta Cryst. B30, 1562-1565.]); Yathirajan et al. (2007[Yathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o1334-o1335.]); Young et al. (1968[Young, D. W., Tollin, P. & Sutherland, H. H. (1968). Acta Cryst. B24, 161-167.]). For cyclic graph-set motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6BrNO3

  • Mr = 244.05

  • Triclinic, [P \overline 1]

  • a = 8.8259 (7) Å

  • b = 8.8651 (8) Å

  • c = 11.6775 (8) Å

  • α = 74.691 (7)°

  • β = 75.174 (7)°

  • γ = 78.681 (7)°

  • V = 843.76 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 6.45 mm−1

  • T = 123 K

  • 0.75 × 0.62 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.066, Tmax = 0.389

  • 4708 measured reflections

  • 3215 independent reflections

  • 3023 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.248

  • S = 1.12

  • 3215 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 2.39 e Å−3

  • Δρmin = −1.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O1Bi 0.95 2.49 3.314 (10) 145
C5A—H5AA⋯Br2ii 0.95 3.04 3.849 (8) 144
C5A—H5AA⋯O2Bi 0.95 2.55 3.409 (11) 150
C6A—H6AA⋯O3Bii 0.95 2.38 3.320 (10) 171
C4B—H4BA⋯O1Aiii 0.95 2.56 3.420 (9) 150
C6B—H6BA⋯O3A 0.95 2.35 3.278 (10) 165
Symmetry codes: (i) x-1, y+1, z-1; (ii) x-1, y+1, z; (iii) x, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α-Haloketones have been attracting increasing attention in view of their high reactivity as building blocks for the preparation of compounds of various classes due to their selective transformations with different reagents. The α-haloketones can be particularly promising synthons in combinatorial synthesis of functionalized carbo- and heterocyclic compounds used in the design of novel highly effective pharmaceuticals with a broad spectrum of bioresponses (Erian et al., 2003). Crystal structures of some acetyl biphenyl derivatives viz., 4-acetyl-2'-fluorobiphenyl (Young et al., 1968), 4-acetyl-2'-chlorobiphenyl (Sutherland & Hoy, 1968), 4-acetyl-3'-bromobiphenyl (Sutherland & Hoy, 1969), 4-acetyl-2'-nitrobiphenyl (Sutherland et al., 1974), α-bromoacetophenone (Gupta & Prasad, 1971), 2-Bromo-4'-phenylacetophenone (Sim, 1986 ) and methyl 4-(bromomethyl)benzoate (Yathirajan et al.2007) have been reported. In view of the importance of the α-haloketones, the title compound, (I), has been prepared and its crystal structure is reported.

In the title compound, C8H6BrNO3, two molecules crystallize in the asymmetric unit (Fig. 2). The nitro and ethanone groups are planar with the benzene ring and the bromine atom is twisted slightly (Torsion angles C1A/C7A/C8A/Br1 = -177.5 (5)° and C1B/C7B/C8B/Br2 = 168.6 (5)°. Bond distances and angles are in normal ranges (Allen et al., 1987). An extensive array of weak C—H···O and C—H···Br hydrogen bonds (Table 1), ππ ring stacking (Table 2) and short non-hydrogen, Br···O and O···Br, intermolecular interactions (Table 3) contribute to crystal stability forming a supermolecular 3-dimensional network structure along 110 (Fig. 3). These interactions give rise to a variety of cyclic graph-set motifs (R31(3), R22(7), R22(8), R33(12), R33(18)), Fig. 3, (Etter, 1990) and form interconnected sheets in the three-dimensional structure.

Related literature top

For the use of α-haloketones in the synthesis of pharmaceuticals, see: Erian et al. (2003). For related structures, see: Gupta & Prasad (1971); Sim (1986); Sutherland & Hoy (1968, 1969); Sutherland et al. (1974); Yathirajan et al. (2007); Young et al. (1968). For cyclic graph-set motifs, see: Etter (1990). For reference bond-length data, see: Allen et al. (1987).

Experimental top

To a stirred solution of 1-(3-nitrophenyl)ethanone (1 g, 6.05 mmol) in chloroform (10 ml), bromine (0.97 g, 6.05 mmol) was added at 0–5°C (Fig. 1). The reaction mixture was stirred at room temperature for 2 h, poured into ice cold water and layers were separated. The organic layer was washed with water (1 x 10 ml), 10% aq.sodium bicarbonate solution (1 x 10 ml) and brine (1 x 10 ml), dried over Na2SO4 and concentrated under reduced pressure. The crude product was purified by column chromatography in silca gel (230–400 mesh) using 0–10% petroleum ether and ethyl acetate as the elutant. Single crystals were grown from THF by the slow evaporation method with a yield of 96% (m.p.365–367 K).

Refinement top

All of the H atoms were placed in their calculated positions and refined using the riding model with Atom—H lengths of 0.95Å (CH) or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.19–1.22 (CH) or 1.18–1.20 (CH2) times Ueq of the parent atom.

Structure description top

α-Haloketones have been attracting increasing attention in view of their high reactivity as building blocks for the preparation of compounds of various classes due to their selective transformations with different reagents. The α-haloketones can be particularly promising synthons in combinatorial synthesis of functionalized carbo- and heterocyclic compounds used in the design of novel highly effective pharmaceuticals with a broad spectrum of bioresponses (Erian et al., 2003). Crystal structures of some acetyl biphenyl derivatives viz., 4-acetyl-2'-fluorobiphenyl (Young et al., 1968), 4-acetyl-2'-chlorobiphenyl (Sutherland & Hoy, 1968), 4-acetyl-3'-bromobiphenyl (Sutherland & Hoy, 1969), 4-acetyl-2'-nitrobiphenyl (Sutherland et al., 1974), α-bromoacetophenone (Gupta & Prasad, 1971), 2-Bromo-4'-phenylacetophenone (Sim, 1986 ) and methyl 4-(bromomethyl)benzoate (Yathirajan et al.2007) have been reported. In view of the importance of the α-haloketones, the title compound, (I), has been prepared and its crystal structure is reported.

In the title compound, C8H6BrNO3, two molecules crystallize in the asymmetric unit (Fig. 2). The nitro and ethanone groups are planar with the benzene ring and the bromine atom is twisted slightly (Torsion angles C1A/C7A/C8A/Br1 = -177.5 (5)° and C1B/C7B/C8B/Br2 = 168.6 (5)°. Bond distances and angles are in normal ranges (Allen et al., 1987). An extensive array of weak C—H···O and C—H···Br hydrogen bonds (Table 1), ππ ring stacking (Table 2) and short non-hydrogen, Br···O and O···Br, intermolecular interactions (Table 3) contribute to crystal stability forming a supermolecular 3-dimensional network structure along 110 (Fig. 3). These interactions give rise to a variety of cyclic graph-set motifs (R31(3), R22(7), R22(8), R33(12), R33(18)), Fig. 3, (Etter, 1990) and form interconnected sheets in the three-dimensional structure.

For the use of α-haloketones in the synthesis of pharmaceuticals, see: Erian et al. (2003). For related structures, see: Gupta & Prasad (1971); Sim (1986); Sutherland & Hoy (1968, 1969); Sutherland et al. (1974); Yathirajan et al. (2007); Young et al. (1968). For cyclic graph-set motifs, see: Etter (1990). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008)); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate weak C—H···O intermolecular hydrogen bonds between two molecules in the asymmetric unit.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate weak C—H···O and C—H···Br hydrogen bonds and short non-hydrogen, Br···O and O···Br, intermolecular interactions creating a 3-D supramolecular structure along 110.
[Figure 3] Fig. 3. A planar sheet of C8H6BrNO3 molecules connected by weak C—H···O and C—H···Br hydrogen bonds and short non-hydrogen, Br···O and O···Br intermolecular interactions. These patterns are shown by cyclic graph-set motif analysis (R31(3), R22(7), R22(8), R33(12), R33(18)) in an extended 2-dimensional array.
2-Bromo-1-(3-nitrophenyl)ethanone top
Crystal data top
C8H6BrNO3Z = 4
Mr = 244.05F(000) = 480
Triclinic, P1Dx = 1.921 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 8.8259 (7) ÅCell parameters from 4487 reflections
b = 8.8651 (8) Åθ = 5.2–74.4°
c = 11.6775 (8) ŵ = 6.45 mm1
α = 74.691 (7)°T = 123 K
β = 75.174 (7)°Plate, colorless
γ = 78.681 (7)°0.75 × 0.62 × 0.19 mm
V = 843.76 (12) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3215 independent reflections
Radiation source: Enhance (Cu) X-ray Source3023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 10.5081 pixels mm-1θmax = 74.5°, θmin = 5.2°
ω scansh = 1010
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1011
Tmin = 0.066, Tmax = 0.389l = 1014
4708 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1498P)2 + 8.1184P]
where P = (Fo2 + 2Fc2)/3
3215 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 2.39 e Å3
0 restraintsΔρmin = 1.83 e Å3
Crystal data top
C8H6BrNO3γ = 78.681 (7)°
Mr = 244.05V = 843.76 (12) Å3
Triclinic, P1Z = 4
a = 8.8259 (7) ÅCu Kα radiation
b = 8.8651 (8) ŵ = 6.45 mm1
c = 11.6775 (8) ÅT = 123 K
α = 74.691 (7)°0.75 × 0.62 × 0.19 mm
β = 75.174 (7)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3215 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2007)
3023 reflections with I > 2σ(I)
Tmin = 0.066, Tmax = 0.389Rint = 0.053
4708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0900 restraints
wR(F2) = 0.248H-atom parameters constrained
S = 1.12Δρmax = 2.39 e Å3
3215 reflectionsΔρmin = 1.83 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22668 (10)0.51160 (10)0.93394 (7)0.0303 (3)
Br20.72920 (10)0.00313 (10)0.49047 (7)0.0301 (3)
O1A0.4973 (7)0.2908 (7)0.3052 (5)0.0323 (13)
O2A0.3515 (9)0.4156 (10)0.1781 (6)0.0471 (17)
O3A0.3683 (8)0.3750 (8)0.7146 (5)0.0341 (14)
O1B0.9660 (7)0.2309 (7)1.1190 (6)0.0343 (13)
O2B0.8390 (10)0.0778 (11)1.2376 (7)0.056 (2)
O3B0.8567 (9)0.1476 (9)0.7169 (6)0.0470 (18)
N1A0.3867 (8)0.3869 (8)0.2772 (6)0.0279 (14)
N1B0.8677 (8)0.1185 (9)1.1406 (6)0.0300 (15)
C1A0.2294 (9)0.5263 (9)0.5648 (7)0.0213 (14)
C2A0.3214 (9)0.4390 (9)0.4807 (7)0.0230 (15)
H2AA0.40270.35620.50200.028*
C3A0.2895 (9)0.4778 (9)0.3663 (7)0.0234 (15)
C4A0.1708 (9)0.5973 (9)0.3319 (7)0.0260 (16)
H4AA0.15220.62090.25200.031*
C5A0.0816 (10)0.6799 (9)0.4154 (8)0.0268 (16)
H5AA0.00040.76140.39360.032*
C6A0.1098 (9)0.6459 (9)0.5319 (7)0.0250 (15)
H6AA0.04740.70440.58920.030*
C7A0.2640 (9)0.4810 (9)0.6892 (7)0.0231 (15)
C8A0.1639 (10)0.5758 (9)0.7794 (7)0.0262 (15)
H8AA0.05150.56260.79230.031*
H8AB0.17330.68910.74510.031*
C1B0.7227 (9)0.0124 (9)0.8533 (7)0.0210 (14)
C2B0.8084 (9)0.0752 (9)0.9417 (7)0.0221 (14)
H2BA0.88290.16530.92820.027*
C3B0.7801 (9)0.0256 (9)1.0474 (7)0.0239 (15)
C4B0.6745 (9)0.1066 (9)1.0720 (7)0.0258 (16)
H4BA0.66070.13741.14640.031*
C5B0.5909 (10)0.1913 (9)0.9858 (8)0.0272 (16)
H5BA0.51750.28161.00050.033*
C6B0.6136 (9)0.1452 (8)0.8766 (7)0.0224 (15)
H6BA0.55480.20390.81760.027*
C7B0.7549 (9)0.0401 (9)0.7370 (7)0.0252 (15)
C8B0.6500 (9)0.0468 (10)0.6461 (7)0.0249 (15)
H8BA0.64310.16210.63670.030*
H8BB0.54180.01820.67910.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0385 (5)0.0349 (5)0.0186 (5)0.0091 (4)0.0038 (3)0.0072 (3)
Br20.0404 (6)0.0338 (5)0.0163 (5)0.0076 (4)0.0030 (3)0.0075 (3)
O1A0.041 (3)0.029 (3)0.022 (3)0.000 (3)0.000 (2)0.008 (2)
O2A0.055 (4)0.064 (5)0.027 (3)0.004 (3)0.015 (3)0.022 (3)
O3A0.040 (3)0.037 (3)0.022 (3)0.007 (3)0.010 (2)0.007 (2)
O1B0.041 (3)0.032 (3)0.030 (3)0.002 (3)0.015 (3)0.006 (2)
O2B0.073 (5)0.071 (5)0.024 (3)0.021 (4)0.019 (3)0.025 (3)
O3B0.063 (4)0.055 (4)0.020 (3)0.018 (4)0.014 (3)0.019 (3)
N1A0.032 (3)0.031 (3)0.019 (3)0.010 (3)0.005 (3)0.008 (3)
N1B0.034 (4)0.038 (4)0.018 (3)0.008 (3)0.006 (3)0.003 (3)
C1A0.023 (3)0.024 (3)0.018 (4)0.009 (3)0.002 (3)0.004 (3)
C2A0.025 (4)0.023 (4)0.018 (4)0.007 (3)0.002 (3)0.003 (3)
C3A0.025 (4)0.026 (4)0.018 (4)0.011 (3)0.002 (3)0.005 (3)
C4A0.031 (4)0.024 (4)0.020 (4)0.012 (3)0.004 (3)0.003 (3)
C5A0.031 (4)0.021 (4)0.027 (4)0.006 (3)0.010 (3)0.002 (3)
C6A0.027 (4)0.025 (4)0.023 (4)0.008 (3)0.004 (3)0.003 (3)
C7A0.028 (4)0.019 (3)0.021 (4)0.007 (3)0.005 (3)0.002 (3)
C8A0.035 (4)0.026 (4)0.018 (4)0.001 (3)0.008 (3)0.006 (3)
C1B0.025 (3)0.021 (3)0.016 (3)0.004 (3)0.002 (3)0.004 (3)
C2B0.023 (3)0.024 (4)0.017 (3)0.006 (3)0.000 (3)0.003 (3)
C3B0.025 (4)0.027 (4)0.017 (4)0.006 (3)0.002 (3)0.001 (3)
C4B0.033 (4)0.028 (4)0.015 (3)0.012 (3)0.005 (3)0.007 (3)
C5B0.028 (4)0.025 (4)0.025 (4)0.006 (3)0.004 (3)0.008 (3)
C6B0.027 (4)0.018 (3)0.018 (3)0.003 (3)0.001 (3)0.001 (3)
C7B0.025 (4)0.026 (4)0.022 (4)0.001 (3)0.001 (3)0.008 (3)
C8B0.031 (4)0.033 (4)0.014 (3)0.006 (3)0.005 (3)0.009 (3)
Geometric parameters (Å, º) top
Br1—C8A1.932 (8)C5A—H5AA0.9500
Br2—C8B1.908 (7)C6A—H6AA0.9500
O1A—N1A1.215 (9)C7A—C8A1.515 (11)
O2A—N1A1.224 (10)C8A—H8AA0.9900
O3A—C7A1.213 (10)C8A—H8AB0.9900
O1B—N1B1.221 (10)C1B—C6B1.406 (10)
O2B—N1B1.229 (10)C1B—C2B1.410 (11)
O3B—C7B1.202 (10)C1B—C7B1.492 (11)
N1A—C3A1.477 (10)C2B—C3B1.366 (11)
N1B—C3B1.472 (10)C2B—H2BA0.9500
C1A—C6A1.392 (11)C3B—C4B1.392 (11)
C1A—C2A1.403 (11)C4B—C5B1.373 (12)
C1A—C7A1.496 (11)C4B—H4BA0.9500
C2A—C3A1.377 (11)C5B—C6B1.394 (12)
C2A—H2AA0.9500C5B—H5BA0.9500
C3A—C4A1.392 (12)C6B—H6BA0.9500
C4A—C5A1.365 (12)C7B—C8B1.539 (11)
C4A—H4AA0.9500C8B—H8BA0.9900
C5A—C6A1.390 (12)C8B—H8BB0.9900
O1A—N1A—O2A124.0 (7)C7A—C8A—H8AB109.2
O1A—N1A—C3A118.7 (7)Br1—C8A—H8AB109.2
O2A—N1A—C3A117.3 (7)H8AA—C8A—H8AB107.9
O1B—N1B—O2B122.5 (7)C6B—C1B—C2B119.5 (7)
O1B—N1B—C3B119.5 (7)C6B—C1B—C7B122.9 (7)
O2B—N1B—C3B118.0 (7)C2B—C1B—C7B117.6 (7)
C6A—C1A—C2A120.2 (7)C3B—C2B—C1B117.4 (7)
C6A—C1A—C7A123.0 (7)C3B—C2B—H2BA121.3
C2A—C1A—C7A116.8 (7)C1B—C2B—H2BA121.3
C3A—C2A—C1A117.5 (7)C2B—C3B—C4B124.2 (8)
C3A—C2A—H2AA121.3C2B—C3B—N1B117.5 (7)
C1A—C2A—H2AA121.3C4B—C3B—N1B118.3 (7)
C2A—C3A—C4A123.0 (7)C5B—C4B—C3B118.2 (7)
C2A—C3A—N1A117.7 (7)C5B—C4B—H4BA120.9
C4A—C3A—N1A119.3 (7)C3B—C4B—H4BA120.9
C5A—C4A—C3A118.6 (8)C4B—C5B—C6B120.2 (7)
C5A—C4A—H4AA120.7C4B—C5B—H5BA119.9
C3A—C4A—H4AA120.7C6B—C5B—H5BA119.9
C4A—C5A—C6A120.6 (8)C5B—C6B—C1B120.5 (7)
C4A—C5A—H5AA119.7C5B—C6B—H6BA119.7
C6A—C5A—H5AA119.7C1B—C6B—H6BA119.7
C5A—C6A—C1A120.1 (8)O3B—C7B—C1B121.0 (7)
C5A—C6A—H6AA120.0O3B—C7B—C8B121.9 (7)
C1A—C6A—H6AA120.0C1B—C7B—C8B117.1 (6)
O3A—C7A—C1A121.0 (7)C7B—C8B—Br2112.4 (5)
O3A—C7A—C8A122.6 (7)C7B—C8B—H8BA109.1
C1A—C7A—C8A116.4 (7)Br2—C8B—H8BA109.1
C7A—C8A—Br1112.2 (5)C7B—C8B—H8BB109.1
C7A—C8A—H8AA109.2Br2—C8B—H8BB109.1
Br1—C8A—H8AA109.2H8BA—C8B—H8BB107.8
C6A—C1A—C2A—C3A0.7 (11)C6B—C1B—C2B—C3B0.1 (11)
C7A—C1A—C2A—C3A179.1 (6)C7B—C1B—C2B—C3B179.2 (7)
C1A—C2A—C3A—C4A0.5 (11)C1B—C2B—C3B—C4B1.1 (11)
C1A—C2A—C3A—N1A179.7 (6)C1B—C2B—C3B—N1B179.1 (6)
O1A—N1A—C3A—C2A5.5 (10)O1B—N1B—C3B—C2B3.0 (11)
O2A—N1A—C3A—C2A175.7 (7)O2B—N1B—C3B—C2B177.6 (8)
O1A—N1A—C3A—C4A174.7 (7)O1B—N1B—C3B—C4B176.8 (7)
O2A—N1A—C3A—C4A4.1 (11)O2B—N1B—C3B—C4B2.6 (11)
C2A—C3A—C4A—C5A0.1 (11)C2B—C3B—C4B—C5B1.3 (12)
N1A—C3A—C4A—C5A179.8 (7)N1B—C3B—C4B—C5B178.9 (7)
C3A—C4A—C5A—C6A0.5 (11)C3B—C4B—C5B—C6B0.5 (11)
C4A—C5A—C6A—C1A0.3 (12)C4B—C5B—C6B—C1B0.4 (12)
C2A—C1A—C6A—C5A0.3 (11)C2B—C1B—C6B—C5B0.6 (11)
C7A—C1A—C6A—C5A178.6 (7)C7B—C1B—C6B—C5B178.4 (7)
C6A—C1A—C7A—O3A179.3 (7)C6B—C1B—C7B—O3B174.9 (8)
C2A—C1A—C7A—O3A0.9 (11)C2B—C1B—C7B—O3B4.2 (12)
C6A—C1A—C7A—C8A1.5 (11)C6B—C1B—C7B—C8B6.5 (11)
C2A—C1A—C7A—C8A179.9 (7)C2B—C1B—C7B—C8B174.5 (6)
O3A—C7A—C8A—Br11.7 (10)O3B—C7B—C8B—Br212.8 (10)
C1A—C7A—C8A—Br1177.5 (5)C1B—C7B—C8B—Br2168.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O1Bi0.952.493.314 (10)145
C5A—H5AA···Br2ii0.953.043.849 (8)144
C5A—H5AA···O2Bi0.952.553.409 (11)150
C6A—H6AA···O3Bii0.952.383.320 (10)171
C4B—H4BA···O1Aiii0.952.563.420 (9)150
C6B—H6BA···O3A0.952.353.278 (10)165
Symmetry codes: (i) x1, y+1, z1; (ii) x1, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H6BrNO3
Mr244.05
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)8.8259 (7), 8.8651 (8), 11.6775 (8)
α, β, γ (°)74.691 (7), 75.174 (7), 78.681 (7)
V3)843.76 (12)
Z4
Radiation typeCu Kα
µ (mm1)6.45
Crystal size (mm)0.75 × 0.62 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.066, 0.389
No. of measured, independent and
observed [I > 2σ(I)] reflections
4708, 3215, 3023
Rint0.053
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.248, 1.12
No. of reflections3215
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.39, 1.83

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008)), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4A—H4AA···O1Bi0.952.493.314 (10)144.6
C5A—H5AA···Br2ii0.953.043.849 (8)143.9
C5A—H5AA···O2Bi0.952.553.409 (11)150.1
C6A—H6AA···O3Bii0.952.383.320 (10)170.6
C4B—H4BA···O1Aiii0.952.563.420 (9)150.4
C6B—H6BA···O3A0.952.353.278 (10)165.1
Symmetry codes: (i) x1, y+1, z1; (ii) x1, y+1, z; (iii) x, y, z+1.
Cg···Cg π stacking interactions (Å) top
Cg1 and Cg2 are the centroids of rings C1A–C6A and Cg1B–Cg6B
CgI···CgJCg···CgCgI PerpCgJ PerpSlippage
Cg1···Cg1i3.710 (5)-3.357 (3)-3.357 (3)1.58 (2)
Cg2···Cg2ii3.677 (5)-3.418 (3)-3.418 (3)1.35 (5)
Symmetry codes: (i) -x, 1-y, 1-z; (ii) 1-x, -y, 2-z.
Short non-hydrogen intermolecular interactions (Å). top
Atom I···Atom Jd(I–J)Del
Br1i···O2Aii3.16 (6)-0.20
O2Ai···Br1iii3.16 (6)-0.20
Br2i···O2Biii3.06 (8)-0.30
O2Bi···Br2ii3.06 (8)-0.30
Symmetry codes: (i) x, y, z; (ii) x, y, 1+z; (iii) x, y, -1+z.
 

Acknowledgements

ASP thanks the University of Mysore (UOM) for research facilities and HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationErian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793–865.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGupta, M. P. & Prasad, S. M. (1971). Acta Cryst. B27, 1649–1653.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSim, G. A. (1986). Acta Cryst. C42, 1411–1413.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSutherland, H. H., Hogg, J. H. C. & Williams, D. J. (1974). Acta Cryst. B30, 1562–1565.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSutherland, H. H. & Hoy, T. G. (1968). Acta Cryst. B24, 1207–1213.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSutherland, H. H. & Hoy, T. G. (1969). Acta Cryst. B25, 2385–2391.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationYathirajan, H. S., Bindya, S., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o1334–o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoung, D. W., Tollin, P. & Sutherland, H. H. (1968). Acta Cryst. B24, 161–167.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds