organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3-Hy­dr­oxy­benzyl­­idene)-3-nitro­benzohydrazide

aDepartment of Chemistry, Yancheng Teachers University, Yancheng 224002, People's Republic of China
*Correspondence e-mail: xpzhougroup@163.com

(Received 25 November 2010; accepted 26 November 2010; online 4 December 2010)

The title compound, C14H11N3O4, was prepared by the reaction of 3-nitro­benzohydrazide with 3-hy­droxy­benzalde­hyde. The mol­ecule adopts an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 32.3 (2)°. In the crystal, the mol­ecules are linked through inter­molecular N—H⋯O, O—H⋯N, and O—H⋯O hydrogen bonds, forming chains in the a-axis direction.

Related literature

For medical applications of hydrazones, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]); Zhang et al. (2010[Zhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289-293.]); Angelusiu et al. (2010[Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055-2062.]). For related structures, see: Huang & Wu (2010[Huang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729-o2730.]); Khaledi et al. (2010[Khaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105-o106.]); Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.]); Ji & Lu (2010[Ji, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.]); Singh & Singh (2010[Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.]); Ahmad et al. (2010[Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.]). For similar compounds that we have reported recently, see: Dai & Mao (2010a[Dai, C.-H. & Mao, F.-L. (2010a). Acta Cryst. E66, o2942.],b[Dai, C.-H. & Mao, F.-L. (2010b). Acta Cryst. E66, o3004-o3005.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O4

  • Mr = 285.26

  • Monoclinic, C 2/c

  • a = 16.154 (3) Å

  • b = 13.295 (3) Å

  • c = 13.537 (2) Å

  • β = 120.324 (2)°

  • V = 2509.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.28 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.974

  • 6631 measured reflections

  • 2738 independent reflections

  • 1588 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.144

  • S = 1.03

  • 2738 reflections

  • 196 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.85 (1) 2.58 (3) 2.986 (2) 111 (2)
O1—H1⋯O2i 0.85 (1) 1.91 (1) 2.758 (2) 174 (3)
N2—H2A⋯O4ii 0.89 (1) 2.47 (1) 3.354 (3) 171 (2)
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the last few years, medical applications of a number of hydrazone compounds have been received much attention (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). The structures of several hydrazone derivatives have also been determined (Huang & Wu, 2010; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on this area (Dai & Mao, 2010a,b), in this paper, we report the structure of the new derivative N'-(3-hydroxybenzylidene)-3-nitrobenzohydrazide.

In the molecule of the title compound, the dihedral angle between the C1···C6 and C9···C14 benzene rings is 32.3 (2)°. The O3/N3/O4 plane forms a dihedral angle of 4.8 (2)° with the C9···C14 benzene ring. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above. In the crystal structure, the hydrazone molecules are linked through intermolecular N—H···O, O–H···N, and O—H···O hydrogen bonds (Table 1), to form one-dimensional chains in the a direction, Fig. 2.

Related literature top

For medical applications of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For related structures, see: Huang & Wu (2010); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010). For similar compounds that we have reported recently, see: Dai & Mao (2010a,b).

Experimental top

The reaction of 3-nitrobenzohydrazide (0.181 g, 1 mmol) with 3-hydroxybenzaldehyde (0.122 g, 1 mmol) in 50 ml methanol at room temperature afforded the title compound. Yellow block-shaped single crystals were formed by slow evaporation of the clear solution in air.

Refinement top

The H1 and H2A atoms were located in a difference Fourier map and refined with N—H = 0.90 (1) Å, O—H = 0.85 (1) Å, and Uiso = 0.08 Å2. Other H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

In the last few years, medical applications of a number of hydrazone compounds have been received much attention (Ajani et al., 2010; Zhang et al., 2010; Angelusiu et al., 2010). The structures of several hydrazone derivatives have also been determined (Huang & Wu, 2010; Khaledi et al., 2010; Zhou & Yang, 2010; Ji & Lu, 2010; Singh & Singh, 2010; Ahmad et al., 2010). As a continuation of our work on this area (Dai & Mao, 2010a,b), in this paper, we report the structure of the new derivative N'-(3-hydroxybenzylidene)-3-nitrobenzohydrazide.

In the molecule of the title compound, the dihedral angle between the C1···C6 and C9···C14 benzene rings is 32.3 (2)°. The O3/N3/O4 plane forms a dihedral angle of 4.8 (2)° with the C9···C14 benzene ring. The bond lengths and angles are comparable to those found in the hydrazone compounds cited above. In the crystal structure, the hydrazone molecules are linked through intermolecular N—H···O, O–H···N, and O—H···O hydrogen bonds (Table 1), to form one-dimensional chains in the a direction, Fig. 2.

For medical applications of hydrazones, see: Ajani et al. (2010); Zhang et al. (2010); Angelusiu et al. (2010). For related structures, see: Huang & Wu (2010); Khaledi et al. (2010); Zhou & Yang (2010); Ji & Lu (2010); Singh & Singh (2010); Ahmad et al. (2010). For similar compounds that we have reported recently, see: Dai & Mao (2010a,b).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b axis. Intermolecular interactions are drawn as dashed lines.
(E)-N'-(3-Hydroxybenzylidene)-3-nitrobenzohydrazide top
Crystal data top
C14H11N3O4F(000) = 1184
Mr = 285.26Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1285 reflections
a = 16.154 (3) Åθ = 2.3–25.0°
b = 13.295 (3) ŵ = 0.11 mm1
c = 13.537 (2) ÅT = 298 K
β = 120.324 (2)°Block, yellow
V = 2509.5 (8) Å30.28 × 0.27 × 0.23 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
2738 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1820
Tmin = 0.969, Tmax = 0.974k = 1516
6631 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
2738 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.18 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H11N3O4V = 2509.5 (8) Å3
Mr = 285.26Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.154 (3) ŵ = 0.11 mm1
b = 13.295 (3) ÅT = 298 K
c = 13.537 (2) Å0.28 × 0.27 × 0.23 mm
β = 120.324 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1588 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.974Rint = 0.038
6631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0542 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
2738 reflectionsΔρmin = 0.25 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.05387 (12)0.55191 (13)0.15027 (16)0.0401 (5)
N20.95666 (13)0.55067 (14)0.10982 (17)0.0422 (5)
N30.59440 (14)0.63671 (15)0.07753 (18)0.0489 (5)
O11.36619 (12)0.85288 (13)0.36202 (19)0.0695 (6)
O20.95061 (11)0.38209 (12)0.09885 (16)0.0594 (5)
O30.50831 (13)0.62855 (15)0.1151 (2)0.0883 (8)
O40.63203 (12)0.71586 (13)0.07821 (16)0.0605 (5)
C11.19663 (15)0.65018 (16)0.22714 (18)0.0371 (5)
C21.23682 (17)0.74283 (17)0.2723 (2)0.0455 (6)
H21.19810.79400.27360.055*
C31.33314 (17)0.76106 (16)0.3155 (2)0.0427 (6)
C41.39012 (16)0.68658 (17)0.3115 (2)0.0458 (6)
H41.45470.69860.33770.055*
C51.35046 (16)0.59342 (18)0.2679 (2)0.0482 (6)
H51.38920.54250.26620.058*
C61.25507 (16)0.57453 (18)0.22723 (19)0.0433 (6)
H61.22990.51100.19980.052*
C71.09381 (16)0.63653 (17)0.1815 (2)0.0435 (6)
H71.05670.69220.17530.052*
C80.91039 (16)0.46268 (17)0.08701 (19)0.0386 (5)
C90.80596 (15)0.46724 (16)0.04857 (18)0.0368 (5)
C100.75046 (15)0.55308 (16)0.00497 (18)0.0385 (5)
H100.77740.61300.00080.046*
C110.65446 (15)0.54756 (16)0.02961 (19)0.0383 (5)
C120.61190 (17)0.46063 (17)0.0223 (2)0.0458 (6)
H120.54690.45900.04610.055*
C130.66761 (17)0.37664 (18)0.0209 (2)0.0501 (6)
H130.64030.31690.02640.060*
C140.76350 (16)0.37974 (17)0.0561 (2)0.0444 (6)
H140.80050.32200.08560.053*
H2A0.9284 (18)0.6098 (12)0.104 (2)0.080*
H11.4208 (11)0.863 (2)0.369 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0246 (10)0.0399 (11)0.0500 (11)0.0010 (8)0.0146 (9)0.0013 (9)
N20.0263 (11)0.0385 (11)0.0560 (12)0.0005 (8)0.0166 (10)0.0001 (9)
N30.0351 (12)0.0409 (12)0.0686 (14)0.0015 (9)0.0245 (11)0.0006 (10)
O10.0477 (12)0.0428 (10)0.1195 (16)0.0136 (9)0.0433 (12)0.0173 (10)
O20.0378 (10)0.0387 (10)0.0931 (14)0.0057 (8)0.0267 (10)0.0032 (9)
O30.0312 (11)0.0640 (13)0.151 (2)0.0091 (9)0.0322 (13)0.0204 (12)
O40.0478 (11)0.0405 (10)0.0916 (14)0.0029 (8)0.0340 (11)0.0033 (9)
C10.0282 (12)0.0364 (12)0.0427 (13)0.0002 (10)0.0150 (11)0.0027 (10)
C20.0370 (14)0.0357 (13)0.0662 (16)0.0035 (10)0.0279 (13)0.0048 (11)
C30.0364 (14)0.0335 (12)0.0550 (15)0.0060 (10)0.0208 (12)0.0018 (11)
C40.0274 (13)0.0472 (15)0.0556 (15)0.0001 (11)0.0157 (12)0.0010 (12)
C50.0363 (14)0.0464 (15)0.0580 (16)0.0055 (11)0.0210 (13)0.0037 (12)
C60.0358 (14)0.0396 (13)0.0488 (15)0.0033 (10)0.0171 (12)0.0062 (10)
C70.0347 (13)0.0345 (13)0.0579 (15)0.0033 (10)0.0208 (12)0.0025 (11)
C80.0299 (13)0.0370 (13)0.0438 (13)0.0017 (10)0.0149 (11)0.0019 (10)
C90.0305 (12)0.0370 (12)0.0392 (13)0.0017 (10)0.0148 (11)0.0035 (10)
C100.0318 (13)0.0341 (12)0.0473 (14)0.0022 (9)0.0183 (11)0.0024 (10)
C110.0307 (13)0.0369 (12)0.0444 (13)0.0010 (10)0.0168 (11)0.0037 (10)
C120.0316 (13)0.0480 (14)0.0556 (16)0.0052 (11)0.0205 (12)0.0018 (12)
C130.0389 (15)0.0419 (14)0.0668 (17)0.0062 (11)0.0247 (13)0.0061 (12)
C140.0373 (14)0.0363 (13)0.0524 (15)0.0009 (10)0.0173 (12)0.0049 (11)
Geometric parameters (Å, º) top
N1—C71.259 (3)C4—H40.9300
N1—N21.378 (2)C5—C61.372 (3)
N2—C81.338 (3)C5—H50.9300
N2—H2A0.892 (10)C6—H60.9300
N3—O41.218 (2)C7—H70.9300
N3—O31.221 (2)C8—C91.495 (3)
N3—C111.460 (3)C9—C141.380 (3)
O1—C31.354 (3)C9—C101.386 (3)
O1—H10.850 (10)C10—C111.377 (3)
O2—C81.221 (2)C10—H100.9300
C1—C61.379 (3)C11—C121.374 (3)
C1—C21.383 (3)C12—C131.366 (3)
C1—C71.462 (3)C12—H120.9300
C2—C31.379 (3)C13—C141.372 (3)
C2—H20.9300C13—H130.9300
C3—C41.372 (3)C14—H140.9300
C4—C51.382 (3)
C7—N1—N2115.61 (18)C1—C6—H6120.1
C8—N2—N1119.61 (18)N1—C7—C1122.2 (2)
C8—N2—H2A123.3 (19)N1—C7—H7118.9
N1—N2—H2A117.0 (19)C1—C7—H7118.9
O4—N3—O3122.8 (2)O2—C8—N2122.6 (2)
O4—N3—C11118.86 (19)O2—C8—C9120.9 (2)
O3—N3—C11118.3 (2)N2—C8—C9116.47 (19)
C3—O1—H1110 (2)C14—C9—C10119.1 (2)
C6—C1—C2118.7 (2)C14—C9—C8117.1 (2)
C6—C1—C7122.8 (2)C10—C9—C8123.7 (2)
C2—C1—C7118.5 (2)C11—C10—C9118.4 (2)
C3—C2—C1121.4 (2)C11—C10—H10120.8
C3—C2—H2119.3C9—C10—H10120.8
C1—C2—H2119.3C12—C11—C10122.6 (2)
O1—C3—C4123.7 (2)C12—C11—N3118.1 (2)
O1—C3—C2116.8 (2)C10—C11—N3119.30 (19)
C4—C3—C2119.5 (2)C13—C12—C11118.2 (2)
C3—C4—C5119.2 (2)C13—C12—H12120.9
C3—C4—H4120.4C11—C12—H12120.9
C5—C4—H4120.4C12—C13—C14120.5 (2)
C6—C5—C4121.3 (2)C12—C13—H13119.7
C6—C5—H5119.3C14—C13—H13119.7
C4—C5—H5119.3C13—C14—C9121.0 (2)
C5—C6—C1119.8 (2)C13—C14—H14119.5
C5—C6—H6120.1C9—C14—H14119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.85 (1)2.58 (3)2.986 (2)111 (2)
O1—H1···O2i0.85 (1)1.91 (1)2.758 (2)174 (3)
N2—H2A···O4ii0.89 (1)2.47 (1)3.354 (3)171 (2)
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC14H11N3O4
Mr285.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)16.154 (3), 13.295 (3), 13.537 (2)
β (°) 120.324 (2)
V3)2509.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.969, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
6631, 2738, 1588
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.144, 1.03
No. of reflections2738
No. of parameters196
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.850 (10)2.58 (3)2.986 (2)111 (2)
O1—H1···O2i0.850 (10)1.912 (11)2.758 (2)174 (3)
N2—H2A···O4ii0.892 (10)2.471 (11)3.354 (3)171 (2)
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x+3/2, y+3/2, z.
 

Acknowledgements

We acknowledge the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection for financial support (Project No. JLCBE07026).

References

First citationAhmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAngelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, C.-H. & Mao, F.-L. (2010a). Acta Cryst. E66, o2942.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDai, C.-H. & Mao, F.-L. (2010b). Acta Cryst. E66, o3004–o3005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, H.-T. & Wu, H.-Y. (2010). Acta Cryst. E66, o2729–o2730.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJi, X.-H. & Lu, J.-F. (2010). Acta Cryst. E66, o1514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Alhadi, A. A., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o105–o106.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-H., Zhang, L., Liu, L., Guo, J.-X., Wu, D.-L., Xu, G.-C., Wang, X.-H. & Jia, D.-Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds