organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(1-Naphthyl­amino)­methyl­ene-(+)-camphor

aDepartamento de Química, Universidad Simón Bolívar, Caracas 1080A, Venezuela, and bInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: alinden@oci.uzh.ch, rdorta@usb.ve

(Received 6 December 2010; accepted 14 December 2010; online 18 December 2010)

In the crystal structure of the title ketoamine {systematic name: (E)-1,7,7-trimethyl-3-[(1-naphthyl­amino)­methyl­idene]bicyclo­[2.2.1]heptan-2-one}, C21H23NO, there are two independent mol­ecules in the asymmetric unit. Both mol­ecules have an E configuration about the alkene function. The main conformational difference between the mol­ecules is in the orientation of the plane of the naphthyl rings with respect to the camphor fragment. The torsion angle about the enamine C—N bond is 21.3 (7)° for mol­ecule A, but −24.4 (8)° for mol­ecule B. Inter­molecular N—H⋯O hydrogen bonds between the amino and ketone groups of adjacent independent mol­ecules sustain the crystal, and the resulting extended chains, containing an alternating sequence of the two independent mol­ecules, run parallel to the [001] direction and can be described by a graph-set motif of C22(12).

Related literature

For the conformations of β-ketoamines, see: Zharkova et al. (2009[Zharkova, G., Stabnikov, P., Baidina, I., Smolentsev, A. & Tkachey, S. (2009). Polyhedron, 28, 2307-2312.]). For chiral camphor-derived β-amino­ketonate ligands, see: Everett & Powers (1970[Everett, G. W. & Powers, C. R. (1970). Inorg. Chem. 9, 521-527.]); Casella et al. (1979[Casella, L., Gullotti, M., Pasini, A. & Rockenbauer, A. (1979). Inorg. Chem. 18, 2825-2835.]). For reactions involving amino­ketonate complexes, see: Hsu, Chang et al. (2004[Hsu, S., Chang, J., Lai, C., Hu, C., Lee, H., Lee, G., Peng, S. & Huang, J. (2004). Inorg. Chem. 43, 6786-6792.]); Hsu, Li et al. (2007[Hsu, S., Li, C., Chiu, Y., Chiu, M., Lien, Y., Kuo, P., Lee, H., Cheng, C. & Huang, J. (2007). J. Organomet. Chem. 692, 5421-5428.]); Lai et al. (2005[Lai, Y., Chen, H., Hung, W., Lin, C. & Hong, F. (2005). Tetrahedron, 61, 9484-9489.]); Pan et al. (2008[Pan, L., Ye, W., Liu, J., Hong, M. & Li, Y. (2008). Macromolecules, 41, 2981-2983.]); Wang et al. (2006[Wang, L. Y., Li, Y. F., Zhu, F. M. & Wu, Q. (2006). Eur. Polym. J. 42, 322-, 327.]). For the coordination chemistry of β-amino­ketonate ligands, see: Lesikar et al. (2008[Lesikar, L., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245-3255.]); Sedai et al. (2008[Sedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495-3503.]). For the synthesis of (+)-hy­droxy­methyl­enecamphor, see: Lintvedt & Fatta (1968[Lintvedt, R. L. & Fatta, A. M. (1968). Inorg. Chem. 7, 2489-2495.]). For related (1-naphthyl­amino)­methyl­ene structures, see: Li et al. (2009[Li, Z., Li, R. & Ding, Z.-Y. (2009). Acta Cryst. E65, o2289.]); Özek et al. (2005[Özek, A., Yüce, S., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o3179-o3181.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO

  • Mr = 305.42

  • Monoclinic, C 2

  • a = 23.807 (2) Å

  • b = 11.9688 (12) Å

  • c = 12.0192 (8) Å

  • β = 95.672 (5)°

  • V = 3408.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 160 K

  • 0.25 × 0.20 × 0.12 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • 21618 measured reflections

  • 3170 independent reflections

  • 2227 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.155

  • S = 1.05

  • 3170 reflections

  • 428 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 1.03 (4) 1.93 (4) 2.909 (5) 157 (4)
N2—H2⋯O1 0.83 (5) 2.08 (5) 2.913 (5) 174 (5)
Symmetry code: (i) x, y, z-1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

β-Ketoamines are the neutral protic form of β-aminoketonate bidentate anionic ligands that have been used in the coordination chemistry of transition and main group metals (Lesikar et al., 2008; Sedai et al., 2008). The electronic and steric dissymmetry of these ligands is easily modified in order to tune the reactivity of the metal centre. β-Aminoketonate complexes have been used effectively in stoichiometric (Hsu, Chang et al., 2004; Hsu, Li et al., 2007) and catalytic processes, such as Suzuki cross-coupling (Lai et al., 2005), polymerization (Wang et al., 2006) and copolymerization (Pan et al., 2008) reactions. Interestingly, there are only a few reports on chiral camphor-derived β-aminoketonate ligands (Everett & Powers, 1970; Casella et al., 1979). Generally, β-ketoamines have Z conformations that are stabilized by intramolecular hydrogen bonding (Zharkova et al., 2009). The structure of the title compound was determined in order to confirm the anticipated E conformation about the alkene bond for the major product of the synthesis.

There are two molecules (A and B) of the title compound in the asymmetric unit (Fig. 1). The slightly twisted conformations of the (1-naphthylamino)methylene fragments are similar to that in the structure of 2,2-dimethyl-5-(1-naphthylaminomethylene)-1,3-dioxane-4,6-dione (Li et al., 2009): the absolute values of the torsion angle about the enamine C—N bond for the two structures lie in the narrow range of 21–25°. In contrast, the same group in 2-hydroxy-6-[(1-napthylamino)methylene]cyclohexa-2,4-dien-1-one is almost planar (Özek et al., 2005).

The preference for the E conformation during the synthesis of the title compound may be attributed to the large size of the naphthyl group, whose steric pressure overcomes the competing intramolecular N—H···O hydrogen bonding, which is facilitated in the Z conformer. The observed intermolecular N—H···O hydrogen bonds between the amino and keto groups of adjacent independent molecules, which link the molecules into extended chains running parallel to [001] (Fig. 2), are an additional stabilizing factor of the E conformation. They can be described by a graph-set motif of C22(12) [Bernstein et al., 1995].

While the chirality of the (+)-camphor fragment means that both symmetry-independent molecules are of the same enantiomer, it is interesting to note that there is significant pseudo-inversion symmetry in the structure, with 82% of the atoms in one molecule matching closely with those of the inverted structure of the other molecule; the r.m.s. fit of 21 atoms from each molecule is 1.14 Å. Slight in-plane disorder of the naphthyl groups leads to enlarged displacement ellipsoids for some of the atoms of these groups with the direction of elongation being in the naphthyl plane.

Related literature top

For the conformations of β-ketoamines, see: Zharkova et al. (2009). For chiral camphor-derived β-aminoketonate ligands, see: Everett & Powers (1970); Casella et al. (1979). For reactions involving aminoketonate complexes, see: Hsu, Chang et al. (2004); Hsu, Li et al. (2007); Lai et al. (2005); Pan et al. (2008); Wang et al. (2006). For the coordination chemistry of β-aminoketonate ligands, see: Lesikar et al. (2008); Sedai et al. (2008). For the synthesis of (+)-hydroxymethylenecamphor, see: Lintvedt & Fatta (1968). For related (1-naphthylamino)methylene structures, see: Li et al. (2009); Özek et al. (2005). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by refluxing 1-naphthylamine (6.77 g, 37.6 mmol) with (+)-hydroxymethylenecamphor (Lintvedt & Fatta, 1968) (5.92 g, 41.3 mmol) in dry ethanol (200 ml) and formic acid (2.5 ml) for 48 h. After removing the solvent under reduced pressure, the resulting yellow solid was dried in vacuo for 4 h. The crude product contained both conformers, which after washing with hexane and HV drying afforded 6.53 g (57%) of the pure (E)-conformer [the (Z)-conformer being more soluble in alkanes]. Yellow single crystals suitable for an X-ray analysis were grown from a saturated and filtered ethanol solution that was cooled slowly to 263 K (m.p. 351–353 K). Elemental analysis calculated for C21H23NO: C 82.58, H 7.59, N 4.59%; found: C 85.26, H 7.99, N 4.61%. NMR and IR Spectroscopic data are available in the archived CIF.

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 2643 Friedel pairs were merged and Δf " set to zero. The enantiomer used in the refinement model was chosen to match the known configuration of the (+)-camphor fragment. The amine H atoms were located in a difference Fourier map and their positions were refined freely with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: C—H = 0.95, 0.98, 1.00 Å, for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms.

Structure description top

β-Ketoamines are the neutral protic form of β-aminoketonate bidentate anionic ligands that have been used in the coordination chemistry of transition and main group metals (Lesikar et al., 2008; Sedai et al., 2008). The electronic and steric dissymmetry of these ligands is easily modified in order to tune the reactivity of the metal centre. β-Aminoketonate complexes have been used effectively in stoichiometric (Hsu, Chang et al., 2004; Hsu, Li et al., 2007) and catalytic processes, such as Suzuki cross-coupling (Lai et al., 2005), polymerization (Wang et al., 2006) and copolymerization (Pan et al., 2008) reactions. Interestingly, there are only a few reports on chiral camphor-derived β-aminoketonate ligands (Everett & Powers, 1970; Casella et al., 1979). Generally, β-ketoamines have Z conformations that are stabilized by intramolecular hydrogen bonding (Zharkova et al., 2009). The structure of the title compound was determined in order to confirm the anticipated E conformation about the alkene bond for the major product of the synthesis.

There are two molecules (A and B) of the title compound in the asymmetric unit (Fig. 1). The slightly twisted conformations of the (1-naphthylamino)methylene fragments are similar to that in the structure of 2,2-dimethyl-5-(1-naphthylaminomethylene)-1,3-dioxane-4,6-dione (Li et al., 2009): the absolute values of the torsion angle about the enamine C—N bond for the two structures lie in the narrow range of 21–25°. In contrast, the same group in 2-hydroxy-6-[(1-napthylamino)methylene]cyclohexa-2,4-dien-1-one is almost planar (Özek et al., 2005).

The preference for the E conformation during the synthesis of the title compound may be attributed to the large size of the naphthyl group, whose steric pressure overcomes the competing intramolecular N—H···O hydrogen bonding, which is facilitated in the Z conformer. The observed intermolecular N—H···O hydrogen bonds between the amino and keto groups of adjacent independent molecules, which link the molecules into extended chains running parallel to [001] (Fig. 2), are an additional stabilizing factor of the E conformation. They can be described by a graph-set motif of C22(12) [Bernstein et al., 1995].

While the chirality of the (+)-camphor fragment means that both symmetry-independent molecules are of the same enantiomer, it is interesting to note that there is significant pseudo-inversion symmetry in the structure, with 82% of the atoms in one molecule matching closely with those of the inverted structure of the other molecule; the r.m.s. fit of 21 atoms from each molecule is 1.14 Å. Slight in-plane disorder of the naphthyl groups leads to enlarged displacement ellipsoids for some of the atoms of these groups with the direction of elongation being in the naphthyl plane.

For the conformations of β-ketoamines, see: Zharkova et al. (2009). For chiral camphor-derived β-aminoketonate ligands, see: Everett & Powers (1970); Casella et al. (1979). For reactions involving aminoketonate complexes, see: Hsu, Chang et al. (2004); Hsu, Li et al. (2007); Lai et al. (2005); Pan et al. (2008); Wang et al. (2006). For the coordination chemistry of β-aminoketonate ligands, see: Lesikar et al. (2008); Sedai et al. (2008). For the synthesis of (+)-hydroxymethylenecamphor, see: Lintvedt & Fatta (1968). For related (1-naphthylamino)methylene structures, see: Li et al. (2009); Özek et al. (2005). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of molecule A and molecule B of the title compound, showing the atom-labelling scheme. The molecules are oriented independently so as to have the camphor fragments in approximately the same orientation and emphasise the conformational differences between the molecules. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Molecular packing of compound compound projected down the b axis, showing the hydrogen bonding as thin lines [see Table 1 for details]. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-1,7,7-trimethyl-3-[(1- naphthylamino)methylidene]bicyclo[2.2.1]heptan-2-one top
Crystal data top
C21H23NOF(000) = 1312
Mr = 305.42Dx = 1.190 Mg m3
Monoclinic, C2Melting point: 352 K
Hall symbol: C 2yMo Kα radiation, λ = 0.71073 Å
a = 23.807 (2) ÅCell parameters from 3158 reflections
b = 11.9688 (12) Åθ = 2.0–25.0°
c = 12.0192 (8) ŵ = 0.07 mm1
β = 95.672 (5)°T = 160 K
V = 3408.1 (5) Å3Prism, yellow
Z = 80.25 × 0.20 × 0.12 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2227 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.092
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 9 pixels mm-1h = 028
ω scans with κ offsetsk = 014
21618 measured reflectionsl = 1414
3170 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.0737P)2 + 1.1311P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3170 reflectionsΔρmax = 0.24 e Å3
428 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (7)
Crystal data top
C21H23NOV = 3408.1 (5) Å3
Mr = 305.42Z = 8
Monoclinic, C2Mo Kα radiation
a = 23.807 (2) ŵ = 0.07 mm1
b = 11.9688 (12) ÅT = 160 K
c = 12.0192 (8) Å0.25 × 0.20 × 0.12 mm
β = 95.672 (5)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2227 reflections with I > 2σ(I)
21618 measured reflectionsRint = 0.092
3170 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.24 e Å3
3170 reflectionsΔρmin = 0.17 e Å3
428 parameters
Special details top

Experimental. Solvent used: EtOH. Cooling Device: Oxford Cryosystems Cryostream 700. Crystal mount: glued on a glass fibre. Mosaicity: 1.498 (4)°. Frames collected: 273. Seconds exposure per frame: 88. Degrees rotation per frame: 1.4. Crystal-Detector distance: 30.0 mm.

Spectroscopic data:

1H-NMR (400 MHz, CDCl3): δ 10.77 (d, J = 12.0 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 12.0 Hz, 1H), 7.54–7.45 (m, 3H), 7.40–7.36 (t, 1H), 7.20 (d, J = 12.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 2.53–2.52 (d, J = 4.0 Hz, 1H), 2.11–2.05 (m, 1H), 1.73–1.66 (m, 1H), 1.49–1.41 (m, 2H), 1.03 (s, 3H), 0.94 (s,3H), 0.89 (s, 3H); 13C {1H}-NMR (101 MHz, CDCl3): δ 209.4, 136.9, 134.5, 132.9, 128.5, 126.4, 126.2, 125.9, 123.9, 121.9, 120.7, 116.3, 107.6, 58.9, 49.9, 49.1, 30.4, 28.5, 20.7, 19.1, 9.2; FT—IR (ν, cm- 1, KBr): 3300 (N—H), 1681 (C=O).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68329 (13)0.4955 (3)0.5734 (2)0.0597 (10)
N10.76542 (16)0.5821 (4)0.2820 (3)0.0467 (10)
H10.7453 (18)0.563 (4)0.204 (4)0.056*
C10.82420 (18)0.6018 (4)0.2844 (4)0.0457 (12)
C20.8445 (2)0.6690 (4)0.1988 (4)0.0454 (12)
C30.8088 (2)0.7267 (5)0.1164 (4)0.0542 (14)
H30.76910.72400.11900.065*
C40.8307 (2)0.7866 (5)0.0329 (4)0.0624 (15)
H40.80640.82570.02110.075*
C50.8888 (3)0.7892 (5)0.0282 (5)0.0674 (16)
H50.90360.82780.03160.081*
C60.9245 (2)0.7388 (5)0.1057 (4)0.0584 (15)
H60.96410.74380.10090.070*
C70.9041 (2)0.6780 (5)0.1950 (4)0.0508 (13)
C80.9406 (2)0.6296 (5)0.2821 (5)0.0575 (14)
H80.98020.63780.28170.069*
C90.9198 (2)0.5715 (5)0.3664 (4)0.0569 (13)
H90.94490.54120.42510.068*
C100.86094 (19)0.5562 (4)0.3669 (4)0.0514 (13)
H100.84680.51400.42500.062*
C110.74053 (18)0.5505 (4)0.3731 (4)0.0435 (12)
H110.75920.57010.44390.052*
C120.69145 (18)0.4934 (4)0.3731 (3)0.0436 (12)
C130.65587 (19)0.4306 (4)0.2821 (3)0.0454 (12)
H130.65570.46240.20510.054*
C140.6757 (2)0.3084 (4)0.2953 (4)0.0574 (14)
H1410.71730.30280.29780.069*
H1420.65830.26110.23360.069*
C150.6547 (2)0.2746 (5)0.4094 (4)0.0595 (14)
H1510.68690.25760.46540.071*
H1520.62970.20840.40080.071*
C160.62158 (19)0.3793 (4)0.4453 (3)0.0469 (12)
C170.66827 (19)0.4636 (4)0.4773 (4)0.0467 (13)
C180.59773 (18)0.4275 (4)0.3300 (3)0.0459 (12)
C190.5713 (2)0.5429 (5)0.3385 (4)0.0590 (14)
H1910.53930.53820.38360.088*
H1920.55810.56990.26340.088*
H1930.59950.59480.37380.088*
C200.5540 (2)0.3515 (5)0.2652 (4)0.0624 (15)
H2010.54400.38240.19030.094*
H2020.52020.34690.30510.094*
H2030.57000.27660.25860.094*
C210.5823 (2)0.3569 (6)0.5342 (4)0.0631 (15)
H2110.56030.42430.54600.095*
H2120.60440.33620.60420.095*
H2130.55660.29560.50990.095*
O20.69132 (15)0.5802 (3)1.0744 (3)0.0673 (11)
N20.76421 (18)0.5057 (4)0.7714 (3)0.0564 (12)
H20.743 (2)0.502 (5)0.712 (4)0.068*
C310.8225 (2)0.4882 (5)0.7702 (4)0.0512 (13)
C320.8415 (2)0.4213 (5)0.6840 (4)0.0554 (14)
C330.8049 (2)0.3591 (5)0.6054 (4)0.0588 (14)
H330.76530.36170.61000.071*
C340.8253 (3)0.2968 (5)0.5246 (5)0.0674 (16)
H340.79980.25690.47320.081*
C350.8829 (3)0.2900 (6)0.5154 (5)0.0750 (17)
H350.89650.24750.45690.090*
C360.9189 (3)0.3432 (5)0.5889 (5)0.0700 (16)
H360.95820.33760.58220.084*
C370.8998 (2)0.4094 (5)0.6788 (5)0.0572 (14)
C380.9397 (2)0.4604 (5)0.7578 (5)0.0621 (15)
H380.97910.45150.75370.075*
C390.9195 (2)0.5234 (5)0.8409 (5)0.0708 (17)
H390.94550.55810.89520.085*
C400.8608 (2)0.5376 (5)0.8472 (4)0.0582 (14)
H400.84800.58170.90540.070*
C410.7408 (2)0.5355 (5)0.8651 (4)0.0575 (14)
H410.76260.51970.93390.069*
C420.68961 (18)0.5857 (4)0.8730 (4)0.0452 (12)
C430.6461 (2)0.6346 (5)0.7896 (4)0.0547 (14)
H430.65920.65030.71460.066*
C440.5941 (2)0.5569 (6)0.7881 (4)0.0674 (16)
H4410.56510.57640.72630.081*
H4420.60490.47750.78110.081*
C450.5733 (2)0.5810 (5)0.9029 (4)0.0621 (14)
H4510.57470.51270.94950.075*
H4520.53410.60970.89440.075*
C460.6151 (2)0.6717 (5)0.9562 (4)0.0524 (13)
C470.6699 (2)0.6078 (4)0.9813 (4)0.0458 (12)
C480.62762 (19)0.7388 (5)0.8533 (4)0.0556 (14)
C490.6746 (2)0.8251 (5)0.8770 (5)0.0661 (15)
H4910.68210.86160.80700.099*
H4920.70900.78770.90980.099*
H4930.66300.88120.92950.099*
C500.5761 (2)0.8006 (6)0.7922 (5)0.0802 (18)
H5010.54610.74660.77040.120*
H5020.58750.83770.72530.120*
H5030.56220.85650.84230.120*
C510.5939 (3)0.7335 (6)1.0546 (4)0.0796 (18)
H5110.62290.78601.08580.119*
H5120.58570.67961.11230.119*
H5130.55940.77471.02920.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.059 (2)0.080 (3)0.0400 (18)0.0056 (19)0.0018 (15)0.0112 (19)
N10.043 (2)0.055 (3)0.041 (2)0.004 (2)0.0013 (17)0.000 (2)
C10.038 (3)0.045 (3)0.054 (3)0.002 (2)0.004 (2)0.004 (2)
C20.051 (3)0.041 (3)0.046 (3)0.009 (3)0.014 (2)0.011 (2)
C30.055 (3)0.053 (3)0.054 (3)0.014 (3)0.007 (2)0.008 (3)
C40.076 (4)0.063 (4)0.048 (3)0.022 (3)0.005 (3)0.002 (3)
C50.078 (4)0.072 (4)0.054 (3)0.037 (4)0.019 (3)0.012 (3)
C60.055 (3)0.063 (4)0.061 (3)0.022 (3)0.021 (3)0.017 (3)
C70.047 (3)0.046 (3)0.061 (3)0.008 (3)0.010 (2)0.017 (3)
C80.040 (3)0.049 (3)0.085 (4)0.005 (3)0.013 (3)0.015 (3)
C90.049 (3)0.040 (3)0.079 (3)0.004 (3)0.005 (3)0.003 (3)
C100.047 (3)0.043 (3)0.065 (3)0.005 (3)0.009 (2)0.003 (3)
C110.045 (3)0.044 (3)0.041 (2)0.001 (2)0.002 (2)0.003 (2)
C120.040 (3)0.050 (3)0.041 (2)0.001 (2)0.0016 (19)0.001 (2)
C130.048 (3)0.054 (3)0.035 (2)0.007 (2)0.0080 (19)0.005 (2)
C140.064 (3)0.057 (4)0.053 (3)0.006 (3)0.013 (2)0.007 (3)
C150.071 (3)0.049 (3)0.059 (3)0.006 (3)0.008 (3)0.004 (3)
C160.050 (3)0.050 (3)0.041 (2)0.008 (3)0.007 (2)0.001 (2)
C170.045 (3)0.054 (3)0.040 (3)0.006 (2)0.000 (2)0.000 (2)
C180.045 (3)0.051 (3)0.041 (2)0.011 (2)0.0043 (19)0.001 (2)
C190.047 (3)0.066 (4)0.063 (3)0.003 (3)0.001 (2)0.002 (3)
C200.046 (3)0.085 (4)0.057 (3)0.024 (3)0.009 (2)0.013 (3)
C210.063 (3)0.078 (4)0.051 (3)0.007 (3)0.019 (2)0.001 (3)
O20.077 (2)0.076 (3)0.0455 (18)0.020 (2)0.0127 (17)0.0087 (19)
N20.049 (3)0.064 (3)0.055 (2)0.006 (2)0.0027 (19)0.001 (2)
C310.049 (3)0.047 (3)0.058 (3)0.002 (3)0.006 (2)0.000 (3)
C320.054 (3)0.040 (3)0.072 (3)0.005 (3)0.007 (3)0.017 (3)
C330.058 (3)0.052 (4)0.066 (3)0.003 (3)0.004 (3)0.009 (3)
C340.089 (5)0.054 (4)0.060 (3)0.013 (3)0.011 (3)0.002 (3)
C350.095 (5)0.065 (4)0.066 (4)0.010 (4)0.013 (3)0.006 (3)
C360.067 (4)0.062 (4)0.084 (4)0.017 (3)0.022 (3)0.020 (4)
C370.048 (3)0.045 (3)0.079 (3)0.005 (3)0.009 (3)0.017 (3)
C380.056 (3)0.051 (4)0.082 (4)0.006 (3)0.020 (3)0.013 (3)
C390.058 (4)0.051 (4)0.101 (4)0.011 (3)0.004 (3)0.015 (4)
C400.051 (3)0.052 (3)0.072 (3)0.003 (3)0.006 (3)0.002 (3)
C410.061 (3)0.063 (4)0.048 (3)0.010 (3)0.001 (2)0.003 (3)
C420.039 (3)0.053 (3)0.043 (3)0.004 (2)0.003 (2)0.000 (2)
C430.057 (3)0.064 (4)0.042 (3)0.004 (3)0.000 (2)0.007 (3)
C440.056 (3)0.083 (4)0.060 (3)0.013 (3)0.012 (2)0.004 (3)
C450.046 (3)0.063 (4)0.078 (3)0.005 (3)0.010 (3)0.002 (3)
C460.055 (3)0.053 (3)0.051 (3)0.004 (3)0.015 (2)0.001 (2)
C470.050 (3)0.047 (3)0.039 (3)0.004 (2)0.004 (2)0.003 (2)
C480.050 (3)0.058 (4)0.060 (3)0.011 (3)0.007 (2)0.012 (3)
C490.066 (3)0.058 (4)0.076 (3)0.002 (3)0.016 (3)0.009 (3)
C500.073 (4)0.083 (5)0.085 (4)0.021 (4)0.009 (3)0.013 (4)
C510.093 (4)0.077 (5)0.073 (4)0.002 (4)0.031 (3)0.006 (3)
Geometric parameters (Å, º) top
O1—C171.235 (5)O2—C471.229 (5)
N1—C111.351 (6)N2—C411.353 (6)
N1—C11.416 (6)N2—C311.404 (6)
N1—H11.03 (4)N2—H20.83 (5)
C1—C101.370 (6)C31—C401.368 (7)
C1—C21.427 (6)C31—C321.419 (7)
C2—C31.419 (7)C32—C371.404 (7)
C2—C71.429 (6)C32—C331.430 (7)
C3—C41.378 (7)C33—C341.353 (7)
C3—H30.9500C33—H330.9500
C4—C51.391 (8)C34—C351.390 (8)
C4—H40.9500C34—H340.9500
C5—C61.341 (8)C35—C361.331 (8)
C5—H50.9500C35—H350.9500
C6—C71.421 (7)C36—C371.449 (8)
C6—H60.9500C36—H360.9500
C7—C81.416 (7)C37—C381.413 (8)
C8—C91.362 (7)C38—C391.375 (7)
C8—H80.9500C38—H380.9500
C9—C101.414 (6)C39—C401.418 (7)
C9—H90.9500C39—H390.9500
C10—H100.9500C40—H400.9500
C11—C121.353 (6)C41—C421.371 (7)
C11—H110.9500C41—H410.9500
C12—C171.462 (6)C42—C471.451 (6)
C12—C131.516 (6)C42—C431.488 (6)
C13—C141.541 (7)C43—C441.547 (8)
C13—C181.551 (6)C43—C481.551 (7)
C13—H131.0000C43—H431.0000
C14—C151.559 (7)C44—C451.540 (7)
C14—H1410.9900C44—H4410.9900
C14—H1420.9900C44—H4420.9900
C15—C161.563 (7)C45—C461.566 (8)
C15—H1510.9900C45—H4510.9900
C15—H1520.9900C45—H4520.9900
C16—C211.512 (6)C46—C471.516 (7)
C16—C171.522 (7)C46—C511.523 (7)
C16—C181.555 (6)C46—C481.528 (7)
C18—C191.526 (7)C48—C491.529 (7)
C18—C201.535 (6)C48—C501.553 (7)
C19—H1910.9800C49—H4910.9800
C19—H1920.9800C49—H4920.9800
C19—H1930.9800C49—H4930.9800
C20—H2010.9800C50—H5010.9800
C20—H2020.9800C50—H5020.9800
C20—H2030.9800C50—H5030.9800
C21—H2110.9800C51—H5110.9800
C21—H2120.9800C51—H5120.9800
C21—H2130.9800C51—H5130.9800
C11—N1—C1122.8 (4)C41—N2—C31122.4 (4)
C11—N1—H1118 (3)C41—N2—H2117 (4)
C1—N1—H1115 (2)C31—N2—H2120 (4)
C10—C1—N1120.5 (4)C40—C31—N2121.5 (5)
C10—C1—C2120.6 (4)C40—C31—C32119.9 (5)
N1—C1—C2118.9 (4)N2—C31—C32118.6 (4)
C3—C2—C1123.7 (4)C37—C32—C31118.6 (5)
C3—C2—C7118.0 (5)C37—C32—C33117.4 (5)
C1—C2—C7118.3 (5)C31—C32—C33124.0 (5)
C4—C3—C2121.2 (5)C34—C33—C32121.5 (5)
C4—C3—H3119.4C34—C33—H33119.2
C2—C3—H3119.4C32—C33—H33119.2
C3—C4—C5119.4 (5)C33—C34—C35121.1 (6)
C3—C4—H4120.3C33—C34—H34119.4
C5—C4—H4120.3C35—C34—H34119.4
C6—C5—C4121.8 (5)C36—C35—C34119.7 (6)
C6—C5—H5119.1C36—C35—H35120.1
C4—C5—H5119.1C34—C35—H35120.1
C5—C6—C7121.0 (5)C35—C36—C37121.9 (6)
C5—C6—H6119.5C35—C36—H36119.1
C7—C6—H6119.5C37—C36—H36119.1
C8—C7—C6122.5 (5)C32—C37—C38121.9 (5)
C8—C7—C2118.9 (5)C32—C37—C36118.2 (5)
C6—C7—C2118.5 (5)C38—C37—C36119.9 (5)
C9—C8—C7121.3 (5)C39—C38—C37117.7 (5)
C9—C8—H8119.4C39—C38—H38121.1
C7—C8—H8119.4C37—C38—H38121.1
C8—C9—C10120.1 (5)C38—C39—C40121.5 (5)
C8—C9—H9119.9C38—C39—H39119.3
C10—C9—H9119.9C40—C39—H39119.3
C1—C10—C9120.5 (5)C31—C40—C39120.5 (5)
C1—C10—H10119.7C31—C40—H40119.8
C9—C10—H10119.7C39—C40—H40119.8
N1—C11—C12126.1 (4)N2—C41—C42128.0 (5)
N1—C11—H11116.9N2—C41—H41116.0
C12—C11—H11116.9C42—C41—H41116.0
C11—C12—C17121.5 (4)C41—C42—C47120.8 (4)
C11—C12—C13132.2 (4)C41—C42—C43133.6 (4)
C17—C12—C13105.4 (4)C47—C42—C43105.5 (4)
C12—C13—C14104.7 (4)C42—C43—C44105.9 (4)
C12—C13—C18101.5 (3)C42—C43—C48101.3 (4)
C14—C13—C18102.4 (4)C44—C43—C48102.9 (4)
C12—C13—H13115.5C42—C43—H43115.0
C14—C13—H13115.5C44—C43—H43115.0
C18—C13—H13115.5C48—C43—H43115.0
C13—C14—C15102.4 (4)C45—C44—C43101.8 (4)
C13—C14—H141111.3C45—C44—H441111.4
C15—C14—H141111.3C43—C44—H441111.4
C13—C14—H142111.3C45—C44—H442111.4
C15—C14—H142111.3C43—C44—H442111.4
H141—C14—H142109.2H441—C44—H442109.3
C14—C15—C16104.5 (4)C44—C45—C46104.4 (4)
C14—C15—H151110.9C44—C45—H451110.9
C16—C15—H151110.9C46—C45—H451110.9
C14—C15—H152110.9C44—C45—H452110.9
C16—C15—H152110.9C46—C45—H452110.9
H151—C15—H152108.9H451—C45—H452108.9
C21—C16—C17115.2 (4)C47—C46—C51115.8 (4)
C21—C16—C18119.9 (4)C47—C46—C48101.1 (4)
C17—C16—C1899.9 (4)C51—C46—C48118.6 (5)
C21—C16—C15114.7 (5)C47—C46—C45103.4 (4)
C17—C16—C15103.0 (4)C51—C46—C45114.1 (4)
C18—C16—C15101.6 (4)C48—C46—C45101.6 (4)
O1—C17—C12128.8 (5)O2—C47—C42128.7 (5)
O1—C17—C16125.3 (4)O2—C47—C46126.1 (4)
C12—C17—C16105.9 (4)C42—C47—C46105.2 (4)
C19—C18—C20107.9 (4)C46—C48—C49113.7 (4)
C19—C18—C13113.1 (4)C46—C48—C4393.7 (4)
C20—C18—C13114.2 (4)C49—C48—C43113.4 (4)
C19—C18—C16113.2 (4)C46—C48—C50115.1 (4)
C20—C18—C16113.7 (4)C49—C48—C50107.2 (5)
C13—C18—C1694.5 (3)C43—C48—C50113.5 (4)
C18—C19—H191109.5C48—C49—H491109.5
C18—C19—H192109.5C48—C49—H492109.5
H191—C19—H192109.5H491—C49—H492109.5
C18—C19—H193109.5C48—C49—H493109.5
H191—C19—H193109.5H491—C49—H493109.5
H192—C19—H193109.5H492—C49—H493109.5
C18—C20—H201109.5C48—C50—H501109.5
C18—C20—H202109.5C48—C50—H502109.5
H201—C20—H202109.5H501—C50—H502109.5
C18—C20—H203109.5C48—C50—H503109.5
H201—C20—H203109.5H501—C50—H503109.5
H202—C20—H203109.5H502—C50—H503109.5
C16—C21—H211109.5C46—C51—H511109.5
C16—C21—H212109.5C46—C51—H512109.5
H211—C21—H212109.5H511—C51—H512109.5
C16—C21—H213109.5C46—C51—H513109.5
H211—C21—H213109.5H511—C51—H513109.5
H212—C21—H213109.5H512—C51—H513109.5
C11—N1—C1—C1021.3 (7)C41—N2—C31—C4024.4 (8)
C11—N1—C1—C2159.3 (4)C41—N2—C31—C32158.1 (5)
C10—C1—C2—C3174.3 (5)C40—C31—C32—C371.3 (7)
N1—C1—C2—C36.2 (7)N2—C31—C32—C37176.1 (5)
C10—C1—C2—C76.2 (7)C40—C31—C32—C33174.7 (5)
N1—C1—C2—C7173.2 (4)N2—C31—C32—C337.8 (8)
C1—C2—C3—C4177.2 (5)C37—C32—C33—C344.1 (7)
C7—C2—C3—C42.2 (7)C31—C32—C33—C34179.9 (5)
C2—C3—C4—C50.9 (8)C32—C33—C34—C350.5 (8)
C3—C4—C5—C62.8 (9)C33—C34—C35—C361.8 (9)
C4—C5—C6—C71.5 (9)C34—C35—C36—C370.4 (9)
C5—C6—C7—C8176.0 (5)C31—C32—C37—C381.2 (8)
C5—C6—C7—C21.7 (8)C33—C32—C37—C38175.2 (5)
C3—C2—C7—C8174.3 (5)C31—C32—C37—C36178.5 (5)
C1—C2—C7—C86.2 (7)C33—C32—C37—C365.2 (7)
C3—C2—C7—C63.5 (7)C35—C36—C37—C323.1 (8)
C1—C2—C7—C6176.0 (4)C35—C36—C37—C38177.2 (6)
C6—C7—C8—C9179.8 (5)C32—C37—C38—C390.3 (8)
C2—C7—C8—C92.5 (8)C36—C37—C38—C39179.3 (5)
C7—C8—C9—C101.5 (8)C37—C38—C39—C400.4 (8)
N1—C1—C10—C9177.1 (5)N2—C31—C40—C39176.7 (5)
C2—C1—C10—C92.4 (8)C32—C31—C40—C390.7 (8)
C8—C9—C10—C11.6 (8)C38—C39—C40—C310.2 (9)
C1—N1—C11—C12155.0 (5)C31—N2—C41—C42159.3 (5)
N1—C11—C12—C17179.9 (5)N2—C41—C42—C47177.4 (5)
N1—C11—C12—C1312.9 (9)N2—C41—C42—C437.6 (10)
C11—C12—C13—C1494.2 (6)C41—C42—C43—C44112.2 (6)
C17—C12—C13—C1474.5 (4)C47—C42—C43—C4472.2 (5)
C11—C12—C13—C18159.5 (5)C41—C42—C43—C48140.7 (6)
C17—C12—C13—C1831.8 (5)C47—C42—C43—C4834.8 (5)
C12—C13—C14—C1567.9 (4)C42—C43—C44—C4570.0 (5)
C18—C13—C14—C1537.7 (4)C48—C43—C44—C4535.9 (5)
C13—C14—C15—C163.6 (5)C43—C44—C45—C461.1 (5)
C14—C15—C16—C21162.2 (4)C44—C45—C46—C4770.1 (5)
C14—C15—C16—C1771.8 (4)C44—C45—C46—C51163.3 (5)
C14—C15—C16—C1831.4 (5)C44—C45—C46—C4834.5 (5)
C11—C12—C17—O110.6 (8)C41—C42—C47—O25.9 (9)
C13—C12—C17—O1179.2 (5)C43—C42—C47—O2177.8 (5)
C11—C12—C17—C16167.4 (5)C41—C42—C47—C46175.3 (5)
C13—C12—C17—C162.8 (5)C43—C42—C47—C460.9 (6)
C21—C16—C17—O115.9 (7)C51—C46—C47—O217.8 (8)
C18—C16—C17—O1145.8 (5)C48—C46—C47—O2147.4 (5)
C15—C16—C17—O1109.7 (5)C45—C46—C47—O2107.8 (6)
C21—C16—C17—C12166.0 (4)C51—C46—C47—C42163.4 (5)
C18—C16—C17—C1236.1 (5)C48—C46—C47—C4233.8 (5)
C15—C16—C17—C1268.4 (4)C45—C46—C47—C4271.0 (5)
C12—C13—C18—C1965.7 (5)C47—C46—C48—C4965.4 (5)
C14—C13—C18—C19173.7 (4)C51—C46—C48—C4962.4 (6)
C12—C13—C18—C20170.4 (4)C45—C46—C48—C49171.7 (4)
C14—C13—C18—C2062.4 (5)C47—C46—C48—C4352.2 (4)
C12—C13—C18—C1651.9 (4)C51—C46—C48—C43179.9 (5)
C14—C13—C18—C1656.2 (4)C45—C46—C48—C4354.2 (4)
C21—C16—C18—C1962.3 (6)C47—C46—C48—C50170.3 (5)
C17—C16—C18—C1964.5 (4)C51—C46—C48—C5061.9 (7)
C15—C16—C18—C19170.2 (4)C45—C46—C48—C5064.0 (6)
C21—C16—C18—C2061.2 (6)C42—C43—C48—C4653.2 (4)
C17—C16—C18—C20171.9 (4)C44—C43—C48—C4656.2 (4)
C15—C16—C18—C2066.3 (5)C42—C43—C48—C4964.7 (5)
C21—C16—C18—C13179.8 (5)C44—C43—C48—C49174.1 (4)
C17—C16—C18—C1353.0 (4)C42—C43—C48—C50172.7 (4)
C15—C16—C18—C1352.7 (4)C44—C43—C48—C5063.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i1.03 (4)1.93 (4)2.909 (5)157 (4)
N2—H2···O10.83 (5)2.08 (5)2.913 (5)174 (5)
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H23NO
Mr305.42
Crystal system, space groupMonoclinic, C2
Temperature (K)160
a, b, c (Å)23.807 (2), 11.9688 (12), 12.0192 (8)
β (°) 95.672 (5)
V3)3408.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.20 × 0.12
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21618, 3170, 2227
Rint0.092
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.155, 1.05
No. of reflections3170
No. of parameters428
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i1.03 (4)1.93 (4)2.909 (5)157 (4)
N2—H2···O10.83 (5)2.08 (5)2.913 (5)174 (5)
Symmetry code: (i) x, y, z1.
 

Acknowledgements

This work was financed by FONACIT (project S1-2001000851).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCasella, L., Gullotti, M., Pasini, A. & Rockenbauer, A. (1979). Inorg. Chem. 18, 2825–2835.  CrossRef CAS Web of Science Google Scholar
First citationEverett, G. W. & Powers, C. R. (1970). Inorg. Chem. 9, 521–527.  Web of Science CrossRef CAS Google Scholar
First citationHsu, S., Chang, J., Lai, C., Hu, C., Lee, H., Lee, G., Peng, S. & Huang, J. (2004). Inorg. Chem. 43, 6786–6792.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHsu, S., Li, C., Chiu, Y., Chiu, M., Lien, Y., Kuo, P., Lee, H., Cheng, C. & Huang, J. (2007). J. Organomet. Chem. 692, 5421–5428.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, Y., Chen, H., Hung, W., Lin, C. & Hong, F. (2005). Tetrahedron, 61, 9484–9489.  Web of Science CSD CrossRef CAS Google Scholar
First citationLesikar, L., Gushwa, A. F. & Richards, A. F. (2008). J. Organomet. Chem. 693, 3245–3255.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z., Li, R. & Ding, Z.-Y. (2009). Acta Cryst. E65, o2289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLintvedt, R. L. & Fatta, A. M. (1968). Inorg. Chem. 7, 2489–2495.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzek, A., Yüce, S., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o3179–o3181.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPan, L., Ye, W., Liu, J., Hong, M. & Li, Y. (2008). Macromolecules, 41, 2981–2983.  Web of Science CrossRef CAS Google Scholar
First citationSedai, B., Heeg, M. J. & Winter, C. H. (2008). J. Organomet. Chem. 693, 3495–3503.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L. Y., Li, Y. F., Zhu, F. M. & Wu, Q. (2006). Eur. Polym. J. 42, 322–, 327.  Google Scholar
First citationZharkova, G., Stabnikov, P., Baidina, I., Smolentsev, A. & Tkachey, S. (2009). Polyhedron, 28, 2307–2312.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds