organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-fluoro­phen­yl)-6-(naphthalen-1-yl)pyridine-3-carbo­nitrile

aCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bBiotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 21 November 2010; accepted 3 December 2010; online 8 December 2010)

The title compound, C22H14FN3, was prepared by a one-pot condensation using malononitrile, an aromatic aldehyde, a methyl ketone and ammonium acetate as reacta­nts under microwave irradiation. The pyridine ring is twisted with respect to the benzene ring and the naphthalene ring system, making dihedral angles of 41.9 (1) and 45.2 (1)°, respectively. In the crystal, mol­ecules are connected via inter­molecular N—H⋯N and C—H⋯F hydrogen bonds, forming a three-dimensional network.

Related literature

For the use of 2-amino-3-cyano­pyridines as inter­mediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983[Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611-4612.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14FN3

  • Mr = 339.36

  • Monoclinic, P 21 /c

  • a = 14.531 (3) Å

  • b = 8.0900 (16) Å

  • c = 15.516 (3) Å

  • β = 110.04 (3)°

  • V = 1713.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.991

  • 3274 measured reflections

  • 3144 independent reflections

  • 2046 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.177

  • S = 1.00

  • 3144 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.86 2.33 3.149 (3) 158
C20—H20A⋯Fii 0.93 2.50 3.284 (4) 142
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 2-amino-3-cyanopyridine are important and useful intermediates in preparing a varity of heterocyclic compounds (Shishoo et al., 1983). Therefore, the synthesis of 2-amino-3-cyanopyridine derivatives attracts much interest in organic chemistry. Here, the single-crystal structure of the title compound (I), C22H14FN3, is reported.

The title compound (Fig. 1) consists of a pyridine ring bearing a 4-fluoro phenyl at C7, a naphthyl at C10, an amino group at C9, and a cyano group at C8. The pyridine ring is twisted with respect to the benzene ring and naphthalene ring, with dihedral angles of 41.9 (1)° and 45.2 (1)°, respectively. The bond lengths and angles are within the reported values (Allen et al., 1987). Intermolecular N—H···N and C—H···F hydrogen bonds (Table 1, Fig. 2), and C—H···π and ππ stacking interactions help to stabilize the crystal structure.

Related literature top

For the use of 2-amino-3-cyanopyridines as intermediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was prepared from a mixture of 4-fluorobenzaldehyde (2 mmol), malononitrile (2 mmol), 1-naphthaldehyde (2 mmol) and ammonium acetate (16 mmol) under microwave irradiation (6 min, WF-4000M microwave reaction system). After cooling to room temperature, the resulting solid product was filtered off and recrystallized from methanol to give compound (I). Colorless single crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and slowly evaporating the solvent at room temperature for a period of about two weeks.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.86 Å for aromatic and amino H atoms, and constrained to ride on their parent atoms,with Uiso(H) = 1.2Ueq(C/N).

Structure description top

Derivatives of 2-amino-3-cyanopyridine are important and useful intermediates in preparing a varity of heterocyclic compounds (Shishoo et al., 1983). Therefore, the synthesis of 2-amino-3-cyanopyridine derivatives attracts much interest in organic chemistry. Here, the single-crystal structure of the title compound (I), C22H14FN3, is reported.

The title compound (Fig. 1) consists of a pyridine ring bearing a 4-fluoro phenyl at C7, a naphthyl at C10, an amino group at C9, and a cyano group at C8. The pyridine ring is twisted with respect to the benzene ring and naphthalene ring, with dihedral angles of 41.9 (1)° and 45.2 (1)°, respectively. The bond lengths and angles are within the reported values (Allen et al., 1987). Intermolecular N—H···N and C—H···F hydrogen bonds (Table 1, Fig. 2), and C—H···π and ππ stacking interactions help to stabilize the crystal structure.

For the use of 2-amino-3-cyanopyridines as intermediates in the preparation of heterocyclic compounds, see: Shishoo et al. (1983). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
2-Amino-4-(4-fluorophenyl)-6-(naphthalen-1-yl)pyridine-3-carbonitrile top
Crystal data top
C22H14FN3F(000) = 704
Mr = 339.36Dx = 1.315 Mg m3
Monoclinic, P21/cMelting point: 422.15 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.531 (3) ÅCell parameters from 25 reflections
b = 8.0900 (16) Åθ = 9–13°
c = 15.516 (3) ŵ = 0.09 mm1
β = 110.04 (3)°T = 292 K
V = 1713.6 (6) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2046 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.4°, θmin = 1.5°
ω/2θ scansh = 017
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.974, Tmax = 0.991l = 1817
3274 measured reflections3 standard reflections every 200 reflections
3144 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.1P)2 + 0.2P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3144 reflectionsΔρmax = 0.20 e Å3
236 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (3)
Crystal data top
C22H14FN3V = 1713.6 (6) Å3
Mr = 339.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.531 (3) ŵ = 0.09 mm1
b = 8.0900 (16) ÅT = 292 K
c = 15.516 (3) Å0.30 × 0.20 × 0.10 mm
β = 110.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2046 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.974, Tmax = 0.9913 standard reflections every 200 reflections
3274 measured reflections intensity decay: 1%
3144 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3144 reflectionsΔρmin = 0.29 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.33760 (12)0.1683 (3)0.00030 (15)0.1049 (8)
N10.91754 (14)0.3544 (2)0.03593 (12)0.0425 (5)
C10.5928 (2)0.2725 (4)0.0869 (2)0.0601 (8)
H1B0.64030.30320.14190.072*
N20.87074 (16)0.4912 (3)0.10104 (14)0.0566 (6)
H2A0.93160.51060.09150.068*
H2B0.82670.52670.15020.068*
C20.4983 (2)0.2457 (4)0.0839 (2)0.0700 (9)
H2C0.48110.25910.13600.084*
N30.6218 (2)0.4965 (4)0.19941 (17)0.0838 (9)
C30.4303 (2)0.1989 (4)0.0021 (3)0.0694 (9)
C40.4519 (2)0.1766 (4)0.0751 (2)0.0673 (9)
H4A0.40390.14220.12910.081*
C50.54649 (19)0.2056 (4)0.07242 (19)0.0565 (7)
H5A0.56220.19270.12530.068*
C60.61841 (18)0.2543 (3)0.00910 (17)0.0485 (6)
C70.72116 (18)0.2857 (3)0.01511 (16)0.0450 (6)
C80.74512 (17)0.3731 (3)0.05147 (15)0.0453 (6)
C90.84442 (17)0.4055 (3)0.03910 (15)0.0424 (6)
C100.89413 (17)0.2700 (3)0.09979 (15)0.0402 (6)
C110.79866 (18)0.2324 (3)0.09168 (16)0.0457 (6)
H11A0.78610.17160.13730.055*
C120.6732 (2)0.4389 (4)0.13286 (18)0.0550 (7)
C130.97766 (17)0.2280 (3)0.18524 (15)0.0404 (6)
C141.06861 (17)0.1664 (3)0.18259 (15)0.0412 (6)
C151.08360 (19)0.1133 (3)0.10156 (17)0.0491 (6)
H15A1.03180.11820.04610.059*
C161.1715 (2)0.0555 (4)0.1025 (2)0.0650 (8)
H16A1.17920.02000.04840.078*
C171.2509 (2)0.0492 (4)0.1853 (2)0.0746 (9)
H17A1.31170.01300.18560.090*
C181.2395 (2)0.0954 (4)0.2644 (2)0.0667 (8)
H18A1.29280.08990.31870.080*
C191.14842 (18)0.1521 (3)0.26713 (17)0.0479 (6)
C201.1338 (2)0.1915 (4)0.34944 (17)0.0582 (8)
H20A1.18610.18360.40440.070*
C211.0458 (2)0.2407 (4)0.35084 (17)0.0586 (8)
H21A1.03690.26180.40640.070*
C220.9674 (2)0.2599 (3)0.26778 (17)0.0504 (7)
H22A0.90700.29520.26910.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.0381 (10)0.142 (2)0.1317 (18)0.0019 (11)0.0249 (11)0.0234 (15)
N10.0410 (11)0.0474 (12)0.0378 (11)0.0010 (9)0.0116 (9)0.0053 (9)
C10.0453 (16)0.076 (2)0.0558 (16)0.0088 (14)0.0141 (13)0.0064 (15)
N20.0474 (12)0.0720 (16)0.0473 (12)0.0008 (11)0.0124 (10)0.0190 (11)
C20.0548 (19)0.089 (2)0.072 (2)0.0004 (17)0.0296 (17)0.0007 (18)
N30.0727 (18)0.107 (2)0.0574 (15)0.0126 (16)0.0032 (13)0.0246 (16)
C30.0340 (15)0.081 (2)0.091 (2)0.0045 (14)0.0193 (16)0.0118 (19)
C40.0428 (16)0.075 (2)0.068 (2)0.0008 (15)0.0019 (14)0.0053 (17)
C50.0471 (16)0.0647 (18)0.0512 (16)0.0013 (13)0.0084 (13)0.0002 (13)
C60.0408 (14)0.0529 (16)0.0486 (15)0.0005 (12)0.0110 (12)0.0025 (12)
C70.0433 (14)0.0493 (15)0.0402 (13)0.0029 (11)0.0114 (11)0.0021 (11)
C80.0432 (14)0.0498 (15)0.0389 (13)0.0013 (11)0.0089 (11)0.0012 (11)
C90.0451 (14)0.0452 (14)0.0361 (12)0.0005 (11)0.0129 (11)0.0042 (11)
C100.0427 (14)0.0390 (13)0.0375 (12)0.0005 (11)0.0122 (11)0.0017 (10)
C110.0453 (14)0.0523 (15)0.0393 (13)0.0046 (12)0.0141 (11)0.0053 (11)
C120.0497 (15)0.0654 (18)0.0464 (15)0.0019 (14)0.0119 (13)0.0058 (14)
C130.0435 (13)0.0395 (13)0.0356 (12)0.0039 (11)0.0101 (10)0.0007 (10)
C140.0433 (14)0.0362 (13)0.0399 (13)0.0049 (11)0.0088 (11)0.0025 (11)
C150.0506 (15)0.0503 (15)0.0460 (14)0.0005 (12)0.0162 (12)0.0008 (12)
C160.0658 (19)0.0667 (19)0.0694 (19)0.0075 (16)0.0320 (16)0.0025 (15)
C170.0518 (18)0.079 (2)0.091 (2)0.0124 (16)0.0209 (18)0.0018 (19)
C180.0486 (17)0.067 (2)0.069 (2)0.0051 (15)0.0003 (14)0.0018 (16)
C190.0459 (15)0.0411 (14)0.0477 (15)0.0033 (12)0.0044 (11)0.0028 (11)
C200.0617 (18)0.0585 (17)0.0378 (14)0.0053 (14)0.0044 (13)0.0006 (12)
C210.073 (2)0.0647 (18)0.0340 (14)0.0004 (15)0.0122 (13)0.0050 (12)
C220.0535 (16)0.0554 (16)0.0408 (14)0.0007 (13)0.0142 (12)0.0001 (12)
Geometric parameters (Å, º) top
F—C31.360 (3)C10—C111.383 (3)
N1—C101.340 (3)C10—C131.498 (3)
N1—C91.344 (3)C11—H11A0.9300
C1—C21.376 (4)C13—C221.364 (3)
C1—C61.387 (4)C13—C141.426 (3)
C1—H1B0.9300C14—C151.414 (3)
N2—C91.342 (3)C14—C191.427 (3)
N2—H2A0.8600C15—C161.356 (4)
N2—H2B0.8600C15—H15A0.9300
C2—C31.369 (4)C16—C171.403 (4)
C2—H2C0.9300C16—H16A0.9300
N3—C121.145 (3)C17—C181.347 (4)
C3—C41.350 (4)C17—H17A0.9300
C4—C51.381 (4)C18—C191.414 (4)
C4—H4A0.9300C18—H18A0.9300
C5—C61.393 (4)C19—C201.401 (4)
C5—H5A0.9300C20—C211.347 (4)
C6—C71.486 (3)C20—H20A0.9300
C7—C81.391 (3)C21—C221.406 (4)
C7—C111.396 (3)C21—H21A0.9300
C8—C91.413 (3)C22—H22A0.9300
C8—C121.438 (3)
C10—N1—C9118.1 (2)C10—C11—C7120.1 (2)
C2—C1—C6121.1 (3)C10—C11—H11A120.0
C2—C1—H1B119.4C7—C11—H11A120.0
C6—C1—H1B119.4N3—C12—C8174.6 (3)
C9—N2—H2A120.0C22—C13—C14119.6 (2)
C9—N2—H2B120.0C22—C13—C10118.2 (2)
H2A—N2—H2B120.0C14—C13—C10122.1 (2)
C3—C2—C1118.0 (3)C15—C14—C13123.9 (2)
C3—C2—H2C121.0C15—C14—C19117.9 (2)
C1—C2—H2C121.0C13—C14—C19118.1 (2)
C4—C3—F119.2 (3)C16—C15—C14121.8 (2)
C4—C3—C2123.2 (3)C16—C15—H15A119.1
F—C3—C2117.6 (3)C14—C15—H15A119.1
C3—C4—C5118.8 (3)C15—C16—C17119.9 (3)
C3—C4—H4A120.6C15—C16—H16A120.0
C5—C4—H4A120.6C17—C16—H16A120.0
C4—C5—C6120.3 (3)C18—C17—C16120.3 (3)
C4—C5—H5A119.9C18—C17—H17A119.8
C6—C5—H5A119.9C16—C17—H17A119.8
C1—C6—C5118.6 (2)C17—C18—C19121.7 (3)
C1—C6—C7119.4 (2)C17—C18—H18A119.1
C5—C6—C7122.0 (2)C19—C18—H18A119.1
C8—C7—C11117.0 (2)C20—C19—C18122.4 (2)
C8—C7—C6122.8 (2)C20—C19—C14119.4 (2)
C11—C7—C6120.1 (2)C18—C19—C14118.2 (2)
C7—C8—C9119.8 (2)C21—C20—C19121.6 (2)
C7—C8—C12123.3 (2)C21—C20—H20A119.2
C9—C8—C12116.9 (2)C19—C20—H20A119.2
N2—C9—N1116.4 (2)C20—C21—C22119.6 (2)
N2—C9—C8121.8 (2)C20—C21—H21A120.2
N1—C9—C8121.9 (2)C22—C21—H21A120.2
N1—C10—C11123.1 (2)C13—C22—C21121.7 (3)
N1—C10—C13115.9 (2)C13—C22—H22A119.2
C11—C10—C13120.9 (2)C21—C22—H22A119.2
C6—C1—C2—C30.7 (5)C8—C7—C11—C101.3 (4)
C1—C2—C3—C40.6 (5)C6—C7—C11—C10176.3 (2)
C1—C2—C3—F178.2 (3)N1—C10—C13—C22131.9 (3)
F—C3—C4—C5179.1 (3)C11—C10—C13—C2243.9 (3)
C2—C3—C4—C51.5 (5)N1—C10—C13—C1444.0 (3)
C3—C4—C5—C61.1 (5)C11—C10—C13—C14140.2 (2)
C2—C1—C6—C51.0 (4)C22—C13—C14—C15173.1 (2)
C2—C1—C6—C7179.5 (3)C10—C13—C14—C1511.0 (4)
C4—C5—C6—C10.1 (4)C22—C13—C14—C194.6 (3)
C4—C5—C6—C7179.6 (3)C10—C13—C14—C19171.2 (2)
C1—C6—C7—C8137.1 (3)C13—C14—C15—C16179.9 (2)
C5—C6—C7—C843.4 (4)C19—C14—C15—C162.1 (4)
C1—C6—C7—C1140.4 (4)C14—C15—C16—C170.8 (4)
C5—C6—C7—C11139.2 (3)C15—C16—C17—C182.1 (5)
C11—C7—C8—C90.7 (4)C16—C17—C18—C190.3 (5)
C6—C7—C8—C9176.9 (2)C17—C18—C19—C20176.2 (3)
C11—C7—C8—C12178.5 (2)C17—C18—C19—C142.6 (4)
C6—C7—C8—C121.0 (4)C15—C14—C19—C20175.1 (2)
C10—N1—C9—N2179.3 (2)C13—C14—C19—C202.8 (3)
C10—N1—C9—C80.3 (4)C15—C14—C19—C183.8 (4)
C7—C8—C9—N2179.1 (2)C13—C14—C19—C18178.3 (2)
C12—C8—C9—N21.1 (4)C18—C19—C20—C21178.0 (3)
C7—C8—C9—N10.2 (4)C14—C19—C20—C210.8 (4)
C12—C8—C9—N1177.9 (2)C19—C20—C21—C222.7 (4)
C9—N1—C10—C110.5 (4)C14—C13—C22—C212.9 (4)
C9—N1—C10—C13175.3 (2)C10—C13—C22—C21173.1 (2)
N1—C10—C11—C71.3 (4)C20—C21—C22—C130.8 (4)
C13—C10—C11—C7174.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N10.932.502.997 (3)114
N2—H2A···N1i0.862.333.149 (3)158
C20—H20A···Fii0.932.503.284 (4)142
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H14FN3
Mr339.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)14.531 (3), 8.0900 (16), 15.516 (3)
β (°) 110.04 (3)
V3)1713.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3274, 3144, 2046
Rint0.056
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.177, 1.00
No. of reflections3144
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.333.149 (3)158
C20—H20A···Fii0.932.503.284 (4)142
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the financial support from the Youth Foundation of Nanjing University of Technology (39704011) and the Analysis Center of Nanjing University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. pp. 4611–4612.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds