metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium (acetyl­acetonato)bromidotri­carbonyl­rhenate(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: alice.brink@gmail.com

(Received 23 November 2010; accepted 30 November 2010; online 4 December 2010)

In the title compound, (C8H20N)[ReBr(C5H7O2)(CO)3], the ReI atom in the rhenate anion is surrounded by three carbonyl ligands orientated in a facial arrangement, a bromide ligand and an acetyl­acetonate ligand, leading to a distorted octa­hedral ReC3BrO2 coordination with a O—Re—O bite angle of 85.66 (7)°. An array of C—H⋯O and C—H⋯Br hydrogen-bonding inter­actions between the cations and the surrounding rhenate anions stabilize the crystal structure.

Related literature

For the synthesis of the Re(I)–tricarbonyl synthon, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004[Mundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320-1328.]); Wang et al. (2003[Wang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386-393.]); Saw et al. (2006[Saw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087-4094.]). For studies of related rhenium(V) compounds, see: Roodt et al. (1992[Roodt, A., Leipoldt, J. G., Helm, L. & Merbach, A. E. (1992). Inorg. Chem. 31, 2864-2868.]); Purcell et al. (1989[Purcell, W., Roodt, A., Basson, S. S. & Leipoldt, J. G. (1989). Transition Met. Chem. 14, 224-226.]). For acetyl­acetonato complexes and related structures, see: Brink et al. (2007a[Brink, A., Roodt, A. & Visser, H. G. (2007a). Acta Cryst. E63, m2831-m2832.],b[Brink, A., Roodt, A. & Visser, H. G. (2007b). Acta Cryst. E63, m48-m50.]; 2010[Brink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. pp. 5572-5578.]); Steyl & Hill (2009[Steyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233.]); Herbst et al. (2010[Herbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801-m802.]). For a rhenium complex with pyridine and acetyl­acetonato ligands, see: Benny et al. (2008[Benny, P. D., Fugate, G. A., Barden, A. O., Morley, J. E., Silva-Lopez, E. & Twamley, B. (2008). Inorg. Chem. 47, 2240-2242.]). For related structures, see: Schutte et al. (2009[Schutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575-m1576.], 2010[Schutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859-m860.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[ReBr(C5H7O2)(CO)3]

  • Mr = 579.5

  • Orthorhombic, P b c a

  • a = 13.0931 (1) Å

  • b = 14.5865 (1) Å

  • c = 20.8724 (2) Å

  • V = 3986.26 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.12 mm−1

  • T = 100 K

  • 0.26 × 0.13 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.227, Tmax = 0.563

  • 30330 measured reflections

  • 4819 independent reflections

  • 3641 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.047

  • S = 1.02

  • 4819 reflections

  • 223 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯O01i 0.99 2.5 3.378 (4) 147
C31—H31B⋯O01 0.99 2.58 3.543 (4) 165
C35—H35B⋯O03ii 0.99 2.54 3.221 (3) 126
C36—H36B⋯O03ii 0.98 2.57 3.155 (4) 118
C37—H37A⋯Br1iii 0.99 2.91 3.859 (3) 161
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound forms part of an ongoing investigation aimed at determining the crystallographic and kinetic effects experienced by Re(I) and Re(V) complexes (Roodt et al., 1992, Purcell et al., 1989), in particular the manner which various O, O'-bidentate ligands have on rhenium tricarbonyl complexes as well as other transition group metals such as rhodium (Brink et al., 2010), silver (Steyl & Hill, 2009) and niobium (Herbst et al., 2010). Various rhenium tricarbonyl bidentate ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006), however few O, O'-bidentate ligands are reported in literature (Schutte et al., 2010).

The octahedral geometry around the Re(I) metal atom in the rhenate anion shows little distortion (Fig. 1) with an O1—Re—O2 bite angle of 85.66 (7)°, which correlates well with a pyridine-coordinated rhenium acetylacetonato complex (85.07 (8)°; Benny et al., 2008) and is similar to rhodium acetylacetonato complexes (88.69 (8)° and 88.20 (6)°; Brink et al., 2007a,b). The Re—Oacac bond lengths (acac is acetylacetonate) of the title compound (2.1248 (18) Å and 2.1265 (19) Å) are slightly longer than that found in the pyridine analogue (2.1189 (19) Å and 2.1226 (19) Å; Benny et al., 2008). The Re—Br bond lengths of 2.6448 (3) Å compares well with related structures (Schutte et al., 2009, 2010). Intermolecular C—H···O and C—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations (Table 1 and Fig. 2)

Related literature top

For the synthesis of the Re(I)–tricarbonyl synthon, see: Alberto et al. (1996). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006). For studies of related rhenium(V) compounds, see: Roodt et al. (1992); Purcell et al. (1989). For acetylacetonato complexes and related structures, see: Brink et al. (2007a,b; 2010); Steyl & Hill (2009); Herbst et al. (2010). For a rhenium complex with pyridine and acetylacetonato ligands, see: Benny et al. (2008). For related structures, see: Schutte et al. (2009, 2010).

Experimental top

[NEt4]2[Re(CO)3Br3] (0.13 mmol) (synthesized according to Alberto et al. (1996)) was dissolved in 6 ml methanol. Acetylacetone (0.14 mmol), dissolved in 6 ml methanol was slowly added. The reaction mixture was heated to 329 K for 24 h. Crystals of the title complex were obtained by the slow evaporation of the solvent. Colourless crystals were stable in air for several months.

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C) for the methine, methylene and methyl carbon atoms, respectively. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The highest peak and deepest hole in the final difference map are located 1.12Å and 0.61Å from Br1 and H33a, respectively.

Structure description top

The title compound forms part of an ongoing investigation aimed at determining the crystallographic and kinetic effects experienced by Re(I) and Re(V) complexes (Roodt et al., 1992, Purcell et al., 1989), in particular the manner which various O, O'-bidentate ligands have on rhenium tricarbonyl complexes as well as other transition group metals such as rhodium (Brink et al., 2010), silver (Steyl & Hill, 2009) and niobium (Herbst et al., 2010). Various rhenium tricarbonyl bidentate ligands have been synthesized (Mundwiler et al., 2004, Wang et al., 2003, Saw et al., 2006), however few O, O'-bidentate ligands are reported in literature (Schutte et al., 2010).

The octahedral geometry around the Re(I) metal atom in the rhenate anion shows little distortion (Fig. 1) with an O1—Re—O2 bite angle of 85.66 (7)°, which correlates well with a pyridine-coordinated rhenium acetylacetonato complex (85.07 (8)°; Benny et al., 2008) and is similar to rhodium acetylacetonato complexes (88.69 (8)° and 88.20 (6)°; Brink et al., 2007a,b). The Re—Oacac bond lengths (acac is acetylacetonate) of the title compound (2.1248 (18) Å and 2.1265 (19) Å) are slightly longer than that found in the pyridine analogue (2.1189 (19) Å and 2.1226 (19) Å; Benny et al., 2008). The Re—Br bond lengths of 2.6448 (3) Å compares well with related structures (Schutte et al., 2009, 2010). Intermolecular C—H···O and C—H···Br hydrogen-bonding interactions are observed between rhenate anions and neighboring cations (Table 1 and Fig. 2)

For the synthesis of the Re(I)–tricarbonyl synthon, see: Alberto et al. (1996). For related rhenium–tricarbonyl complexes, see: Mundwiler et al. (2004); Wang et al. (2003); Saw et al. (2006). For studies of related rhenium(V) compounds, see: Roodt et al. (1992); Purcell et al. (1989). For acetylacetonato complexes and related structures, see: Brink et al. (2007a,b; 2010); Steyl & Hill (2009); Herbst et al. (2010). For a rhenium complex with pyridine and acetylacetonato ligands, see: Benny et al. (2008). For related structures, see: Schutte et al. (2009, 2010).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Representation of the hydrogen-bonding interactions.
Tetraethylammonium (acetylacetonato)bromidotricarbonylrhenate(I) top
Crystal data top
(C8H20N)[ReBr(C5H7O2)(CO)3]F(000) = 2240
Mr = 579.5Dx = 1.931 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 16272 reflections
a = 13.0931 (1) Åθ = 2.3–33.0°
b = 14.5865 (1) ŵ = 8.12 mm1
c = 20.8724 (2) ÅT = 100 K
V = 3986.26 (6) Å3Parallelepiped, colourless
Z = 80.26 × 0.13 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
4819 independent reflections
Radiation source: Enhance (Mo) X-ray Source3641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1829 pixels mm-1θmax = 28°, θmin = 2.3°
ω–scansh = 1716
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1915
Tmin = 0.227, Tmax = 0.563l = 2727
30330 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0251P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.002
S = 1.02Δρmax = 1.35 e Å3
4819 reflectionsΔρmin = 0.71 e Å3
223 parameters
Crystal data top
(C8H20N)[ReBr(C5H7O2)(CO)3]V = 3986.26 (6) Å3
Mr = 579.5Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0931 (1) ŵ = 8.12 mm1
b = 14.5865 (1) ÅT = 100 K
c = 20.8724 (2) Å0.26 × 0.13 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur3 CCD
diffractometer
4819 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3641 reflections with I > 2σ(I)
Tmin = 0.227, Tmax = 0.563Rint = 0.031
30330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.02Δρmax = 1.35 e Å3
4819 reflectionsΔρmin = 0.71 e Å3
223 parameters
Special details top

Experimental. The intensity data was collected on a Oxford Diffraction Xcalibur 3 area detector diffractometer using an exposure time of 10 s/frame. A total of 552 frames were collected with a frame width of 0.75° covering up to θ = 28.00° with 100.0% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6479 (2)0.59694 (18)0.79693 (14)0.0171 (6)
C020.4190 (2)0.79609 (18)0.82159 (14)0.0178 (6)
C010.5566 (2)0.91066 (19)0.86140 (14)0.0170 (6)
C20.7475 (2)0.62159 (19)0.81179 (14)0.0198 (6)
H20.79870.57640.80520.024*
C30.7799 (2)0.70650 (19)0.83555 (14)0.0186 (6)
C030.5822 (2)0.82991 (18)0.74731 (16)0.0174 (6)
C40.8919 (2)0.7204 (2)0.84831 (16)0.0253 (7)
H4A0.91190.78220.83490.038*
H4B0.93150.6750.82420.038*
H4C0.90540.7130.89420.038*
C50.6255 (2)0.50244 (18)0.77154 (16)0.0231 (7)
H5A0.58090.46990.80160.035*
H5B0.68960.46850.76660.035*
H5C0.59150.50740.72990.035*
C310.3312 (2)0.9931 (2)0.97904 (15)0.0247 (7)
H31A0.34631.02041.02140.03*
H31B0.3911.00430.95110.03*
C320.3183 (3)0.88969 (19)0.98731 (17)0.0318 (8)
H32A0.26250.87761.01750.048*
H32B0.38180.86331.0040.048*
H32C0.30220.86180.94580.048*
C330.2623 (2)1.14451 (18)0.94940 (15)0.0214 (6)
H33A0.19891.17750.93770.026*
H33B0.28161.16420.99310.026*
C340.3465 (2)1.1732 (2)0.90338 (17)0.0304 (8)
H34A0.40981.1410.91440.046*
H34B0.35741.23950.90660.046*
H34C0.32651.15760.85950.046*
C350.2202 (2)1.00610 (19)0.88378 (14)0.0191 (6)
H35A0.28531.00710.85970.023*
H35B0.19790.94140.8870.023*
C360.1410 (3)1.0589 (2)0.84595 (15)0.0273 (7)
H36A0.07671.06060.870.041*
H36B0.12971.02860.80460.041*
H36C0.16521.12160.83870.041*
C370.1443 (2)1.02603 (19)0.99096 (14)0.0190 (6)
H37A0.08811.06370.97330.023*
H37B0.12420.96090.98680.023*
C380.1560 (3)1.0482 (2)1.06086 (15)0.0302 (8)
H38A0.20731.00751.07990.045*
H38B0.09041.03941.08260.045*
H38C0.17791.11211.06560.045*
N10.23955 (16)1.04213 (14)0.95068 (11)0.0148 (5)
O10.56968 (13)0.64852 (12)0.80201 (11)0.0186 (4)
O020.33086 (15)0.80287 (13)0.81550 (11)0.0234 (5)
O20.72326 (14)0.77461 (13)0.84811 (10)0.0201 (5)
O010.54896 (15)0.98593 (13)0.87843 (11)0.0240 (5)
O030.59154 (15)0.85547 (14)0.69515 (11)0.0240 (5)
Re10.563458 (8)0.787480 (7)0.832299 (6)0.01437 (4)
Br10.54691 (2)0.718131 (18)0.948917 (14)0.01961 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0202 (15)0.0158 (14)0.0154 (16)0.0001 (11)0.0013 (12)0.0039 (11)
C020.0237 (16)0.0141 (14)0.0155 (16)0.0029 (11)0.0002 (12)0.0010 (11)
C010.0139 (14)0.0209 (15)0.0162 (15)0.0023 (12)0.0018 (12)0.0059 (12)
C20.0169 (14)0.0190 (14)0.0235 (17)0.0062 (12)0.0028 (13)0.0006 (12)
C30.0140 (13)0.0214 (15)0.0206 (16)0.0013 (11)0.0009 (12)0.0064 (13)
C030.0118 (14)0.0137 (13)0.0267 (18)0.0000 (11)0.0001 (12)0.0026 (13)
C40.0136 (14)0.0275 (17)0.035 (2)0.0016 (13)0.0001 (13)0.0016 (14)
C50.0241 (16)0.0174 (15)0.0277 (18)0.0004 (12)0.0030 (13)0.0031 (13)
C310.0179 (15)0.0329 (17)0.0233 (18)0.0056 (13)0.0029 (13)0.0012 (13)
C320.0355 (19)0.0301 (17)0.0298 (19)0.0142 (15)0.0017 (16)0.0071 (14)
C330.0214 (15)0.0176 (14)0.0253 (18)0.0068 (12)0.0006 (13)0.0039 (13)
C340.0313 (19)0.0287 (17)0.031 (2)0.0122 (14)0.0023 (15)0.0035 (14)
C350.0246 (15)0.0176 (14)0.0152 (16)0.0018 (12)0.0013 (13)0.0023 (12)
C360.0371 (19)0.0215 (16)0.0233 (19)0.0005 (14)0.0082 (14)0.0029 (13)
C370.0164 (14)0.0196 (14)0.0210 (16)0.0005 (11)0.0043 (12)0.0015 (12)
C380.0336 (19)0.0355 (19)0.0213 (19)0.0006 (15)0.0078 (14)0.0000 (14)
N10.0144 (12)0.0151 (11)0.0148 (13)0.0007 (9)0.0016 (10)0.0001 (10)
O10.0115 (10)0.0127 (9)0.0317 (12)0.0014 (8)0.0013 (9)0.0057 (9)
O020.0139 (11)0.0205 (11)0.0360 (14)0.0040 (8)0.0083 (9)0.0017 (9)
O20.0102 (9)0.0186 (10)0.0316 (13)0.0001 (8)0.0021 (8)0.0019 (9)
O010.0265 (12)0.0162 (10)0.0294 (13)0.0013 (9)0.0042 (10)0.0018 (9)
O030.0256 (11)0.0230 (11)0.0236 (12)0.0028 (9)0.0054 (10)0.0003 (10)
Re10.01154 (6)0.01270 (6)0.01887 (7)0.00035 (4)0.00109 (4)0.00012 (5)
Br10.02132 (15)0.01855 (13)0.01895 (16)0.00067 (12)0.00405 (11)0.00209 (12)
Geometric parameters (Å, º) top
C1—O11.275 (3)C32—H32C0.98
C1—C21.388 (4)C33—C341.521 (4)
C1—C51.505 (4)C33—N11.523 (3)
C02—O021.165 (3)C33—H33A0.99
C02—Re11.909 (3)C33—H33B0.99
C01—O011.158 (3)C34—H34A0.98
C01—O011.158 (3)C34—H34B0.98
C01—Re11.899 (3)C34—H34C0.98
C2—C31.400 (4)C35—C361.513 (4)
C2—H20.95C35—N11.513 (4)
C3—O21.267 (3)C35—H35A0.99
C3—C41.504 (4)C35—H35B0.99
C03—O031.157 (4)C36—H36A0.98
C03—Re11.895 (3)C36—H36B0.98
C4—H4A0.98C36—H36C0.98
C4—H4B0.98C37—C381.502 (4)
C4—H4C0.98C37—N11.522 (3)
C5—H5A0.98C37—H37A0.99
C5—H5B0.98C37—H37B0.99
C5—H5C0.98C38—H38A0.98
C31—N11.517 (3)C38—H38B0.98
C31—C321.528 (4)C38—H38C0.98
C31—H31A0.99O1—Re12.1248 (18)
C31—H31B0.99O2—Re12.1265 (19)
C32—H32A0.98Re1—Br12.6448 (3)
C32—H32B0.98
O1—C1—C2125.7 (3)H34B—C34—H34C109.5
O1—C1—C5114.4 (2)C36—C35—N1114.8 (2)
C2—C1—C5119.9 (3)C36—C35—H35A108.6
O02—C02—Re1178.8 (2)N1—C35—H35A108.6
O01—C01—Re1177.7 (2)C36—C35—H35B108.6
O01—C01—Re1177.7 (2)N1—C35—H35B108.6
C1—C2—C3126.4 (3)H35A—C35—H35B107.5
C1—C2—H2116.8C35—C36—H36A109.5
C3—C2—H2116.8C35—C36—H36B109.5
O2—C3—C2126.1 (3)H36A—C36—H36B109.5
O2—C3—C4115.4 (2)C35—C36—H36C109.5
C2—C3—C4118.5 (3)H36A—C36—H36C109.5
O03—C03—Re1178.6 (3)H36B—C36—H36C109.5
C3—C4—H4A109.5C38—C37—N1114.8 (2)
C3—C4—H4B109.5C38—C37—H37A108.6
H4A—C4—H4B109.5N1—C37—H37A108.6
C3—C4—H4C109.5C38—C37—H37B108.6
H4A—C4—H4C109.5N1—C37—H37B108.6
H4B—C4—H4C109.5H37A—C37—H37B107.5
C1—C5—H5A109.5C37—C38—H38A109.5
C1—C5—H5B109.5C37—C38—H38B109.5
H5A—C5—H5B109.5H38A—C38—H38B109.5
C1—C5—H5C109.5C37—C38—H38C109.5
H5A—C5—H5C109.5H38A—C38—H38C109.5
H5B—C5—H5C109.5H38B—C38—H38C109.5
N1—C31—C32115.0 (2)C35—N1—C31109.2 (2)
N1—C31—H31A108.5C35—N1—C37108.6 (2)
C32—C31—H31A108.5C31—N1—C37111.1 (2)
N1—C31—H31B108.5C35—N1—C33110.9 (2)
C32—C31—H31B108.5C31—N1—C33108.3 (2)
H31A—C31—H31B107.5C37—N1—C33108.7 (2)
C31—C32—H32A109.5C1—O1—Re1128.19 (17)
C31—C32—H32B109.5C3—O2—Re1127.81 (18)
H32A—C32—H32B109.5C03—Re1—C0189.80 (12)
C31—C32—H32C109.5C03—Re1—C0289.85 (12)
H32A—C32—H32C109.5C01—Re1—C0285.88 (11)
H32B—C32—H32C109.5C03—Re1—O191.61 (10)
C34—C33—N1115.0 (2)C01—Re1—O1178.54 (10)
C34—C33—H33A108.5C02—Re1—O193.78 (9)
N1—C33—H33A108.5C03—Re1—O292.67 (10)
C34—C33—H33B108.5C01—Re1—O294.63 (9)
N1—C33—H33B108.5C02—Re1—O2177.43 (10)
H33A—C33—H33B107.5O1—Re1—O285.66 (7)
C33—C34—H34A109.5C03—Re1—Br1175.69 (8)
C33—C34—H34B109.5C01—Re1—Br193.65 (9)
H34A—C34—H34B109.5C02—Re1—Br192.97 (9)
C33—C34—H34C109.5O1—Re1—Br184.96 (6)
H34A—C34—H34C109.5O2—Re1—Br184.49 (6)
O1—C1—C2—C30.8 (5)C34—C33—N1—C3167.4 (3)
C5—C1—C2—C3179.9 (3)C34—C33—N1—C37171.7 (2)
C1—C2—C3—O20.9 (5)C2—C1—O1—Re11.3 (4)
C1—C2—C3—C4179.5 (3)C5—C1—O1—Re1177.82 (19)
C36—C35—N1—C31171.2 (2)C2—C3—O2—Re14.3 (4)
C36—C35—N1—C3767.6 (3)C4—C3—O2—Re1176.09 (19)
C36—C35—N1—C3351.8 (3)C1—O1—Re1—C0389.5 (3)
C32—C31—N1—C3562.4 (3)C1—O1—Re1—C02179.5 (2)
C32—C31—N1—C3757.3 (3)C1—O1—Re1—O23.0 (2)
C32—C31—N1—C33176.6 (2)C1—O1—Re1—Br187.9 (2)
C38—C37—N1—C35173.2 (2)C3—O2—Re1—C0386.9 (2)
C38—C37—N1—C3153.1 (3)C3—O2—Re1—C01177.0 (2)
C38—C37—N1—C3366.1 (3)C3—O2—Re1—O14.5 (2)
C34—C33—N1—C3552.4 (3)C3—O2—Re1—Br189.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···O01i0.992.53.378 (4)147
C31—H31B···O010.992.583.543 (4)165
C35—H35B···O03ii0.992.543.221 (3)126
C36—H36B···O03ii0.982.573.155 (4)118
C37—H37A···Br1iii0.992.913.859 (3)161
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1/2, y, z+3/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C8H20N)[ReBr(C5H7O2)(CO)3]
Mr579.5
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)13.0931 (1), 14.5865 (1), 20.8724 (2)
V3)3986.26 (6)
Z8
Radiation typeMo Kα
µ (mm1)8.12
Crystal size (mm)0.26 × 0.13 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur3 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.227, 0.563
No. of measured, independent and
observed [I > 2σ(I)] reflections
30330, 4819, 3641
Rint0.031
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.02
No. of reflections4819
No. of parameters223
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 0.71

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···O01i0.992.53.378 (4)147.3
C31—H31B···O010.992.583.543 (4)164.5
C35—H35B···O03ii0.992.543.221 (3)125.9
C36—H36B···O03ii0.982.573.155 (4)118
C37—H37A···Br1iii0.992.913.859 (3)161.2
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1/2, y, z+3/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL, the South African National Research Foundation (SA–NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA–NRF.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBenny, P. D., Fugate, G. A., Barden, A. O., Morley, J. E., Silva-Lopez, E. & Twamley, B. (2008). Inorg. Chem. 47, 2240–2242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A., Steyl, G. & Visser, H. G. (2010). Dalton Trans. pp. 5572–5578.  Web of Science CSD CrossRef Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007a). Acta Cryst. E63, m2831–m2832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2007b). Acta Cryst. E63, m48–m50.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHerbst, L., Koen, R., Roodt, A. & Visser, H. G. (2010). Acta Cryst. E66, m801–m802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMundwiler, S., Kündig, M., Ortner, K. & Alberto, R. (2004). Dalton Trans. pp. 1320–1328.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPurcell, W., Roodt, A., Basson, S. S. & Leipoldt, J. G. (1989). Transition Met. Chem. 14, 224–226.  CrossRef CAS Web of Science Google Scholar
First citationRoodt, A., Leipoldt, J. G., Helm, L. & Merbach, A. E. (1992). Inorg. Chem. 31, 2864–2868.  CrossRef CAS Web of Science Google Scholar
First citationSaw, M. M., Kurz, P., Agorastos, N., Hor, T. S. A., Sundram, F. X., Yan, Y. K. & Alberto, R. (2006). Inorg. Chim. Acta, 359, 4087–4094.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchutte, M., Visser, H. G. & Brink, A. (2009). Acta Cryst. E65, m1575–m1576.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchutte, M., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m859–m860.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteyl, G. & Hill, T. N. (2009). Acta Cryst. E65, m233.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W., Spingler, B. & Alberto, R. (2003). Inorg. Chim. Acta, 355, 386–393.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds