organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[5-(Anthracen-9-yl)-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: wangmlchem@263.net

(Received 18 November 2010; accepted 1 December 2010; online 11 December 2010)

In the title compound, C25H20N2O, the pyrazoline ring is nearly planar [maximum atomic deviation = 0.0254 (17) Å]; but the anthracene ring system is distorted from a coplanar structure [maximum atomic deviation = 0.181 (3) Å], the dihedral angle between the outer benzene rings being 10.68 (13)°. The pyrazoline ring is almost perpendicular to the mean plane of the anthracene ring system [dihedral angle = 76.94 (8)°], but nearly coplanar with the phenyl ring [dihedral angle = 1.63 (7)°]. ππ stacking is observed between parallel benzene rings of adjacent anthracene units, the face-to-face distance being 3.27 (3) Å. Weak intra­molecular C—H⋯N hydrogen bonding also occurs.

Related literature

For applications of pyrazoline derivatives, see: Christoph et al. (2003[Christoph, J. F., Liuchun, Y. & Donald, G. V. (2003). J. Am. Chem. Soc. 125, 3799-3812.]); Parmar et al. (1974[Parmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D. (1974). J. Pharm. Sci. 63, 1152-1155.]); Soni et al. (1978[Soni, N., Pande, K., Kalsi, R., Gupta, T. K., Parmar, S. S. & &Barthwal, J. P. (1978). Res. Commun. Chem. Pathol. Pharmacol. 56, 129-132.]); Wei et al. (2007[Wei, X., Yang, G., Cheng, J., Lu, Z. & Xie, M. (2007). Opt. Mater. 29, 936-940.]). For a related structure, see: Krishna et al. (1999[Krishna, R., Velmurugan, D., Murugesan, R., Shanmuga Sundaram, M. & Raghunathan, R. (1999). Acta Cryst. C55, 1676-1677.]).

[Scheme 1]

Experimental

Crystal data
  • C25H20N2O

  • Mr = 364.43

  • Monoclinic, P 21 /n

  • a = 8.7102 (17) Å

  • b = 16.251 (3) Å

  • c = 13.309 (3) Å

  • β = 91.49 (3)°

  • V = 1883.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 16656 measured reflections

  • 3538 independent reflections

  • 2021 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.142

  • S = 1.04

  • 3538 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯N2 0.93 2.55 3.404 (3) 152

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazoline derivatives are important heterocyclic compounds and widely studied. Some of them have been used as pharmaceuticals for their broad spectrum of pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic [Parmar et al., 1974, Soni et al.,1978]. Furthermore, some of them have widely been used as fluorescence probes in some elaborated chemosensors [Christoph et al., 2003], as hole-transport materials in the electrophotography and electroluminescence [Wei et al., 2007], due to the favorable photophysical properties. Here we report the structure of the title compound, a new derivative of pyrazoline.

In the pyrazoline ring, all the atoms are coplanar with a maximum deviation of 0.0254 (17)Å for atom C15, the bond length of N2=C17 [1.2878 (33)Å] agrees with normal C=N bond (1.28Å), the bond distance of N1-N2 [1.3905 (30)Å] conforms to the expected values [Krishna et al., 1999]. The mean plane of pyrazoline ring makes dihedral angles of 1.63 (17)° and 76.94 (8)° with phenyl and anthryl ring, respectively. There are present only weak intermolecular interactions in the structure: C—H···π-electron and π-electron ring - π-electron ring interactions. The latter one is between the two parallel anthryl rings with the distance of 3.232Å. The anthryl ring shows a slightly distortion with C2 deviating by 1.811 (24)Å from planarity. The distance between the methine H15a and the anthryl H11a atoms is short, it is strange that the deviation of anthryl c11 from planarity is minimum in all the anthryl carbon atoms. It maybe result from the /p-stacking between the two parallel anthryl rings.

Related literature top

For applications of pyrazoline derivatives, see: Christoph et al. (2003); Parmar et al. (1974); Soni et al. (1978); Wei et al. (2007). For a related structure, see: Krishna et al. (1999).

Experimental top

3-(9-Anthryl)-1-phenylprop-2-en-1-one (3 mmol) and hydrazine hydrate (50%, 6 mmol) were dissolved in 10 ml of glacial acetic acid. The mixture was stirred for 8 h at 391 K. The resultant solution was poured into a beaker containing crushed ice and the solid separated was collected by filtration. The product was recrystallized from ethanol-ethyl acetate (1:1 v/v) mixed solution, light yellow single-crystals of the title compound were obtained.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93-0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

Pyrazoline derivatives are important heterocyclic compounds and widely studied. Some of them have been used as pharmaceuticals for their broad spectrum of pharmacological activities such as antimicrobial, anticonvulsant, anti-inflammatory, analgesic [Parmar et al., 1974, Soni et al.,1978]. Furthermore, some of them have widely been used as fluorescence probes in some elaborated chemosensors [Christoph et al., 2003], as hole-transport materials in the electrophotography and electroluminescence [Wei et al., 2007], due to the favorable photophysical properties. Here we report the structure of the title compound, a new derivative of pyrazoline.

In the pyrazoline ring, all the atoms are coplanar with a maximum deviation of 0.0254 (17)Å for atom C15, the bond length of N2=C17 [1.2878 (33)Å] agrees with normal C=N bond (1.28Å), the bond distance of N1-N2 [1.3905 (30)Å] conforms to the expected values [Krishna et al., 1999]. The mean plane of pyrazoline ring makes dihedral angles of 1.63 (17)° and 76.94 (8)° with phenyl and anthryl ring, respectively. There are present only weak intermolecular interactions in the structure: C—H···π-electron and π-electron ring - π-electron ring interactions. The latter one is between the two parallel anthryl rings with the distance of 3.232Å. The anthryl ring shows a slightly distortion with C2 deviating by 1.811 (24)Å from planarity. The distance between the methine H15a and the anthryl H11a atoms is short, it is strange that the deviation of anthryl c11 from planarity is minimum in all the anthryl carbon atoms. It maybe result from the /p-stacking between the two parallel anthryl rings.

For applications of pyrazoline derivatives, see: Christoph et al. (2003); Parmar et al. (1974); Soni et al. (1978); Wei et al. (2007). For a related structure, see: Krishna et al. (1999).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule. The displacement ellipsoids are drawn at the 30% probability level.
1-[5-(Anthracen-9-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone top
Crystal data top
C25H20N2OF(000) = 768
Mr = 364.43Dx = 1.285 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3850 reflections
a = 8.7102 (17) Åθ = 2.6–25.0°
b = 16.251 (3) ŵ = 0.08 mm1
c = 13.309 (3) ÅT = 293 K
β = 91.49 (3)°Block, yellow
V = 1883.2 (7) Å30.30 × 0.24 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2021 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.090
Graphite monochromatorθmax = 25.6°, θmin = 3.0°
Detector resolution: 13.6 pixels mm-1h = 1010
φ and ω scansk = 1919
16656 measured reflectionsl = 1616
3538 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.2473P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3538 reflectionsΔρmax = 0.14 e Å3
255 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0174 (17)
Crystal data top
C25H20N2OV = 1883.2 (7) Å3
Mr = 364.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7102 (17) ŵ = 0.08 mm1
b = 16.251 (3) ÅT = 293 K
c = 13.309 (3) Å0.30 × 0.24 × 0.20 mm
β = 91.49 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2021 reflections with I > 2σ(I)
16656 measured reflectionsRint = 0.090
3538 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
3538 reflectionsΔρmin = 0.15 e Å3
255 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4492 (2)0.69151 (12)0.36622 (16)0.0460 (6)
N20.4001 (2)0.61021 (12)0.36062 (16)0.0462 (6)
O10.5886 (2)0.79431 (13)0.30449 (17)0.0783 (7)
C10.1365 (3)0.76484 (17)0.35515 (19)0.0487 (7)
H1A0.17650.71190.35200.058*
C20.0037 (3)0.78223 (18)0.30343 (19)0.0529 (7)
H2B0.04740.74060.26820.063*
C30.0573 (3)0.86234 (18)0.3024 (2)0.0527 (7)
H3A0.14650.87400.26530.063*
C40.0144 (3)0.92193 (17)0.35558 (19)0.0504 (7)
H4A0.02450.97520.35280.061*
C50.1481 (3)0.90571 (15)0.41604 (19)0.0430 (7)
C60.2101 (3)0.96556 (16)0.47959 (19)0.0463 (7)
H6A0.16741.01800.47880.056*
C70.3337 (3)0.94940 (15)0.54413 (19)0.0441 (7)
C80.3868 (3)1.00942 (16)0.6146 (2)0.0521 (7)
H8A0.33801.06030.61680.063*
C90.5058 (4)0.99439 (18)0.6782 (2)0.0581 (8)
H9A0.53721.03390.72490.070*
C100.5831 (3)0.91788 (18)0.67331 (19)0.0579 (8)
H10A0.66630.90760.71670.069*
C110.5375 (3)0.85926 (17)0.60629 (19)0.0521 (7)
H11A0.59170.81000.60410.063*
C120.4088 (3)0.87087 (15)0.53899 (18)0.0402 (6)
C130.3515 (3)0.81000 (15)0.47169 (18)0.0416 (6)
C140.2165 (3)0.82539 (15)0.41421 (18)0.0404 (6)
C150.4337 (3)0.72775 (15)0.46727 (19)0.0485 (7)
H15A0.53680.73470.49720.058*
C160.3539 (3)0.65722 (15)0.52291 (19)0.0553 (8)
H16A0.41340.64050.58210.066*
H16B0.25180.67330.54290.066*
C170.3464 (3)0.58952 (15)0.4462 (2)0.0447 (7)
C180.5338 (3)0.72582 (18)0.2927 (2)0.0547 (8)
C190.5526 (4)0.67627 (19)0.1987 (2)0.0841 (11)
H19A0.59960.70970.14860.126*
H19B0.45380.65800.17420.126*
H19C0.61660.62940.21320.126*
C200.2820 (3)0.50776 (15)0.4632 (2)0.0456 (7)
C210.2784 (3)0.44894 (17)0.3877 (2)0.0548 (8)
H21A0.31930.46120.32560.066*
C220.2152 (3)0.37274 (17)0.4034 (2)0.0654 (9)
H22A0.21290.33430.35170.078*
C230.1557 (4)0.3528 (2)0.4944 (3)0.0726 (10)
H23A0.11400.30100.50480.087*
C240.1582 (4)0.4102 (2)0.5699 (3)0.0811 (10)
H24A0.11830.39710.63210.097*
C250.2195 (4)0.48683 (19)0.5542 (2)0.0690 (9)
H25A0.21900.52540.60570.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0528 (14)0.0359 (13)0.0500 (14)0.0003 (10)0.0125 (11)0.0049 (10)
N20.0511 (14)0.0351 (14)0.0529 (15)0.0004 (10)0.0099 (11)0.0014 (10)
O10.0781 (16)0.0536 (14)0.1048 (18)0.0203 (11)0.0346 (13)0.0108 (12)
C10.0473 (18)0.0493 (17)0.0500 (17)0.0010 (13)0.0088 (14)0.0074 (13)
C20.0492 (18)0.064 (2)0.0454 (17)0.0042 (14)0.0061 (14)0.0068 (14)
C30.0457 (18)0.065 (2)0.0478 (17)0.0071 (15)0.0057 (13)0.0004 (14)
C40.0485 (18)0.0535 (19)0.0497 (17)0.0095 (14)0.0098 (14)0.0053 (14)
C50.0421 (17)0.0445 (17)0.0430 (15)0.0008 (12)0.0136 (12)0.0029 (12)
C60.0496 (18)0.0370 (16)0.0531 (18)0.0044 (12)0.0148 (14)0.0007 (13)
C70.0500 (18)0.0393 (16)0.0438 (16)0.0041 (12)0.0178 (13)0.0030 (12)
C80.059 (2)0.0425 (17)0.0554 (18)0.0078 (13)0.0183 (16)0.0112 (13)
C90.073 (2)0.055 (2)0.0469 (18)0.0178 (16)0.0110 (16)0.0100 (14)
C100.070 (2)0.059 (2)0.0444 (17)0.0115 (16)0.0028 (14)0.0003 (14)
C110.061 (2)0.0496 (18)0.0457 (17)0.0015 (14)0.0003 (14)0.0004 (13)
C120.0431 (16)0.0384 (16)0.0394 (15)0.0048 (12)0.0087 (12)0.0042 (11)
C130.0469 (17)0.0353 (15)0.0433 (15)0.0005 (12)0.0114 (13)0.0006 (11)
C140.0406 (16)0.0378 (16)0.0430 (15)0.0002 (11)0.0091 (12)0.0017 (11)
C150.0525 (17)0.0430 (17)0.0499 (17)0.0043 (13)0.0007 (13)0.0057 (13)
C160.080 (2)0.0434 (17)0.0427 (16)0.0065 (14)0.0023 (14)0.0010 (13)
C170.0510 (17)0.0388 (17)0.0443 (17)0.0086 (12)0.0014 (13)0.0009 (12)
C180.0534 (18)0.0440 (19)0.068 (2)0.0033 (14)0.0189 (15)0.0008 (15)
C190.112 (3)0.068 (2)0.075 (2)0.0151 (19)0.053 (2)0.0067 (18)
C200.0470 (17)0.0408 (17)0.0494 (17)0.0076 (12)0.0051 (13)0.0030 (13)
C210.0619 (19)0.0480 (19)0.0550 (19)0.0023 (14)0.0136 (14)0.0019 (14)
C220.082 (2)0.0430 (19)0.072 (2)0.0049 (16)0.0147 (17)0.0024 (15)
C230.080 (2)0.053 (2)0.086 (3)0.0091 (17)0.0176 (19)0.0107 (19)
C240.109 (3)0.063 (2)0.073 (2)0.009 (2)0.032 (2)0.0091 (19)
C250.098 (3)0.055 (2)0.055 (2)0.0081 (17)0.0166 (17)0.0012 (15)
Geometric parameters (Å, º) top
N1—C181.360 (3)C11—C121.430 (3)
N1—N21.390 (3)C11—H11A0.9300
N1—C151.478 (3)C12—C131.416 (3)
N2—C171.287 (3)C13—C141.408 (3)
O1—C181.220 (3)C13—C151.518 (3)
C1—C21.360 (4)C15—C161.540 (4)
C1—C141.429 (3)C15—H15A0.9800
C1—H1A0.9300C16—C171.501 (3)
C2—C31.406 (4)C16—H16A0.9700
C2—H2B0.9300C16—H16B0.9700
C3—C41.343 (4)C17—C201.462 (3)
C3—H3A0.9300C18—C191.500 (4)
C4—C51.423 (4)C19—H19A0.9600
C4—H4A0.9300C19—H19B0.9600
C5—C61.389 (3)C19—H19C0.9600
C5—C141.435 (3)C20—C251.383 (4)
C6—C71.385 (3)C20—C211.387 (3)
C6—H6A0.9300C21—C221.373 (4)
C7—C81.423 (3)C21—H21A0.9300
C7—C121.436 (3)C22—C231.368 (4)
C8—C91.343 (4)C22—H22A0.9300
C8—H8A0.9300C23—C241.371 (4)
C9—C101.416 (4)C23—H23A0.9300
C9—H9A0.9300C24—C251.374 (4)
C10—C111.357 (4)C24—H24A0.9300
C10—H10A0.9300C25—H25A0.9300
C18—N1—N2121.5 (2)C13—C14—C5119.6 (2)
C18—N1—C15123.8 (2)C1—C14—C5116.0 (2)
N2—N1—C15113.1 (2)N1—C15—C13116.1 (2)
C17—N2—N1108.6 (2)N1—C15—C16101.2 (2)
C2—C1—C14122.1 (3)C13—C15—C16114.7 (2)
C2—C1—H1A118.9N1—C15—H15A108.1
C14—C1—H1A118.9C13—C15—H15A108.1
C1—C2—C3120.9 (3)C16—C15—H15A108.1
C1—C2—H2B119.6C17—C16—C15103.3 (2)
C3—C2—H2B119.6C17—C16—H16A111.1
C4—C3—C2119.5 (3)C15—C16—H16A111.1
C4—C3—H3A120.2C17—C16—H16B111.1
C2—C3—H3A120.2C15—C16—H16B111.1
C3—C4—C5121.8 (3)H16A—C16—H16B109.1
C3—C4—H4A119.1N2—C17—C20121.6 (2)
C5—C4—H4A119.1N2—C17—C16113.6 (2)
C6—C5—C4121.0 (2)C20—C17—C16124.8 (2)
C6—C5—C14119.5 (2)O1—C18—N1120.0 (3)
C4—C5—C14119.5 (2)O1—C18—C19123.1 (3)
C7—C6—C5121.9 (2)N1—C18—C19116.9 (2)
C7—C6—H6A119.0C18—C19—H19A109.5
C5—C6—H6A119.0C18—C19—H19B109.5
C6—C7—C8120.9 (2)H19A—C19—H19B109.5
C6—C7—C12119.1 (2)C18—C19—H19C109.5
C8—C7—C12120.0 (3)H19A—C19—H19C109.5
C9—C8—C7121.5 (3)H19B—C19—H19C109.5
C9—C8—H8A119.2C25—C20—C21117.6 (3)
C7—C8—H8A119.2C25—C20—C17121.3 (2)
C8—C9—C10119.4 (3)C21—C20—C17121.1 (2)
C8—C9—H9A120.3C22—C21—C20120.8 (3)
C10—C9—H9A120.3C22—C21—H21A119.6
C11—C10—C9121.0 (3)C20—C21—H21A119.6
C11—C10—H10A119.5C23—C22—C21120.7 (3)
C9—C10—H10A119.5C23—C22—H22A119.6
C10—C11—C12122.0 (3)C21—C22—H22A119.6
C10—C11—H11A119.0C22—C23—C24119.3 (3)
C12—C11—H11A119.0C22—C23—H23A120.3
C13—C12—C11124.2 (2)C24—C23—H23A120.3
C13—C12—C7119.8 (2)C23—C24—C25120.2 (3)
C11—C12—C7116.0 (2)C23—C24—H24A119.9
C14—C13—C12119.7 (2)C25—C24—H24A119.9
C14—C13—C15121.5 (2)C24—C25—C20121.3 (3)
C12—C13—C15118.7 (2)C24—C25—H25A119.3
C13—C14—C1124.4 (2)C20—C25—H25A119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N20.932.553.404 (3)152

Experimental details

Crystal data
Chemical formulaC25H20N2O
Mr364.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.7102 (17), 16.251 (3), 13.309 (3)
β (°) 91.49 (3)
V3)1883.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16656, 3538, 2021
Rint0.090
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.142, 1.04
No. of reflections3538
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···N20.932.553.404 (3)152
 

References

First citationChristoph, J. F., Liuchun, Y. & Donald, G. V. (2003). J. Am. Chem. Soc. 125, 3799–3812.  Web of Science PubMed Google Scholar
First citationKrishna, R., Velmurugan, D., Murugesan, R., Shanmuga Sundaram, M. & Raghunathan, R. (1999). Acta Cryst. C55, 1676–1677.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationParmar, S. S., Pandey, B. R., Dwivedi, C. & Harbison, R. D. (1974). J. Pharm. Sci. 63, 1152–1155.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoni, N., Pande, K., Kalsi, R., Gupta, T. K., Parmar, S. S. & &Barthwal, J. P. (1978). Res. Commun. Chem. Pathol. Pharmacol. 56, 129–132.  Google Scholar
First citationWei, X., Yang, G., Cheng, J., Lu, Z. & Xie, M. (2007). Opt. Mater. 29, 936–940.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds