organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-(4-Hydroxy-3-methoxybenzyl)-1,3thiazolidine-2,4-dione monohydrate

Li-Yan Xiong,^a Ting-Fang Wang,^b Li-Ping Zheng,^b Chuan Zhang^a* and Feng-Chun Wang^c

^aNew Drug Research Center, School of Pharmacy, Second Military Medical University, Shanghai 200433, People's Republic of China, ^bSchool of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350108, People's Republic of China, and ^cDepartment of Medicine, The General Hospital of Beijing Military Command, Beijing 100700, People's Republic of China. Correspondence e-mail: zhangchuan@smmu.edu.cn

Received 22 November 2010; accepted 29 November 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.119; data-to-parameter ratio = 13.0.

In the title compound, $C_{11}H_{11}NO_4S\cdot H_2O$, the five-membered thiazolidine ring is nearly planar, with a maximum deviation of 0.010 (2) Å. The dihedral angle between the thiazolidine and benzene rings is 49.16 (9)°. Intermolecular $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

For the therapeutic and pharmacological properties of thiazolidinediones, see: Day (1999); Spiegelman (1998). For the synthesis of the title compound, see: Madhavan *et al.* (2002); Shoda *et al.* (1983). For related structures, see: Divjaković *et al.* (1991); Yathirajan *et al.* (2005).

Experimental

Crystal data

 $\begin{array}{l} {\rm C}_{11}{\rm H}_{11}{\rm NO}_4{\rm S}{\cdot}{\rm H}_2{\rm O}\\ M_r=271.28\\ {\rm Monoclinic},\ P2_1/n\\ a=10.684\ (4)\ {\rm \AA}\\ b=8.151\ (3)\ {\rm \AA}\\ c=14.747\ (5)\ {\rm \AA}\\ \beta=99.657\ (4)^\circ \end{array}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{min} = 0.960, T_{max} = 0.974$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.119$	independent and constrained
S = 1.05	refinement
2226 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
171 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

4985 measured reflections

 $R_{\rm int} = 0.047$

2226 independent reflections

1902 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3 - H3 \cdots O2^{i} O4 - H4A \cdots O5^{ii} O5 - H5A \cdots O3 O5 - H5A \cdots O4 O5 - H5B \cdots O1^{iii} $	0.86 0.82 0.82 (5) 0.82 (5) 0.82 (5) 0.85 (3)	2.03 1.87 2.19 (5) 2.37 (4) 1.97 (3)	2.886 (2) 2.685 (2) 2.962 (2) 2.947 (2) 2.795 (3)	174 171 156 (4) 127 (4) 163 (3)

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This study was supported by the Science and Technology Commission of Shanghai special purpose for modernization of traditional Chinese medicine in 2008 (No 08DZ1970802) and the National Basic Research Program of China (No 2006CB504100 and 2009CB521907).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5102).

References

- Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Day, C. (1999). Diabet. Med. 16, 179-192.
- Divjaković, V., Popov-Pergal, K., Pergal, M. & Klement, U. (1991). Acta Cryst. C47, 1760–1761.
- Madhavan, G. R., Chakrabarti, R., Vikramadithyan, R. K., Mamidi, R. N. V. S., Balraju, V., Rajesh, B. M., Misra, P., Kumar, S. K. B., Lohray, B. B., Lohraya, V. B. & Rajagopalan, R. (2002). *Bioorg. Med. Chem.* 10, 2671–2680.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shoda, T., Mizuno, K., Hirata, T., Maki, Y. & Kawamatsu, Y. (1983). Chem. Pharm. Bull. 31, 560–569.
- Spiegelman, B. M. (1998). Diabetes, 47, 507-514.
- Yathirajan, H. S., Rai, K. M. L., Gaonkar, S. L., Narasegowda, R. S., Prabhuswamy, B. & Bolte, M. (2005). Acta Cryst. E61, 0245–0246.

supporting information

Acta Cryst. (2011). E67, o16 [https://doi.org/10.1107/S1600536810049895]

5-(4-Hydroxy-3-methoxybenzyl)-1,3-thiazolidine-2,4-dione monohydrate

Li-Yan Xiong, Ting-Fang Wang, Li-Ping Zheng, Chuan Zhang and Feng-Chun Wang

S1. Comment

Thiazolidinediones (TZDs), which are known to sensitize tissues to insulin, have been developed and clinically used as antidiabetic agents. They have been shown to reduce plasma glucose, lipid, and insulin levels, and used for the treatment of type 2 diabetes (Day, 1999; Spiegelman, 1998). Prompted by the activity of TZDs, we have synthesized the title compound to study its crystal structure.

The asymmetric unit contains a 5-(4-hydroxy-3-methoxybenzyl)thiazolidine-2,4-dione molecule and a solvate water molecule (Fig. 1). The geometric parameter of the title compoundare to its related structures (Divjakovic *et al.*, 1991; Yathirajan *et al.*, 2005). The dihedral angle between the thiazolidinedione ring [S1/C2/N3/C4/C5] and the benzene ring [C7–C12] is 49.16 (9)°. In the crystal packing (Fig. 2), the molecules are linked *via* intermolecular N1—H1···O2 hydrogen bonds. In addition, the molecule is connected to the water molecule by O5—H5···O1, O5—H5···O4, O5—H5···O3 and O4—H4···O5 hydrogen bonds which generate a three dimensional network (Table 1).

S2. Experimental

A mixture of 2,4-tThiazolidinedione (3.51 g, 0.03 mol), 4-hydroxy-3-methoxybenzaldehyde (4.56 g, 0.03 mol), acetic acid (0.18 g, 0.003 mol) and piperidine (0.26 g, 0.003 mol) in toluene (60 ml) was refluxed for 5 h with continuous removal of water. The reaction mixture was cooled to room temperature and the resultant crystalline compound was filtered and washed with water and dried to afford the (*Z*)-5-(4-hydroxy-3-methoxybenzylidene)thiazolidine-2,4-dione. Yield=7.33 g, 97.3%. To a solution of (*Z*)-5-(4-hydroxy-3-methoxybenzylidene) thiazolidine-2,4-dione (4 g, 0.016 mol) in 1,4-dioxane (400 ml), hydrogenated in the presence of 10% Pd/C (1.0 g) at 60 psi for 24 h. The mixture was filtered through a bed of Celite. The filtrate was evaporated under reduced pressure and purified by column chromatography using 50:1 CH₂Cl₂/MeOH to afford the title compound as yellowish solid. Yield = 1.96 g, 48.6% (Madhavan *et al.*, 2002; Shoda *et al.*, 1983). Crystallization of the product was carried out by dissolving the product in 10 ml a solvent mixture of MeOH and water (4:1) at room temperature.

S3. Refinement

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined using the riding-model approximation with C—H = 0.93–0.97, O—H = 0.82 and N—H = 0.86 Å, and $U_{iso}(H) = 1.5U_{eq}(C,O)$ for methyl H and hydroxy H atoms and $1.2U_{eq}(C,N)$ for the others.

Figure 1

View of the asymmetric unit of the compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

Crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

5-(4-Hydroxy-3-methoxybenzyl)-1,3-thiazolidine-2,4-dione monohydrate

Crystal data	
$C_{11}H_{11}NO_4S\cdot H_2O$	V = 1266.0 (8) Å ³
$M_r = 271.28$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 568
Hall symbol: -P 2yn	$D_{\rm x} = 1.423 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.684 (4) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.151 (3) Å	Cell parameters from 889 reflections
c = 14.747 (5) Å	$\theta = 2.8 - 27.5^{\circ}$
$\beta = 99.657 \ (4)^{\circ}$	$\mu=0.27~\mathrm{mm}^{-1}$

T = 293 KBlock, yellow

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	4985 measured reflections 2226 independent reflections
Radiation source: fine-focus sealed tube	1902 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.047$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
φ and ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan	$k = -9 \longrightarrow 6$
(SADABS; Sheldrick, 1996)	$l = -16 \rightarrow 17$
$T_{\min} = 0.960, \ T_{\max} = 0.974$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.043$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2226 reflections	and constrained refinement
171 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0681P)^2 + 0.2943P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.22 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. 1H NMR (300 MHz, CDCl3): δ 8.72(bar, 1H, N—H), 6.87–6.71 (m, 3H, 8-H, 11-H, 12-H), 5.46 (bar, 1H, 10-OH), 4.47–4.51 (m, 1H, 5-H), 3.83 (s, 3H, 9-OCH3), 3.46 (dd, 1H, j=14.4, 4.2, 3-H), 3.06 (dd, 1H, j=14.1, 9.6, 3-H). 13C NMR (300 MHz, CDCl3): δ 174.5, 167.5, 147.8, 145.7, 132.7, 123.1, 116.7, 114.9, 57.2, 56.1, 36.2. MS(ESI) m/z calc. for C11H11NO4S 253.27, found [M–1]+ 252.15. m.p. 109-110°C

 $0.15 \times 0.12 \times 0.10 \text{ mm}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.49420 (5)	1.06186 (7)	0.70922 (3)	0.0523 (2)	
N3	0.51317 (16)	1.07172 (19)	0.88568 (11)	0.0430 (4)	
Н3	0.5303	1.1072	0.9413	0.052*	
C2	0.5427 (2)	1.1623 (3)	0.81421 (15)	0.0529 (5)	
C4	0.45618 (17)	0.9243 (2)	0.86643 (12)	0.0383 (4)	
C5	0.43481 (18)	0.8857 (2)	0.76418 (12)	0.0403 (4)	
Н5	0.4868	0.7902	0.7545	0.048*	
C6	0.29661 (18)	0.8453 (3)	0.72695 (13)	0.0448 (5)	
H6A	0.2706	0.7526	0.7606	0.054*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H6B	0.2440	0.9383	0.7370	0.054*
C7	0.27553 (18)	0.8048 (2)	0.62553 (13)	0.0407 (4)
C8	0.31489 (17)	0.6537 (2)	0.59516 (12)	0.0386 (4)
H8	0.3523	0.5768	0.6378	0.046*
C9	0.29866 (16)	0.6178 (2)	0.50237 (12)	0.0360 (4)
C10	0.24649 (18)	0.7353 (2)	0.43822 (12)	0.0408 (4)
C11	0.2075 (2)	0.8830 (2)	0.46857 (14)	0.0512 (5)
H11	0.1718	0.9613	0.4261	0.061*
C12	0.2206 (2)	0.9167 (2)	0.56175 (14)	0.0504 (5)
H12	0.1918	1.0163	0.5812	0.061*
C13	0.3765 (2)	0.3430 (3)	0.52648 (16)	0.0541 (5)
H13A	0.3955	0.2494	0.4917	0.081*
H13B	0.3128	0.3141	0.5625	0.081*
H13C	0.4520	0.3781	0.5665	0.081*
01	0.5944 (2)	1.2929 (2)	0.82373 (12)	0.0877 (7)
O2	0.42480 (14)	0.83322 (17)	0.92352 (9)	0.0483 (4)
O3	0.33054 (14)	0.47280 (16)	0.46520 (9)	0.0485 (4)
O4	0.23570 (15)	0.69314 (17)	0.34819 (9)	0.0537 (4)
H4A	0.2034	0.7691	0.3160	0.080*
O5	0.36833 (18)	0.4211 (2)	0.27286 (12)	0.0558 (4)
H5A	0.336 (4)	0.444 (5)	0.318 (3)	0.134 (16)*
H5B	0.376 (3)	0.518 (4)	0.253 (2)	0.085 (10)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0699 (4)	0.0527 (4)	0.0342 (3)	-0.0171 (2)	0.0079 (2)	0.0023 (2)
N3	0.0578 (10)	0.0384 (9)	0.0326 (8)	-0.0079 (7)	0.0065 (7)	-0.0046 (6)
C2	0.0715 (14)	0.0423 (11)	0.0453 (11)	-0.0124 (10)	0.0112 (10)	-0.0012 (9)
C4	0.0432 (9)	0.0353 (10)	0.0352 (9)	-0.0008 (7)	0.0033 (7)	-0.0011 (7)
C5	0.0510 (10)	0.0365 (10)	0.0332 (9)	-0.0018 (8)	0.0060 (8)	-0.0021 (8)
C6	0.0518 (11)	0.0454 (11)	0.0374 (10)	-0.0063 (9)	0.0079 (8)	-0.0067 (8)
C7	0.0465 (10)	0.0381 (10)	0.0369 (10)	-0.0074 (8)	0.0050 (8)	-0.0055 (8)
C8	0.0441 (9)	0.0368 (10)	0.0337 (9)	-0.0031 (8)	0.0029 (7)	0.0046 (7)
C9	0.0409 (9)	0.0300 (9)	0.0367 (9)	-0.0029 (7)	0.0051 (7)	-0.0018 (7)
C10	0.0509 (10)	0.0363 (10)	0.0328 (9)	-0.0020 (8)	0.0006 (8)	-0.0018 (7)
C11	0.0727 (14)	0.0357 (10)	0.0405 (10)	0.0059 (10)	-0.0042 (9)	0.0021 (8)
C12	0.0679 (13)	0.0344 (10)	0.0466 (11)	0.0016 (9)	0.0028 (10)	-0.0078 (8)
C13	0.0650 (13)	0.0390 (11)	0.0599 (13)	0.0097 (10)	0.0149 (10)	0.0102 (10)
01	0.1467 (19)	0.0578 (11)	0.0617 (11)	-0.0545 (12)	0.0262 (11)	-0.0083 (8)
O2	0.0667 (9)	0.0429 (7)	0.0340 (7)	-0.0108 (7)	0.0047 (6)	0.0033 (6)
O3	0.0718 (9)	0.0344 (7)	0.0391 (7)	0.0089 (7)	0.0084 (6)	0.0019 (6)
O4	0.0836 (10)	0.0421 (8)	0.0312 (7)	0.0092 (7)	-0.0022 (7)	-0.0009 (6)
O5	0.0797 (11)	0.0438 (9)	0.0440 (8)	0.0040 (8)	0.0106 (8)	-0.0066 (7)

Geometric parameters (Å, °)

1.751 (2)	С8—Н8	0.9300
1.815 (2)	С9—О3	1.370 (2)
1.356 (2)	C9—C10	1.395 (3)
1.366 (3)	C10—O4	1.358 (2)
0.8600	C10—C11	1.373 (3)
1.197 (3)	C11—C12	1.385 (3)
1.211 (2)	C11—H11	0.9300
1.520 (2)	C12—H12	0.9300
1.523 (3)	C13—O3	1.424 (2)
0.9800	C13—H13A	0.9600
1.511 (3)	C13—H13B	0.9600
0.9700	С13—Н13С	0.9600
0.9700	O4—H4A	0.8200
1.370 (3)	O5—H5A	0.82 (5)
1.399 (3)	O5—H5B	0.85 (3)
1.382 (3)		
92 79 (9)	C9—C8—C7	120 60 (17)
118 11 (16)	C9—C8—H8	119 7
120.9	C7—C8—H8	119.7
120.9	03-09-08	125.52 (16)
123.5 (2)	O3—C9—C10	114.77 (15)
125.58 (18)	C8—C9—C10	119.71 (17)
110.93 (15)	O4—C10—C11	124.07 (17)
124.38 (17)	O4—C10—C9	116.61 (16)
123.37 (17)	C11—C10—C9	119.31 (17)
112.25 (16)	C10-C11-C12	120.76 (18)
112.19 (15)	C10-C11-H11	119.6
105.90 (13)	C12—C11—H11	119.6
113.61 (13)	C7—C12—C11	120.64 (19)
108.3	C7—C12—H12	119.7
108.3	C11—C12—H12	119.7
108.3	O3—C13—H13A	109.5
112.25 (15)	O3—C13—H13B	109.5
109.2	H13A—C13—H13B	109.5
109.2	O3—C13—H13C	109.5
109.2	H13A—C13—H13C	109.5
109.2	H13B—C13—H13C	109.5
107.9	C9—O3—C13	118.00 (15)
118.92 (18)	C10—O4—H4A	109.5
120.66 (18)	H5A—O5—H5B	98 (3)
120.40 (17)		
	$\begin{array}{c} 1.751 \ (2) \\ 1.815 \ (2) \\ 1.356 \ (2) \\ 1.366 \ (3) \\ 0.8600 \\ 1.197 \ (3) \\ 1.211 \ (2) \\ 1.520 \ (2) \\ 1.523 \ (3) \\ 0.9800 \\ 1.511 \ (3) \\ 0.9700 \\ 0.9700 \\ 0.9700 \\ 0.9700 \\ 1.370 \ (3) \\ 1.399 \ (3) \\ 1.382 \ (3) \\ \end{array}$	1.751 (2) $C8-H8$ $1.815 (2)$ $C9-O3$ $1.356 (2)$ $C9-C10$ $1.366 (3)$ $C10-O4$ 0.8600 $C10-C11$ $1.197 (3)$ $C11-C12$ $1.211 (2)$ $C11-H11$ $1.520 (2)$ $C12-H12$ $1.523 (3)$ $C13-O3$ 0.9800 $C13-H13A$ $1.511 (3)$ $C13-H13B$ 0.9700 $C4-H4A$ $1.370 (3)$ $O5-H5A$ 0.9700 $C4-H4A$ $1.399 (3)$ $O5-H5B$ $1.382 (3)$ $C9-C8-C7$ $92.79 (9)$ $C9-C8-H8$ 120.9 $C7-C8-H8$ 120.9 $C7-C8-H8$ 120.9 $C7-C8-H8$ 120.9 $O3-C9-C10$ $125.58 (18)$ $C8-C9-C10$ $110.93 (15)$ $O4-C10-C11$ $124.38 (17)$ $O4-C10-C9$ $122.5 (16)$ $C10-C11-H12$ $122.5 (16)$ $C10-C11-H11$ $105.90 (13)$ $C12-C11-H11$ 105.3 $C7-C12-H12$ 108.3 $C7-C$

Hydrogen-bona	geometry (Å, °)	
---------------	-----------------	--

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
N3—H3····O2 ⁱ	0.86	2.03	2.886 (2)	174
O4—H4A···O5 ⁱⁱ	0.82	1.87	2.685 (2)	171
O5—H5A···O3	0.82 (5)	2.19 (5)	2.962 (2)	156 (4)
O5—H5A…O4	0.82 (5)	2.37 (4)	2.947 (2)	127 (4)
O5—H5 <i>B</i> …O1 ⁱⁱⁱ	0.85 (3)	1.97 (3)	2.795 (3)	163 (3)

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1/2, y+1/2, -z+1/2; (iii) -x+1, -y+2, -z+1.