Structure Reports

Online
ISSN 1600-5368

Bis(μ-4-amino-3,5-dimethyl-4H-1,2,4triazole)bis[diiodidozinc(II)]

Rongxian Zhang, ${ }^{\text {a }}$ © Qiuyun Chen, ${ }^{\text {a }}$ Xiaofei Yang ${ }^{\text {b }}$ and Xiangyang Wu ${ }^{\text {c }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, ${ }^{\text {b }}$ College of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ${ }^{\text {c School of }}$ Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013,
People's Republic of China
Correspondence e-mail: rong@ujs.edu.cn

Received 8 October 2010; accepted 21 November 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.040 ; w R$ factor $=0.098 ;$ data-to-parameter ratio $=18.9$.

In the title compound, $\left[\mathrm{Zn}_{2} \mathrm{I}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]$, the $\mathrm{Zn}^{\text {II }}$ atom is coordinated in a distorted tetrahedral geometry by two N atoms from the triazole rings of two 4 -amino-3,5-dimethyl- 4 H -1,2,4-triazole (admt) ligands and two iodide ligands. Doubly bridging admt ligands connect two $\mathrm{Zn}^{\mathrm{II}}$ atoms, forming a centrosymmetric dimer. Weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds play an important role in the intermolecular packing.

Related literature

For background to transition metal complexes of 1,2,4-triazole derivatives, see: Liu et al. (1999, 2003); Zhao et al. (2002); Yi et al. (2004); Lavrenova et al. (1992); Haasnoot (2000); Zhang et al. (2007).

Experimental

Crystal data

$\begin{array}{ll}{\left[\mathrm{Zn}_{2} \mathrm{I}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]} & \text { Monoclinic, } P 2_{1} / c \\ M_{r}=862.63 & a=7.4674(19) \AA\end{array}$

$$
\begin{aligned}
& b=13.442(3) \AA \\
& c=11.412(3) \AA \\
& \beta=102.598(6)^{\circ} \\
& V=1117.9(5) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection
Rigaku Mercury CCD diffractometer
Absorption correction: multi-scan (REQAB; Jacobson, 1998) $T_{\text {min }}=0.207, T_{\text {max }}=0.309$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.098$
$S=1.04$
2038 reflections
108 parameters
2 restraints

H atoms treated by a mixture of

> Mo $K \alpha$ radiation
> $\mu=7.68 \mathrm{~mm}^{-1}$
> $T=293 \mathrm{~K}$
> $0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

> 10214 measured reflections 2038 independent reflections 1760 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$
indenent and constrained
independent and constrained refinement
$\Delta \rho_{\text {max }}=1.35 \mathrm{e}_{\AA_{\circ}^{-3}}$
$\Delta \rho_{\min }=-1.11 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-H4A $\cdots \mathrm{I} 2^{\text {i }}$	$0.86(2)$	$2.98(5)$	$3.706(7)$	$144(7)$
N4-H4A $\cdots 1^{\text {ii }}$	$0.86(2)$	$3.23(8)$	$3.720(7)$	$119(7)$
N4-H4B $\cdots 1^{\text {iii }}$	$0.86(2)$	$3.27(4)$	$4.090(7)$	$161(7)$
C3-H3A $\cdots \mathrm{I} 1^{\text {iv }}$	0.96	3.24	$3.930(8)$	130
C3-H3B $\cdots \mathrm{I} 1^{\text {iii }}$	0.96	3.43	$3.888(8)$	112

Symmetry codes: (i) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$; (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iv)
$-x+1,-y+1,-z$.
Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2313).

References

Haasnoot, J. G. (2000). Coord. Chem. Rev. 200-202, 131-185.
Jacobson, R. (1998). REQAB. Private communication to the Rigaku corporation, Tokyo, Japan.
Lavrenova, L. G., Baidina, I. A., Ikorskii, V. N., Sheludjkova, L. A. \& Larionov, S. V. (1992). Zh. Neorg. Khim. 37, 630-634.
Liu, J. C., Guo, G. C., Huang, J. S. \& You, X. Z. (2003). Inorg. Chem. 42, 235243.

Liu, J. C., Xu, Y., Duan, C. Y., Wang, S. L., Liao, F. L., Zhuang, J. Z. \& You, X. Z. (1999). Inorg. Chim. Acta, 295, 229-233.

Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D. Z., Yan, S. P. \& Jiang, Z. H. (2004). Inorg. Chem. 43, 33-43.
Zhang, Y.-M., Zhang, Y.-P., Li, B.-L. \& Zhang, Y. (2007). Acta Cryst. C63, m120-m122.
Zhao, Q. H., Li, H. F., Chen, Z. D. \& Fang, R. B. (2002). Inorg. Chim. Acta, 36, 142-146.

supporting information

Acta Cryst. (2011). E67, m26 [https://doi.org/10.1107/S160053681004852X]

Bis(μ-4-amino-3,5-dimethyl-4H-1,2,4-triazole)bis[diiodidozinc(II)]

Rongxian Zhang, Qiuyun Chen, Xiaofei Yang and Xiangyang Wu

S1. Comment

1,2,4-Triazole and its derivatives are very interesting ligands because they combine the coordination geometry of both pyrazole and imidazole with regard to the arrangement of their three heteroatoms. A large number of mononuclear, oligonuclear and polynuclear transition metal complexes of 1,2,4-triazole derivatives have been synthesized and characterized due to their magnetic properties and novel topologies (Haasnoot, 2000). For 4-amino-3,5-dimethyl-1,2,4triazole (admt), several $\mathrm{Mn}^{\text {II }}$ (Liu et al., 1999), $\mathrm{Co}^{\text {III }}$, $\mathrm{Ni}^{\text {II }}$ (Zhao et al., 2002), $\mathrm{Cu}^{\text {II }}$ (Liu et al., 2003) and $\mathrm{Cd}^{\text {II }}$ compounds (Yi et al., 2004) were synthesized. However, to best of our knowledge, only one $\mathrm{Zn}^{\mathrm{II}}$-admt compound, $\left[\mathrm{Zn}_{2}(\operatorname{admt})_{2} \mathrm{Cl}_{4}\right]$, was synthesized (Lavrenova et al., 1992). Here, we report the preparation and crystal structure of a dimeric $\mathrm{Zn}^{\text {II }}$ complex of $\left[\mathrm{Zn}(\mathrm{admt}) \mathrm{I}_{2}\right]_{2}$.

The structure of the title compound is made up of neutral dimeric metallacycle. THe title compound has the same molecular structure as its chloro derivative $\left[\mathrm{Zn}_{2}(\mathrm{admt})_{2} \mathrm{Cl}_{4}\right]$, but the two compounds have different packing patterns and are not isotructural (Lavrenova et al., 1992). In each dimeric metallacycle, as shown in Fig. 1, two zinc ${ }^{\text {II }}$ centers are connected by two admt ligands, resulting in a discrete $\mathrm{Zn}_{2}(\mathrm{admt})_{2}$ 6-membered metallacycle which represents the smallest closed cyclic structure with a 1:1 metal-to-ligand ratio. Two triazole rings are coplanar. Each zinc ${ }^{\text {II }}$ center is fourcoordinated with two nitrogen donors of two admt ligands (Zn1—N1 2.013 (5) \AA; $\mathrm{Zn} 1 — \mathrm{~N} 2^{\mathrm{i}}$ (symmetry code $\mathrm{i}:-x+1,-y$ $+1,-z) 2.046(5) \AA$) and two I- anions ligands (Zn1—I1 2.560 (1) \AA; Zn1—I2 2.549 (1) \AA), forming a distorted tetrahedral geometry. The $\mathrm{Zn}-\mathrm{N}$ (triazole) bond lengths in the title compound are consistent with values in other Zn -triazole complexes (Zhang et al., 2007; Lavrenova et al., 1992). The $\mathrm{N}-\mathrm{Zn}-\mathrm{N}, \mathrm{N}-\mathrm{Zn}-\mathrm{I}$ and $\mathrm{I}-\mathrm{Zn}-\mathrm{I}$ bond angles in the title compound are in the range of $106.8(2)$ to $113.75(3)^{\circ}$, near to the ideal tetrahedral value of ca. 109.5°.

The ligand admt is a 4 -substituted 1,2,4-triazole and exhibits in the title compound the N1,N2-bidentate bridging coordination mode. Two admt ligands bridge two $\mathrm{Zn}(\mathrm{II})$ atoms to form a dimer with a $\mathrm{Zn} \cdots \mathrm{Zn}$ distance of 3.803 (2) \AA. For a 4-substituted 1,2,4-triazole, by blocking the N4 donor position through substitution, only the N1 monodentate and $\mathrm{N} 1, \mathrm{~N} 2$-bidentate coordination modes are possible. The N1,N2-bidentate coordination mode in the dimer has been observed.
There are weak hydrogen bonding interactions between the hydrogen atom of the amino NH_{2} group and the I^{-}anion of adjacent dimers $\left(\mathrm{N} 4 \cdots \mathrm{I} 2^{\mathrm{ii}}=3.706(7) \AA ; \mathrm{N} 4 \cdots \mathrm{I} 1^{\mathrm{iii}}=3.720(7) \AA ; \mathrm{N} 4 \cdots \mathrm{I} 1^{\mathrm{iv}}=4.090(7) \AA\right)($ symmetry codes: $\mathrm{ii}=-x+2$, $y+1 / 2,-z+1 / 2$; iii $=x+1, y, z ;$ iv $=-x+1, y+1 / 2,-z+1 / 2$. There are also weak inter-dimer hydrogen bonding interactions between methyl hydrogen atoms and I^{-}anions ($\mathrm{C} 3 \cdots \mathrm{I} 1^{\mathrm{i}}=3.930$ (8) $\AA ; \mathrm{C} 3 \cdots \mathrm{I} 1^{\mathrm{iv}}=3.888$ (8) \AA). These hydrogen bonding interactions do direct the packing of the crystal structure of the title compound (Fig. 2). No obvious $\pi-\pi$ stacking interactions between the triazole rings is observed.

S2. Experimental

A 15 ml aqueous solution of 4-amino-3,5-dimethyl-1,2,4-triazole (admt) $(1.0 \mathrm{mmol})$ was added to a 10 ml aqueous solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol})$ and $\mathrm{KI}(2.0 \mathrm{mmol})$ with stirring. The resultant solution was stored at room temperature and colourless crystal were obtained after about two weeks. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{I}_{4} \mathrm{~N}_{8} \mathrm{Zn}_{2}$: C, 11.14; $\mathrm{H}, 1.87$; N, 12.99\%. Found: C, 11.09; H, 1.83; N, 12.93\%.

S3. Refinement

The H atoms of the amino group were obtained from difference Fourier maps and were refined with $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$. All other H atoms were placed in idealized positions and refined as riding with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The dimeric structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) $-x+1,-y+1,-z$.]

Figure 2
Cell packing plot of the title compound. The dashed lines represent $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond interactions.
Bis(μ-4-amino-3,5-dimethyl-4H-1,2,4-triazole)bis[diiodidozinc(II)]

Crystal data

$\left[\mathrm{Zn}_{2} \mathrm{I}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4}\right)_{2}\right]$
$M_{r}=862.63$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=7.4674$ (19) \AA
$b=13.442$ (3) \AA
$c=11.412(3) \AA$
$\beta=102.598(6)^{\circ}$
$V=1117.9(5) \AA^{3}$
$Z=2$
$F(000)=784$
$D_{\mathrm{x}}=2.563 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71070 \AA$
Cell parameters from 3727 reflections
$\theta=3.0-25.4^{\circ}$
$\mu=7.68 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colorless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku Mercury CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.31 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\text {min }}=0.207, T_{\text {max }}=0.309$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.098$
$S=1.04$
2038 reflections
108 parameters
2 restraints
Primary atom site location: structure-invariant direct methods

> 10214 measured reflections
> 2038 independent reflections
> 1760 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=25.4^{\circ}, \theta_{\min }=3.0^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-16 \rightarrow 14$
> $l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0483 P)^{2}+3.598 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-1.11 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Zn1	$0.42494(9)$	$0.40526(5)$	$0.10329(6)$	$0.0386(2)$
I1	$0.16668(7)$	$0.43239(4)$	$0.21514(5)$	$0.0657(2)$
I2	$0.56923(7)$	$0.23271(4)$	$0.13413(6)$	$0.0743(2)$
N1	$0.6190(7)$	$0.5117(4)$	$0.1541(4)$	$0.0405(12)$
N2	$0.6793(7)$	$0.5755(4)$	$0.0763(5)$	$0.0417(12)$
N3	$0.8344(7)$	$0.6026(4)$	$0.2567(4)$	$0.0387(12)$
N4	$0.9608(9)$	$0.6397(5)$	$0.3571(6)$	$0.0565(15)$
C1	$0.8137(9)$	$0.6303(5)$	$0.1401(6)$	$0.0439(15)$
C2	$0.7150(8)$	$0.5286(5)$	$0.2633(5)$	$0.0391(14)$
C3	$0.9265(11)$	$0.7049(6)$	$0.0964(7)$	$0.060(2)$
H3A	0.9910	0.6741	0.0418	0.090^{*}
H3B	1.0133	0.7325	0.1631	0.090^{*}
H3C	0.8492	0.7569	0.0556	0.090^{*}
C4	$0.7035(11)$	$0.4766(6)$	$0.3741(6)$	$0.0603(19)$
H4C	0.5954	0.4358	0.3600	0.090^{*}

H4D	0.6975	0.5244	0.4356	0.090^{*}
H4E	0.8101	0.4355	0.3993	0.090^{*}
H4A	$1.069(5)$	$0.632(6)$	$0.345(7)$	0.072^{*}
H4B	$0.963(12)$	$0.7033(17)$	$0.353(8)$	0.072^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0331(4)$	$0.0396(4)$	$0.0418(4)$	$-0.0002(3)$	$0.0052(3)$	$0.0039(3)$
I 1	$0.0538(3)$	$0.0680(4)$	$0.0837(4)$	$0.0007(2)$	$0.0337(3)$	$-0.0101(3)$
I 2	$0.0540(3)$	$0.0465(3)$	$0.1169(5)$	$0.0152(2)$	$0.0064(3)$	$0.0084(3)$
N 1	$0.037(3)$	$0.043(3)$	$0.040(3)$	$-0.004(2)$	$0.006(2)$	$0.007(2)$
N 2	$0.039(3)$	$0.044(3)$	$0.039(3)$	$-0.004(2)$	$0.003(2)$	$0.001(2)$
N 3	$0.034(3)$	$0.039(3)$	$0.038(3)$	$0.000(2)$	$-0.001(2)$	$-0.005(2)$
N 4	$0.051(4)$	$0.063(4)$	$0.048(3)$	$-0.012(3)$	$-0.005(3)$	$-0.015(3)$
C 1	$0.046(4)$	$0.039(3)$	$0.042(4)$	$-0.004(3)$	$0.001(3)$	$-0.006(3)$
C 2	$0.035(3)$	$0.040(3)$	$0.040(3)$	$0.002(3)$	$0.003(3)$	$-0.002(3)$
C 3	$0.065(5)$	$0.058(4)$	$0.054(4)$	$-0.028(4)$	$0.008(4)$	$-0.005(3)$
C 4	$0.060(5)$	$0.072(5)$	$0.046(4)$	$-0.008(4)$	$0.005(3)$	$0.008(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Zn1-N1	2.029 (5)	N4-H4A	0.86 (2)
$\mathrm{Zn} 1-\mathrm{N} 2^{\text {i }}$	2.044 (5)	N4-H4B	0.86 (2)
Zn1-I2	2.5493 (10)	C1-C3	1.465 (9)
Zn1-I1	2.5603 (10)	C2-C4	1.464 (9)
N1-C2	1.314 (8)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600
N1-N2	1.378 (7)	С3-H3B	0.9600
N2-C1	1.327 (8)	C3-H3C	0.9600
$\mathrm{N} 2-\mathrm{Zn} 1^{1}$	2.044 (5)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
N3-C2	1.349 (8)	C4-H4D	0.9600
N3-C1	1.358 (8)	C4-H4E	0.9600
N3-N4	1.408 (7)		
$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2^{\text {i }}$	106.8 (2)	N2-C1-N3	107.2 (6)
N1—Zn1-I2	110.38 (15)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 3$	128.0 (6)
N2i-Zn1-I2	108.08 (15)	N3-C1-C3	124.8 (6)
N1-Zn1-I1	109.00 (15)	N1-C2-N3	107.7 (5)
N2 ${ }^{\text {i }}$-Zn1-I1	108.58 (16)	N1-C2-C4	127.9 (6)
$\mathrm{I} 2-\mathrm{Zn} 1-\mathrm{I} 1$	113.73 (3)	N3-C2-C4	124.4 (6)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2$	108.4 (5)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Zn} 1$	126.9 (4)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{Zn} 1$	124.6 (4)	H3A-C3-H3B	109.5
C1-N2-N1	107.9 (5)	$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{Zn} 1^{\text {i }}$	123.8 (4)	$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
N1-N2-Zn1 ${ }^{\text {i }}$	128.2 (4)	$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5
C2-N3-C1	108.8 (5)	$\mathrm{C} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
C2-N3-N4	123.4 (5)	C2-C4-H4D	109.5

C1-N3-N4	127.8 (6)	$\mathrm{H} 4 \mathrm{C}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{D}$	109.5
N3-N4-H4A	108 (6)	C2-C4-H4E	109.5
N3-N4-H4B	109 (6)	$\mathrm{H} 4 \mathrm{C}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{E}$	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	94 (8)	H4D-C4-H4E	109.5
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	177.2 (5)	$\mathrm{Zn} 1{ }^{\mathrm{i}}-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 3$	-7.6 (10)
$\mathrm{I} 2-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	-65.6 (5)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 2$	1.6 (7)
$\mathrm{I} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2$	60.0 (5)	N4-N3-C1-N2	179.7 (6)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{N} 2$	-6.8(6)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 3$	-176.4 (7)
$\mathrm{I} 2-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{N} 2$	110.5 (4)	N4-N3-C1-C3	1.7 (11)
$\mathrm{I} 1-\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{N} 2$	-124.0 (4)	N2-N1-C2-N3	0.5 (7)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	0.5 (7)	$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 3$	177.1 (4)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1$	-176.2 (4)	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	-177.8 (7)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{N} 2-\mathrm{Zn} 1^{\text {i }}$	-175.0 (4)	$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 4$	-1.2 (10)
$\mathrm{Zn} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{Zn} 1^{\text {i }}$	8.3 (7)	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	-1.3 (7)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	-1.3 (7)	N4-N3-C2-N1	-179.5 (6)
Zn1 ${ }^{\text {i }}$ - $\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 3$	174.5 (4)	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{C} 2-\mathrm{C} 4$	177.1 (6)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 3$	176.7 (7)	N4-N3-C2-C4	-1.1 (10)

Symmetry code: (i) $-x+1,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4 — \mathrm{H} 4 A \cdots \mathrm{I}^{\mathrm{ii}}$	$0.86(2)$	$2.98(5)$	$3.706(7)$	$144(7)$
$\mathrm{N} 4 — \mathrm{H} 4 A \cdots \mathrm{I} 1^{\mathrm{iii}}$	$0.86(2)$	$3.23(8)$	$3.720(7)$	$119(7)$
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{I}^{\text {iv }}$	$0.86(2)$	$3.27(4)$	$4.090(7)$	$161(7)$
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{I}^{\mathrm{i}}$	0.96	3.24	$3.930(8)$	130
$\mathrm{C} 3 — \mathrm{H} 3 B \cdots \mathrm{II}^{\text {iv }}$	0.96	3.43	$3.888(8)$	112

Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+2, y+1 / 2,-z+1 / 2$; (iii) $x+1, y, z$; (iv) $-x+1, y+1 / 2,-z+1 / 2$.

