

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 4-[(7-Fluoroquinazolin-4-yl)oxy]aniline

#### Jia Jing,<sup>a,b</sup> Wang Guibin<sup>c</sup> and Lu Dingqiang<sup>a,b</sup>\*

<sup>a</sup>School of Pharmaceutical Sciences, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China, <sup>b</sup>Jiangsu Provincial Institute of Materia Medica, Nanjing University of Technology, No. 26 Majia Street, Nanjing 210009, People's Republic of China, and <sup>c</sup>PRC DAYAOWAN Administration for Entry & Exit Inspection and Quarantine, Haiqingdao Foreign Area Development Zone, Dalian 116610, Liaoning Province, People's Republic of China Correspondence e-mail: jiajing.jj@gmail.com

Received 18 October 2010; accepted 19 December 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.045; wR factor = 0.110; data-to-parameter ratio = 7.3.

In the molecule of the title compound,  $C_{14}H_{10}FN_3O$ , the bicyclic quinazoline system is effectively planar, with a mean deviation from planarity of 0.0140 (3) Å. The quinazoline heterocyclic system and the adjacent benzene ring make a dihedral angle of 85.73 (9)°. Two intermolecular N-H···N hydrogen bonds contribute to the stability of the crystal structure. In addition, a weak  $\pi$ - $\pi$  stacking interaction [centroid–centroid distance = 3.902 (2) Å] is observed.

#### **Related literature**

For general background to quinazolines, see: Labuda *et al.* (2009). Graves *et al.* (2002); For the preparation of the title compound, see: Zhang *et al.* (2010). For bond-length data, see: Allen *et al.* (1987).



#### **Experimental**

Crystal data

 $C_{14}H_{10}FN_{3}O$   $M_r = 255.25$ Orthorhombic,  $P2_12_12_1$ a = 8.0210 (16) Å b = 8.3370 (17) Åc = 17.562 (4) Å $V = 1174.4 (4) \text{ Å}^3$ Z = 4

| Mo $K\alpha$ radiation       |  |
|------------------------------|--|
| $\mu = 0.11 \text{ mm}^{-1}$ |  |

#### Data collection

| Enraf–Nonius CAD-4                           |  |
|----------------------------------------------|--|
| diffractometer                               |  |
| Absorption correction: $\psi$ scan           |  |
| (North et al., 1968)                         |  |
| $T_{\rm min} = 0.969, \ T_{\rm max} = 0.990$ |  |
| 2351 measured reflections                    |  |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$   $wR(F^2) = 0.110$  S = 1.021256 reflections

# Table 1 Hydrogen-bond geometry (Å, °).

| $D-H\cdots A$                                      | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - H \cdots A$ |
|----------------------------------------------------|--------------|-------------------------|------------------------|------------------|
| $N1 - H1A \cdots N2^{i}$ $N1 - H1B \cdots N3^{ii}$ | 0.89<br>0.89 | 2.67<br>2.38            | 3.408 (4)<br>3.205 (4) | 142<br>154       |
|                                                    |              |                         |                        |                  |

Symmetry codes: (i)  $x + \frac{1}{2}, -y - \frac{1}{2}, -z + 1$ ; (ii)  $-x + \frac{1}{2}, -y, z - \frac{1}{2}$ .

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2317).

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Graves, P. R., Kwiek, J. J., Fadden, P., Ray, R., Hardeman, K., Coley, A. M., Foley, M. & Haystead, T. A. J. (2002). *Mol. Pharmacol.* **62**, 1364–1372.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Labuda, J., Ovadekova, R. & Galandova, J. (2009). *Mikrochim. Acta*, 164, 371– 377.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zhang, A. H., Yuan, S. T., Shen, Y. P., Wu, Y. D. & Ji, A. C. (2010). CN Patent Appl. CN101671301.

T = 293 K

 $R_{\rm int} = 0.082$ 

reflections intensity decay: 1%

172 parameters

 $\Delta \rho_{\rm max} = 0.12 \text{ e} \text{ Å}^-$ 

 $\Delta \rho_{\rm min} = -0.15$  e Å<sup>-3</sup>

 $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

1256 independent reflections 883 reflections with  $I > 2\sigma(I)$ 

3 standard reflections every 200

H-atom parameters constrained

Acta Cryst. (2011). E67, o229 [https://doi.org/10.1107/S1600536810053286]

### 4-[(7-Fluoroquinazolin-4-yl)oxy]aniline

### Jing Jia, Guibin Wang and Dingqiang Lu

#### S1. Comment

Quinazoline and its derivatives have been a research hotspot for a long time, owing to their significant role in the synthesis of some tyrosine protein kinase inhibitors and their potential anti-cancer activities (Labuda *et al.*, 2009; Graves *et al.*, 2002). As part of our studies into the synthesis of quinazoline derivatives, the title compound 4-[(4-benzenamine)-yloxy]-7-fluoroquinazoline, which may be used as an intermediate towards some quinazoline derivatives, was synthesised. We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The bicyclic quinazoline system is effectively planar with a mean deviation of only 0.0140 (3)Å. The dihedral angle between the benzene ring C1-C6 and the quinazoline ring system is 85.73 (9)°.

Two intermolecular N-H···N hydrogen bonds contribute to the stability of the molecular configuration and the packing of the molecules (Fig. 2 and Table 1). The crystal structure (Fig. 2) is also stabilized by a weak  $\pi$ - $\pi$  stacking interaction with centroid–centroid separation of 3.902 (2) Å for Cg1···Cg2<sup>i</sup>, where Cg1, Cg2 are the centroids of the rings N2/C7/C14/C9/N3/C8 and C1–C6, respectively [symmetry code: (i) -1/2+x, 1/2-y, 1-z].

#### **S2. Experimental**

The title compound was prepared by following a reported procedure (Zhang et al., 2010). 4-Chloro-7-fluoroquinazoline (10 g, 54.77 mmol) was added to a mixture of dimethylformamide (100 ml), potassium tert-butoxide (6.15 g, 54.77 mmol) and 4-aminophenol (5.98 g, 54.77 mmol), and then heated to 343 K for 8 h. After cooling to room temperature, the reaction mixture was added to water (250 ml) and ethyl acetate (250 ml). The organic phase was collected and the water phase was extracted with ethyl acetate (250 ml). All the organic phases were combined and washed with brine (2× 250 ml). The organic phase was dried with anhydrous sodium sulfate for 6 h and then distilled (b.p. 313 K at 0.1 Mpa) and recrystallized from ethyl acetate, to give a total yield of 4-[(4-benzenamine)yloxy]-7-fluoroquinazoline of 81.0 % (11.32 g, 44.35 mmol). M.p. 353-355 K. ESI-MS(m/z): 256.1[M+H]<sup>+</sup>, 278.1[M+Na]<sup>+</sup>. <sup>1</sup>H NMR (500 MHz, DMSO-d<sub>6</sub>) δ: 8.72 (s, 1 H, 8-H), 8.40 (dd,  $J_{H-F} = 6.0$  Hz, J = 9.0 Hz, 1 H, 13-H), 7.7 (dd, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  Hz, 1 H, 10-H), 7.61 (td, J = 2.5 Hz,  $J_{H-F} = 10.0$  J = 2.5, 9.0 Hz, J<sub>H-F</sub> = 9.0 Hz, 1H, 12-H), 7.00 (d, J = 9.0 Hz, 1H, C1-H), 7.00 (d, J = 9.0 Hz, 1H, C5-H), 6.71 (d, J = 8.5 Hz, 1H, C2-H), 6.71 (d, J = 8.5 Hz, 1H, C4-H), 5.10(s, 2H, N1-H). <sup>13</sup>C NMR(500 MHz, DMSO-d<sub>6</sub>)  $\delta$ : 166.58 (C-7), 165.12 (d,  $J_{C-F} = 251.3$  Hz, C-11), 155.17 (C-8), 152.64 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 142.05 (C-3), 126.55 (d,  $J_{C-F} = 13.8$  Hz, C-9), 146.47 (C-6), 146.47 (C  $_{\rm F}$  = 11.3 Hz, C-13), 121.89 (C-1), 121.89 (C-5), 117.38 (d, J<sub>C-F</sub> = 25.0 Hz, C-12), 114.18 (C-2), 114.18 (C-4), 112.82 (C-14), 111.38 (d,  $J_{C-F} = 21.3 \text{ Hz}$ , C-10). IR(KBr)(cm<sup>-1</sup>):  $v_{N-H}$  (3420.80, 3327.69),  $v_{C-C-H}$  (3077.53),  $v_{C-N}$  (1628.11),  $\delta_{C-C-H}$  $(1609.25, 1575.87, 1509.07, 1459.02), v_{C-N} (1286.23), v_{Ar-O} (1248.06). UV-vis: \lambda_{max}(CH_3OH) nm (\varepsilon): 217.5 (40174), \lambda_{max}(C$ (0.1M HCl) nm (ε): 230.2 (30173), λ<sub>max</sub>(0.1M NaOH) nm (ε): 216.4 (16773).

Crystals of the title compound suitable for X-ray diffraction were grown from ethyl acetate.

#### **S3. Refinement**

The H atoms of the NH<sub>2</sub> group were initially located from a Difference-Fourier map, but were then constrained to ride on their parent atom N1, with N-H = 0.89 Å, and  $U_{iso}(H) = 1.2 U_{eq}(N1)$  in the final stages of the refinement. The remaining H atoms were positioned geometrically with C-H = 0.93 and 0.98 Å for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2 U_{eq}(C)$ . In the absence of any significant anomalous scattering, Friedel pairs were merged before the final refinement and the absolute structure was assigned arbitrarily.



#### Figure 1

The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level



Figure 2

A partial packing diagram. Hydrogen bonds and weak  $\pi$ - $\pi$  stacking interactions are shown as dashed lines.

#### 4-[(7-Fluoroquinazolin-4-yl)oxy]aniline

| Crystal of | data |
|------------|------|
|------------|------|

| $C_{14}H_{10}FN_3O$        | V = 1174.4 (4) Å <sup>3</sup>                         |
|----------------------------|-------------------------------------------------------|
| $M_r = 255.25$             | Z = 4                                                 |
| Orthorhombic, $P2_12_12_1$ | F(000) = 528                                          |
| Hall symbol: P 2ac 2ab     | $D_{\rm x} = 1.444 {\rm ~Mg} {\rm ~m}^{-3}$           |
| a = 8.0210 (16)  Å         | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 8.3370 (17)  Å         | Cell parameters from 25 reflections                   |
| c = 17.562 (4)  Å          | $\theta = 9.0 - 12.0^{\circ}$                         |
|                            |                                                       |

 $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K

#### Data collection

| Enraf–Nonius CAD-4                       | 1256 independent reflections                                        |
|------------------------------------------|---------------------------------------------------------------------|
| diffractometer                           | 883 reflections with $I > 2\sigma(I)$                               |
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.082$                                               |
| Graphite monochromator                   | $\theta_{\rm max} = 25.3^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$ |
| $\omega/2\theta$ scans                   | $h = -9 \rightarrow 0$                                              |
| Absorption correction: $\psi$ scan       | $k = -10 \rightarrow 10$                                            |
| (North <i>et al.</i> , 1968)             | $l = -21 \rightarrow 0$                                             |
| $T_{\min} = 0.969, \ T_{\max} = 0.990$   | 3 standard reflections every 200 reflections                        |
| 2351 measured reflections                | intensity decay: 1%                                                 |
| Refinement                               |                                                                     |

Block, colorless

 $0.30 \times 0.20 \times 0.10 \text{ mm}$ 

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.110$                               | neighbouring sites                                        |
| S = 1.02                                        | H-atom parameters constrained                             |
| 1256 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.046P)^2]$                    |
| 172 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                    |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$  |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2sigma(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x          | У           | Z            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|-------------|--------------|-----------------------------|--|
| F1  | 0.3205 (3) | 0.8351 (3)  | 0.76958 (14) | 0.0778 (8)                  |  |
| 01  | 0.4564 (4) | 0.2636 (3)  | 0.54742 (14) | 0.0600 (8)                  |  |
| N1  | 0.5255 (5) | -0.3210 (3) | 0.39680 (17) | 0.0613 (9)                  |  |
| H1A | 0.6191     | -0.3749     | 0.4060       | 0.074*                      |  |
| H1B | 0.5050     | -0.3230     | 0.3470       | 0.074*                      |  |
| N2  | 0.2795 (4) | 0.1426 (3)  | 0.63318 (17) | 0.0543 (9)                  |  |
| N3  | 0.1694 (4) | 0.2924 (4)  | 0.73803 (17) | 0.0558 (9)                  |  |
| C1  | 0.5944 (5) | 0.0096 (4)  | 0.5327 (2)   | 0.0557 (10)                 |  |
| H1C | 0.6622     | 0.0345      | 0.5740       | 0.067*                      |  |
| C2  | 0.6148 (5) | -0.1334 (4) | 0.49402 (19) | 0.0522 (9)                  |  |
| H2B | 0.6978     | -0.2042     | 0.5093       | 0.063*                      |  |
| C3  | 0.5145 (5) | -0.1730 (4) | 0.43328 (19) | 0.0449 (9)                  |  |
| C4  | 0.3965 (5) | -0.0629 (4) | 0.41001 (19) | 0.0527 (10)                 |  |
|     |            |             |              |                             |  |

|      |            |            |              | 0.0.C.      |
|------|------------|------------|--------------|-------------|
| H4A  | 0.3302     | -0.0854    | 0.3679       | 0.063*      |
| C5   | 0.3757 (5) | 0.0809 (4) | 0.4487 (2)   | 0.0564 (10) |
| H5A  | 0.2952     | 0.1540     | 0.4329       | 0.068*      |
| C6   | 0.4732 (5) | 0.1138 (4) | 0.50944 (18) | 0.0472 (9)  |
| C7   | 0.3580 (5) | 0.2687 (4) | 0.60919 (19) | 0.0467 (9)  |
| C8   | 0.1880 (5) | 0.1638 (5) | 0.6966 (2)   | 0.0593 (11) |
| H8A  | 0.1297     | 0.0739     | 0.7132       | 0.071*      |
| C9   | 0.2538 (4) | 0.4244 (4) | 0.71251 (19) | 0.0444 (8)  |
| C10  | 0.2435 (5) | 0.5671 (4) | 0.7550 (2)   | 0.0552 (10) |
| H10A | 0.1805     | 0.5725     | 0.7994       | 0.066*      |
| C11  | 0.3285 (6) | 0.6964 (4) | 0.7291 (2)   | 0.0540 (10) |
| C12  | 0.4236 (5) | 0.6976 (4) | 0.6636 (2)   | 0.0580 (10) |
| H12A | 0.4787     | 0.7902     | 0.6481       | 0.070*      |
| C13  | 0.4348 (5) | 0.5598 (4) | 0.6223 (2)   | 0.0520 (10) |
| H13A | 0.4979     | 0.5577     | 0.5779       | 0.062*      |
| C14  | 0.3511 (4) | 0.4204 (4) | 0.64658 (18) | 0.0420 (8)  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| F1  | 0.0938 (19) | 0.0589 (13) | 0.0808 (16) | -0.0023 (15) | -0.0035 (15) | -0.0267 (12) |
| 01  | 0.0754 (19) | 0.0483 (14) | 0.0565 (14) | -0.0111 (16) | 0.0223 (15)  | -0.0100 (12) |
| N1  | 0.070 (2)   | 0.0483 (17) | 0.0654 (19) | 0.0034 (18)  | 0.0088 (19)  | -0.0101 (15) |
| N2  | 0.0546 (19) | 0.0488 (19) | 0.059 (2)   | -0.0069 (17) | 0.0063 (18)  | 0.0018 (15)  |
| N3  | 0.062 (2)   | 0.0521 (18) | 0.0539 (18) | -0.0034 (18) | 0.0099 (18)  | -0.0034 (16) |
| C1  | 0.057 (2)   | 0.061 (2)   | 0.049 (2)   | -0.007(2)    | -0.004 (2)   | 0.0017 (19)  |
| C2  | 0.051 (2)   | 0.057 (2)   | 0.049 (2)   | 0.005 (2)    | -0.0010 (19) | 0.0061 (18)  |
| C3  | 0.048 (2)   | 0.0434 (19) | 0.0432 (19) | -0.0021 (19) | 0.0097 (18)  | 0.0039 (16)  |
| C4  | 0.050(2)    | 0.059 (2)   | 0.049 (2)   | -0.002 (2)   | -0.008(2)    | -0.0106 (19) |
| C5  | 0.059 (2)   | 0.051 (2)   | 0.059 (2)   | 0.007 (2)    | -0.003 (2)   | 0.005 (2)    |
| C6  | 0.057 (2)   | 0.0423 (19) | 0.0429 (19) | -0.0055 (19) | 0.009 (2)    | -0.0038 (17) |
| C7  | 0.047 (2)   | 0.049 (2)   | 0.0441 (19) | -0.002 (2)   | 0.0011 (19)  | -0.0011 (17) |
| C8  | 0.059 (2)   | 0.055 (2)   | 0.064 (2)   | -0.010 (2)   | 0.012 (2)    | 0.009 (2)    |
| C9  | 0.0401 (19) | 0.046 (2)   | 0.0473 (19) | 0.0028 (18)  | -0.0046 (18) | 0.0004 (18)  |
| C10 | 0.052 (2)   | 0.065 (2)   | 0.048 (2)   | 0.002 (2)    | 0.000(2)     | -0.0055 (19) |
| C11 | 0.057 (2)   | 0.050(2)    | 0.054 (2)   | 0.001 (2)    | -0.011 (2)   | -0.0116 (19) |
| C12 | 0.058 (2)   | 0.050(2)    | 0.066 (2)   | -0.012 (2)   | -0.004(2)    | 0.002 (2)    |
| C13 | 0.057 (2)   | 0.050(2)    | 0.049 (2)   | -0.007 (2)   | -0.0003 (19) | -0.0032 (18) |
| C14 | 0.0399 (19) | 0.0430 (18) | 0.0431 (18) | 0.0008 (17)  | -0.0055 (17) | 0.0003 (15)  |
|     |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| F1-C11 | 1.359 (4) | C4—C5  | 1.388 (4) |  |
|--------|-----------|--------|-----------|--|
| O1—C7  | 1.342 (4) | C4—H4A | 0.9300    |  |
| O1—C6  | 1.422 (4) | C5—C6  | 1.352 (5) |  |
| N1—C3  | 1.394 (4) | С5—Н5А | 0.9300    |  |
| N1—H1A | 0.8900    | C7—C14 | 1.427 (4) |  |
| N1—H1B | 0.8901    | C8—H8A | 0.9300    |  |
|        |           |        |           |  |

| N2—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.295 (4)            | C9—C14                                               | 1.397 (5)            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------|----------------------|
| N2—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.346 (4)            | C9—C10                                               | 1.407 (5)            |
| N3—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.305 (5)            | C10-C11                                              | 1.354 (5)            |
| N3-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 368 (4)            | C10—H10A                                             | 0.9300               |
| C1-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 366 (5)            | C11-C12                                              | 1 380 (5)            |
| C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.300(5)<br>1.381(5) | C12 - C13                                            | 1.362(5)             |
| C1 - H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300               | C12—H12A                                             | 0.9300               |
| $C^2$ $C^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 376 (5)            | C12 $C12$ $C14$                                      | 1.408(4)             |
| $C_2 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0300               | C13 H13A                                             | 0.9300               |
| $C_2$ $C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 380 (5)            | CI3—III3A                                            | 0.9500               |
| 05-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.380 (5)            |                                                      |                      |
| C7—O1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.6 (3)            | N2—C7—O1                                             | 121.5 (3)            |
| C3—N1—H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 114.6                | N2—C7—C14                                            | 123.4 (3)            |
| C3—N1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 117.1                | O1—C7—C14                                            | 115.0 (3)            |
| H1A—N1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.0                | N3—C8—N2                                             | 129.2 (4)            |
| C7—N2—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.3 (3)            | N3—C8—H8A                                            | 115.4                |
| C8—N3—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 115.0 (3)            | N2—C8—H8A                                            | 115.4                |
| C6-C1-C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1 (4)            | $N_3 - C_9 - C_{14}$                                 | 121.9 (3)            |
| C6-C1-H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.5                | $N_3 - C_9 - C_{10}$                                 | 1185(3)              |
| $C_2 - C_1 - H_1C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 120.5                | C14-C9-C10                                           | 110.5(3)             |
| $C_{3}$ $C_{2}$ $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.3                | C11 - C10 - C9                                       | 117.0(3)             |
| $C_{3}$ $C_{2}$ $H_{2B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.4                | C11 - C10 - H10A                                     | 121.2                |
| $C_1 - C_2 - H_2B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119.4                | C9 - C10 - H10A                                      | 121.2                |
| $C_1 - C_2 - H_2 D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 119.4                | $C_{10}$ $C_{11}$ $F_{1}$                            | 121.2<br>118 5 (4)   |
| $C_2 = C_3 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.1(3)<br>122.2(4) | C10 - C11 - C12                                      | 110.3(4)             |
| $C_2 = C_3 = N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122.2(4)             | $E_{10} - C_{11} - C_{12}$                           | 124.4(3)<br>1171(2)  |
| C4 - C3 - N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.7(3)             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 117.1(3)<br>119.2(2) |
| $C_3 = C_4 = C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120.8 (3)            | C13 - C12 - C11                                      | 118.5 (3)            |
| C5—C4—H4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.0                | C13 - C12 - H12A                                     | 120.9                |
| $C_{3}$ $C_{4}$ $H_{4}$ $C_{4}$ $C_{4$ | 119.6                | C12 - C12 - C14                                      | 120.9                |
| $C_0 = C_2 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 119.5 (4)            | C12-C13-C14                                          | 120.2 (3)            |
| C6—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.3                | C12—C13—H13A                                         | 119.9                |
| C4—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.3                | C14-C13-H13A                                         | 119.9                |
| C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2 (3)            | C9 - C14 - C13                                       | 119.8 (3)            |
| $C_{5}$ $C_{6}$ $O_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.6 (3)            | C9 = C14 = C7                                        | 115.1 (3)            |
| 01-06-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1 (3)            | C13—C14—C7                                           | 125.0 (3)            |
| C6—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.6 (6)             | C8—N3—C9—C10                                         | -178.5 (4)           |
| C1 - C2 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.4 (5)              | N3-C9-C10-C11                                        | 179.7 (3)            |
| C1 - C2 - C3 - N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -175.6(4)            | C14-C9-C10-C11                                       | 0.7 (5)              |
| $C_{2}^{2} - C_{3}^{2} - C_{4}^{2} - C_{5}^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.4(5)              | C9-C10-C11-F1                                        | -179.8(4)            |
| N1 - C3 - C4 - C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 175.6(4)             | C9 - C10 - C11 - C12                                 | 04(6)                |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6.(6)              | C10-C11-C12-C13                                      | -0.6(6)              |
| C4-C5-C6-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13(5)                | $F_1 - C_{11} - C_{12} - C_{13}$                     | 1795(4)              |
| C4 - C5 - C6 - 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 177 7 (3)            | $C_{11} - C_{12} - C_{13} - C_{14}$                  | -0.2(6)              |
| $C^{2}-C^{1}-C^{6}-C^{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -13(5)               | N3 - C9 - C14 - C13                                  | 179 5 (3)            |
| $C_2 - C_1 - C_0 - C_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1777(3)             | C10-C9-C14-C13                                       | -15(5)               |
| $C_{2} = C_{1} = C_{0} = 0_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 957(A)               | $N_3 = C_1 - C_1 + C_7$                              | -1.2(5)              |
| $C_{7} = 01 = 00 = 03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -87.0(4)             | $C_{10} C_{2} C_{14} C_{7}$                          | 1.2(3)<br>1778(3)    |
| $\cup - \cup - \cup - \cup - \cup 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0/.7(+)              | UIU-U7-UI4-U/                                        | 1//.0(3)             |

| C8—N2—C7—O1  | 178.7 (3) | C12—C13—C14—C9 | 1.2 (5)    |
|--------------|-----------|----------------|------------|
| C8—N2—C7—C14 | 0.5 (5)   | C12—C13—C14—C7 | -178.0 (4) |
| C6—O1—C7—N2  | -0.7 (5)  | N2-C7-C14-C9   | 0.7 (5)    |
| C6—O1—C7—C14 | 177.7 (3) | O1—C7—C14—C9   | -177.7 (3) |
| C9—N3—C8—N2  | 0.8 (6)   | N2-C7-C14-C13  | 179.9 (3)  |
| C7—N2—C8—N3  | -1.3 (6)  | O1—C7—C14—C13  | 1.5 (5)    |
| C8—N3—C9—C14 | 0.5 (5)   |                |            |
|              |           |                |            |

### Hydrogen-bond geometry (Å, °)

| D—H···A                            | D—H  | Н…А  | D····A    | <i>D</i> —H··· <i>A</i> |
|------------------------------------|------|------|-----------|-------------------------|
| N1—H1A···N2 <sup>i</sup>           | 0.89 | 2.67 | 3.408 (4) | 142                     |
| N1—H1 <i>B</i> ···N3 <sup>ii</sup> | 0.89 | 2.38 | 3.205 (4) | 154                     |

Symmetry codes: (i) x+1/2, -y-1/2, -z+1; (ii) -x+1/2, -y, z-1/2.