

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Etoricoxibium picrate

Jerry P. Jasinski,^a* Ray J. Butcher,^b M. S. Siddegowda,^c H. S. Yathiraian^c and A. R. Ramesha^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dRL Fine Chem., Bangalore 560 064, India, Department of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India

Correspondence e-mail: jjasinski@keene.edu

Received 4 December 2010; accepted 5 December 2010

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.104; data-to-parameter ratio = 13.6.

In the cation of the title salt (systematic name: 5-{5-chloro-3-[4-(methylsulfonyl)phenyl]-2-pyridyl}-2-methylpyridinium 2,4,6-trinitrophenolate), $C_{18}H_{16}ClN_2O_2S^+ \cdot C_6H_2N_3O_7^-$, the mean planes of the two pyridine rings in the bipyridine unit are twisted by $33.9(2)^{\circ}$ with respect to each other. The dihedral angles between the mean planes of the sulfonylbenzene ring and the chloropyridine and methylpyridine rings are 51.2 (0) and 49.3 (9) $^{\circ}$, respectively. The picrate anion interacts with the protonated N atom through a bifurcated N-H···(O,O) hydrogen bond, forming an $R_1^2(6)$ ring motif with the N atom from the methylpyridine group of an adjacent cation. N-H···O hydrogen bonds, weak C-H···O and π - π stacking interactions [centroid-centroid distances 3.8192 (9) and 3.6749 (9)] occur in the crystal packing, creating a two-dimensional network structure along [110].

Related literature

For the selective COX-2 inhibitor etoricoxib, see: Patrignani et al. (2003). For background to coxibs, traditional non-steroidal anti-inflammatory drugs, see: Rimon et al. (2010); Shriner et al. (1980); Patrignani et al. (2003). For related structures, see: Malathy Sony et al. (2005); Vasu Dev et al. (1999); Yathirajan et al. (2005). For standard bond lengths, see: Allen et al. (1987).

V = 2483.43 (5) Å³

 $0.48 \times 0.42 \times 0.24 \text{ mm}$

9467 measured reflections

4932 independent reflections

4454 reflections with $I > 2\sigma(I)$

constrained

Cu Ka radiation

 $\mu = 2.74 \text{ mm}^-$

T = 123 K

 $R_{\rm int} = 0.021$

Z = 4

Experimental

Crystal data

 $C_{18}H_{16}ClN_2O_2S^+ \cdot C_6H_2N_3O_7^ M_r = 587.94$ Monoclinic, $P2_1/c$ a = 9.0250 (1) Å b = 12.7496 (1) Å c = 21.8011 (3) Å $\beta = 98.114(1)^{\circ}$

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) $T_{\min} = 0.607, T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	363 parameters
$wR(F^2) = 0.104$	H-atom parameters c
S = 1.03	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
4932 reflections	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2A - H2AB \cdots O1B$	0.88	1.79	2.6588 (18)	172
$N2A - H2AB \cdots O7B$	0.88	2.46	2.8898 (19)	111
$C2A - H2AA \cdots O1A^{i}$	0.95	2.56	3.455 (2)	156
$C9A - H9AA \cdots O1B$	0.98	2.60	3.357 (2)	134
$C13A - H13A \cdot \cdot \cdot O2A^{ii}$	0.95	2.35	3.294 (2)	173
$C18A - H18C \cdots O2B^{iii}$	0.98	2.38	3.249 (2)	147
$C5A - H5AA \cdots O6B^{iv}$	0.95	2.45	3.329 (2)	153
$C7A - H7AA \cdots O4B^{v}$	0.95	2.52	3.326 (2)	143

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x + 1, -y + 1, -z + 1; (iv) $x - 1, y, z; (v) - x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

HSY thanks the University of Mysore for sanctioning his sabbatical leave and MSS thanks the University of Mysore for access to their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2336).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Malathy Sony, S. M., Charles, P., Ponnuswamy, M. N. & Yathirajan, H. S. (2005). Acta Cryst. E61, o108-o110.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

- Patrignani, P., Capone, M. L. & Tacconelli, S. (2003). Expert Opin. Pharmacother. 4 265–284.
- Rimon, G., Sidhu, R. S., Lauver, D. A., Lee, J. Y., Sharma, N. P., Yuan, C., Frieler, R. A., Trievel, R. C., Lucchesi, B. R. & Smith, W. L. (2010). *PNAS*, 107, 28–33.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Shriner, R. L., Fuson, R. C., Curtin, D. Y. & Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236–237. New York: Wiley.
- Vasu Dev, R., Shashi Rekha, K., Vyas, K., Mohanti, S. B., Rajender Kumar, P. & Om Reddy, G. (1999). Acta Cryst. C**55**, IUC9900161
- Yathirajan, H. S., Narasegowda, R. S., Nagaraja, P. & Bolte, M. (2005). Acta Cryst. E61, 0179–0181.

supporting information

Acta Cryst. (2011). E67, o107-o108 [https://doi.org/10.1107/S1600536810050993]

Etoricoxibium picrate

Jerry P. Jasinski, Ray J. Butcher, M. S. Siddegowda, H. S. Yathirajan and A. R. Ramesha

S1. Comment

Coxibs are the traditional non-steroidal anti-inflammatory drugs that counter the positive effects of aspirin in preventing blood clots. The research, published in the Proceedings of the National Academy of Sciences (Rimon *et al.*, 2010)), indicates that people who are taking aspirin and coxibs together are in fact inhibiting the aspirin's effectiveness in preventing heart attacks and strokes. Some of the important class of coxib drugs are valdecoxib, celecoxib, rofecoxib, lumiracoxib, etoricoxib *etc*. Etoricoxib (brand name Arcoxia worldwide; also Algix and Tauxib in Italy) is a novel selective COX-2 inhibitor (Patrignani *et al.*, 2003). Like any other COX-2 selective inhibitor, etoricoxib selectively inhibits isoform 2 of the enzyme *cyclo*-oxigenase (COX-2). The crystal structure of valdecoxib, a non-steroidal anti-inflammatory drug (Malathy Sony *et al.*, 2005), a pseudopolymorph of valdecoxib (Yathirajan *et al.*, 2005) and celecoxib, a COX-II inhibitor (Vasu Dev *et al.*, 1999) have been reported. In the view of the importance of etoricoxib, this paper presents the crystal structure of the title compound, etoricoxib picrate.

In the crystal structure of the title compound, $C_{18}H_{16}ClN_2O_2S^+$. $C_6H_2N_3O_7^-$, there is one cation-anion pair in the asymmetric unit (Fig. 1). In the cation, the mean planes of the two pyridine rings in the bipyridine moiety are twisted by 33.9 (2)° against each other. The dihedral angle between the mean planes of the sulfonylbenzene ring and the chloropyridine and methylpyridine rings are 51.2 (0)° and 49.3 (9)°, respectively. The picrate anion interacts with the protonated N atom through a bifurcated N—H···O hydrogen bond forming a $R_1^2(6)$ ring motif with the N atom from the methylpyridine group of an adjacent cation.

The dihedral angles between the mean planes of the anion benzene ring and three chloropyridine, methylpyridine and sulfonylbenzene rings of the cation are 53.9 (1)°, 49.3 (9)° and 3.8 (8)°, respectively. The mean planes of the two *o*-NO₂ and single *p*-NO₂ groups in the picrate anion are twisted by 3.0 (5)°, 30.4 (7)° and 6.5 (9)° with respect to the mean plane of the 6-membered benzene ring. Bond distances and angles are in normal ranges (Allen *et al.*, 1987). N—H···O hydrogen bonds, weak C—H···O (Table 1) and π - π stacking interactions (Table 2) dominate the crystal packing creating an infinite 2-D network structure along the 110 (Fig. 2).

S2. Experimental

Etoricoxib (3.59 g, 0.01 mmol) and picric acid (2.29 g, 0.01 mmol) in the ratio 1:1 were mixed together in a hot methanol solution. The mixture was warmed to 330 K for few minutes. The resultant precipitate was dried and recrystallized using DMSO. Crystals of the title compound were obtained by the slow evaporation of DMSO solution at room temperature after a few days. (m.p.: 463 - 465 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.98Å (CH₃) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.18

times (NH), 1.18–1.22 (CH) or 1.50–1.51 (CH₃) times U_{eq} of the parent atom.

Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N—H···O hydrogen bonds between the cation and anion and a $R_1^2(6)$ ring motif.

Figure 2

Packing diagram of the title compound viewed down the *c* axis. Dashed lines indicate N—H…O hydrogen bonds and weak C—H…O intermolecular interactions creating a 2-D network along the 110.

5-{5-Chloro-3-[4-(methylsulfonyl)phenyl]-2-pyridyl}-2-methylpyridinium 2,4,6-trinitrophenolate

<i>c</i> = 21.8011 (3) Å
$\beta = 98.114(1)^{\circ}$
V = 2483.43 (5) Å ³
Z = 4
F(000) = 1208
$D_{\rm x} = 1.573 {\rm ~Mg} {\rm ~m}^{-3}$

Cu K α radiation, $\lambda = 1.54178$ Å Cell parameters from 6755 reflections $\theta = 5.0-74.0^{\circ}$ $\mu = 2.74 \text{ mm}^{-1}$	T = 123 K Prism, pale yellow $0.48 \times 0.42 \times 0.24 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur Ruby Gemini diffractometer Radiation source: Enhance (Cu) X-ray Source Graphite monochromator Detector resolution: 10.5081 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2007) $T_{\min} = 0.607, T_{\max} = 1.000$	9467 measured reflections 4932 independent reflections 4454 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 74.2^{\circ}, \theta_{min} = 5.0^{\circ}$ $h = -11 \rightarrow 9$ $k = -15 \rightarrow 15$ $l = -26 \rightarrow 18$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.104$ S = 1.03 4932 reflections 363 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0651P)^2 + 1.3666P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.44$ e Å ⁻³ $\Delta\rho_{min} = -0.38$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cl	-0.27058 (5)	-0.16223 (3)	0.30221 (2)	0.02597 (12)
S	0.06564 (4)	0.53861 (3)	0.361812 (19)	0.01753 (11)
01A	0.02079 (16)	0.59365 (10)	0.41361 (7)	0.0288 (3)
O2A	0.00758 (15)	0.57350 (10)	0.30009 (6)	0.0287 (3)
N1A	0.06432 (15)	-0.08812 (11)	0.43234 (6)	0.0165 (3)
N2A	0.42035 (14)	0.18006 (10)	0.47118 (6)	0.0144 (3)
H2AB	0.4697	0.2297	0.4547	0.017*
C1A	-0.13587 (17)	-0.09020 (13)	0.34908 (8)	0.0169 (3)
C2A	-0.04308 (18)	-0.14008 (13)	0.39641 (8)	0.0188 (3)
H2AA	-0.0564	-0.2128	0.4034	0.023*
C3A	0.08116 (17)	0.01546 (12)	0.42314 (7)	0.0137 (3)
C4A	-0.01720 (17)	0.07282 (13)	0.37997 (7)	0.0141 (3)

C5A	-0.12491 (17)	0.01675 (13)	0.34070 (7)	0.0160 (3)
H5AA	-0.1893	0.0515	0.3089	0.019*
C6A	0.21601 (17)	0.06182 (12)	0.46066 (7)	0.0137 (3)
C7A	0.29848 (17)	0.13998 (12)	0.43700 (7)	0.0144 (3)
H7AA	0.2683	0.1654	0.3962	0.017*
C8A	0.47188 (17)	0.14885 (13)	0.52934 (7)	0.0150 (3)
C9A	0.60555 (19)	0.20386 (14)	0.56235 (9)	0.0224 (4)
H9AA	0.6164	0.2722	0.5429	0.034*
H9AB	0.6952	0.1615	0.5600	0.034*
H9AC	0.5930	0.2140	0.6059	0.034*
C10A	0.39764 (18)	0.06695 (13)	0.55375 (8)	0.0164 (3)
H10A	0.4335	0.0405	0.5938	0.020*
C11A	0.27134 (18)	0.02370 (13)	0.51971 (8)	0.0156 (3)
H11A	0.2214	-0.0327	0.5366	0.019*
C12A	-0.01200 (16)	0.18932 (13)	0.37508 (7)	0.0142 (3)
C13A	-0.00357 (18)	0.23552 (13)	0.31785 (8)	0.0161 (3)
H13A	-0.0098	0.1934	0.2816	0.019*
C14A	0.01398 (18)	0.34369 (13)	0.31387 (7)	0.0160 (3)
H14A	0.0206	0.3759	0.2751	0.019*
C15A	0.02176 (17)	0.40413 (12)	0.36752 (8)	0.0146 (3)
C16A	0.00510 (18)	0.36004 (13)	0.42436 (7)	0.0156 (3)
H16A	0.0063	0.4028	0.4601	0.019*
C17A	-0.01336 (18)	0.25191 (13)	0.42787 (7)	0.0159 (3)
H17A	-0.0269	0.2204	0.4662	0.019*
C18A	0.2626 (2)	0.53815 (15)	0.36775 (9)	0.0259 (4)
H18A	0.2983	0.6096	0.3621	0.039*
H18B	0.2933	0.4923	0.3357	0.039*
H18C	0.3056	0.5123	0.4088	0.039*
01B	0.56283 (15)	0.34250 (10)	0.43011 (6)	0.0259(3)
O2B	0.72286 (18)	0.50574 (12)	0.48473 (6)	0.0361 (4)
O3B	0.6532 (2)	0.64555 (11)	0.43287 (7)	0.0396 (4)
O4B	0.71450 (14)	0.62738 (10)	0.21604 (6)	0.0235 (3)
O5B	0.69640 (18)	0.47710 (12)	0.16915 (6)	0.0342 (3)
O6B	0.60280 (16)	0.16893 (10)	0.27056 (6)	0.0274 (3)
O7B	0.58882 (16)	0.16083 (10)	0.36843 (6)	0.0282 (3)
N1B	0.67468 (17)	0.55080 (12)	0.43669 (7)	0.0214 (3)
N2B	0.69422 (16)	0.53193 (12)	0.21568 (7)	0.0198 (3)
N3B	0.59954 (15)	0.21143 (11)	0.32115 (7)	0.0192 (3)
C1B	0.60694 (17)	0.37936 (13)	0.38317 (8)	0.0162 (3)
C2B	0.65095 (17)	0.48942 (13)	0.37955 (8)	0.0161 (3)
C3B	0.67357 (17)	0.53950 (13)	0.32650 (8)	0.0163 (3)
H3BA	0.6939	0.6126	0.3266	0.020*
C4B	0.66631 (17)	0.48133 (13)	0.27202 (8)	0.0166 (3)
C5B	0.64153 (17)	0.37444 (13)	0.27156 (8)	0.0166 (3)
H5BA	0.6424	0.3354	0.2345	0.020*
C6B	0.61546 (17)	0.32465 (13)	0.32535 (8)	0.0155 (3)
			~ /	(-)

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl	0.0243 (2)	0.0218 (2)	0.0298 (2)	-0.00915 (16)	-0.00314 (16)	-0.00647 (16)
S	0.0176 (2)	0.01094 (19)	0.0234 (2)	-0.00117 (14)	0.00049 (15)	0.00361 (14)
O1A	0.0364 (7)	0.0128 (6)	0.0385 (8)	0.0020 (5)	0.0102 (6)	-0.0017 (5)
O2A	0.0292 (7)	0.0219 (6)	0.0323 (7)	-0.0034 (5)	-0.0053 (5)	0.0135 (6)
N1A	0.0132 (6)	0.0127 (6)	0.0238 (7)	0.0000 (5)	0.0027 (5)	0.0008 (5)
N2A	0.0123 (6)	0.0124 (6)	0.0188 (7)	-0.0019 (5)	0.0033 (5)	0.0007 (5)
C1A	0.0130 (7)	0.0158 (8)	0.0221 (8)	-0.0039 (6)	0.0030 (6)	-0.0064 (6)
C2A	0.0162 (8)	0.0114 (7)	0.0291 (9)	-0.0011 (6)	0.0038 (7)	-0.0018 (6)
C3A	0.0117 (7)	0.0131 (7)	0.0168 (7)	-0.0001 (6)	0.0039 (6)	-0.0007 (6)
C4A	0.0125 (7)	0.0129 (7)	0.0175 (7)	-0.0003 (6)	0.0045 (6)	-0.0012 (6)
C5A	0.0145 (7)	0.0163 (8)	0.0172 (8)	0.0005 (6)	0.0018 (6)	-0.0007 (6)
C6A	0.0105 (7)	0.0123 (7)	0.0185 (8)	0.0018 (6)	0.0030 (6)	-0.0020 (6)
C7A	0.0130 (7)	0.0150 (7)	0.0153 (7)	0.0005 (6)	0.0027 (6)	-0.0004 (6)
C8A	0.0117 (7)	0.0152 (7)	0.0180 (7)	0.0033 (6)	0.0017 (6)	-0.0024 (6)
C9A	0.0161 (8)	0.0206 (8)	0.0288 (9)	-0.0015 (7)	-0.0033 (7)	-0.0007 (7)
C10A	0.0148 (7)	0.0176 (8)	0.0167 (7)	0.0023 (6)	0.0019 (6)	0.0025 (6)
C11A	0.0142 (7)	0.0136 (7)	0.0197 (8)	0.0003 (6)	0.0046 (6)	0.0010 (6)
C12A	0.0095 (7)	0.0129 (7)	0.0197 (8)	0.0009 (6)	-0.0001 (6)	-0.0001 (6)
C13A	0.0150 (7)	0.0163 (8)	0.0166 (8)	0.0020 (6)	0.0009 (6)	-0.0022 (6)
C14A	0.0152 (7)	0.0176 (8)	0.0152 (7)	0.0012 (6)	0.0014 (6)	0.0028 (6)
C15A	0.0107 (7)	0.0105 (7)	0.0220 (8)	0.0005 (5)	0.0003 (6)	0.0018 (6)
C16A	0.0167 (7)	0.0133 (7)	0.0166 (7)	0.0015 (6)	0.0019 (6)	-0.0017 (6)
C17A	0.0158 (7)	0.0158 (8)	0.0160 (8)	0.0011 (6)	0.0023 (6)	0.0016 (6)
C18A	0.0179 (8)	0.0285 (10)	0.0304 (10)	-0.0082 (7)	0.0004 (7)	0.0005 (8)
O1B	0.0329 (7)	0.0235 (6)	0.0228 (6)	-0.0118 (5)	0.0096 (5)	0.0004 (5)
O2B	0.0533 (9)	0.0336 (8)	0.0193 (7)	-0.0108 (7)	-0.0028 (6)	0.0006 (6)
O3B	0.0597 (10)	0.0230 (7)	0.0363 (8)	0.0120 (7)	0.0073 (7)	-0.0082 (6)
O4B	0.0237 (6)	0.0217 (6)	0.0238 (6)	-0.0061 (5)	-0.0010 (5)	0.0080 (5)
O5B	0.0535 (9)	0.0311 (8)	0.0200 (7)	-0.0065 (7)	0.0119 (6)	-0.0009 (6)
O6B	0.0330 (7)	0.0204 (6)	0.0288 (7)	-0.0022 (5)	0.0043 (6)	-0.0056 (5)
O7B	0.0353 (7)	0.0176 (6)	0.0341 (7)	-0.0001 (5)	0.0136 (6)	0.0070 (5)
N1B	0.0216 (7)	0.0219 (7)	0.0213 (8)	-0.0024 (6)	0.0052 (6)	-0.0023 (6)
N2B	0.0166 (7)	0.0219 (7)	0.0203 (7)	-0.0028 (6)	0.0004 (5)	0.0040 (6)
N3B	0.0140 (6)	0.0153 (7)	0.0282 (8)	-0.0015 (5)	0.0029 (6)	0.0006 (6)
C1B	0.0102 (7)	0.0176 (8)	0.0204 (8)	-0.0020 (6)	0.0009 (6)	0.0033 (6)
C2B	0.0115 (7)	0.0171 (8)	0.0193 (8)	0.0008 (6)	0.0004 (6)	-0.0018 (6)
C3B	0.0112 (7)	0.0146 (8)	0.0223 (8)	-0.0001 (6)	-0.0001 (6)	0.0023 (6)
C4B	0.0123 (7)	0.0190 (8)	0.0181 (8)	-0.0019 (6)	0.0011 (6)	0.0035 (6)
C5B	0.0117 (7)	0.0190 (8)	0.0186 (8)	-0.0007 (6)	0.0002 (6)	-0.0011 (6)
C6B	0.0108 (7)	0.0134 (7)	0.0219 (8)	-0.0020 (6)	0.0005 (6)	0.0014 (6)

Geometric parameters (Å, °)

Cl—C1A	1.7363 (16)	C12A—C17A	1.402 (2)
S—O1A	1.4355 (14)	C13A—C14A	1.392 (2)

S—O2A	1.4436 (13)	C13A—H13A	0.9500
S—C18A	1.7640 (19)	C14A—C15A	1.394 (2)
S—C15A	1.7679 (16)	C14A—H14A	0.9500
N1A—C2A	1.333 (2)	C15A—C16A	1.388 (2)
N1A—C3A	1.347 (2)	C16A—C17A	1.392 (2)
N2A—C7A	1.340 (2)	C16A—H16A	0.9500
N2A—C8A	1.348 (2)	C17A—H17A	0.9500
N2A—H2AB	0.8800	C18A—H18A	0.9800
C1A—C5A	1.381 (2)	C18A—H18B	0.9800
C1A—C2A	1.388 (2)	C18A—H18C	0.9800
C2A—H2AA	0.9500	O1B—C1B	1.242 (2)
C3A—C4A	1.405 (2)	O2B—N1B	1.219 (2)
C3A—C6A	1.489 (2)	O3B—N1B	1.224 (2)
C4A—C5A	1.398 (2)	O4B—N2B	1.2305 (19)
C4A—C12A	1.490 (2)	O5B—N2B	1.234 (2)
С5А—Н5АА	0.9500	O6B—N3B	1.233 (2)
C6A—C7A	1.386 (2)	O7B—N3B	1.231 (2)
C6A—C11A	1.400 (2)	N1B—C2B	1.461 (2)
С7А—Н7АА	0.9500	N2B—C4B	1.441 (2)
C8A—C10A	1.387 (2)	N3B—C6B	1.452 (2)
C8A—C9A	1.490 (2)	C1B—C6B	1.452 (2)
С9А—Н9АА	0.9800	C1B—C2B	1.464 (2)
С9А—Н9АВ	0.9800	C2B—C3B	1.361 (2)
С9А—Н9АС	0.9800	C3B—C4B	1.394 (2)
C10A—C11A	1.384 (2)	СЗВ—НЗВА	0.9500
C10A—H10A	0.9500	C4B—C5B	1.381 (2)
C11A—H11A	0.9500	C5B—C6B	1.383 (2)
C12A—C13A	1.392 (2)	C5B—H5BA	0.9500
O1A—S—O2A	118.49 (9)	C12A—C13A—C14A	119.75 (15)
O1A—S—C18A	109.69 (9)	C12A—C13A—H13A	120.1
O2A—S—C18A	107.39 (9)	C14A—C13A—H13A	120.1
O1A—S—C15A	109.14 (8)	C13A—C14A—C15A	119.21 (15)
O2A—S—C15A	108.00 (8)	C13A—C14A—H14A	120.4
C18A—S—C15A	103.01 (8)	C15A—C14A—H14A	120.4
C2A—N1A—C3A	119.18 (14)	C16A—C15A—C14A	121.74 (15)
C7A—N2A—C8A	123.92 (14)	C16A—C15A—S	120.60 (12)
C7A—N2A—H2AB	118.0	C14A—C15A—S	117.54 (12)
C8A—N2A—H2AB	118.0	C15A—C16A—C17A	118.62 (15)
C5A—C1A—C2A	120.25 (15)	C15A—C16A—H16A	120.7
C5A—C1A—Cl	120.11 (13)	C17A—C16A—H16A	120.7
C2A—C1A—Cl	119.60 (13)	C16A—C17A—C12A	120.24 (15)
N1A—C2A—C1A	121.42 (15)	C16A—C17A—H17A	119.9
N1A—C2A—H2AA	119.3	C12A—C17A—H17A	119.9
C1A—C2A—H2AA	119.3	S—C18A—H18A	109.5
N1A—C3A—C4A	122.41 (14)	S—C18A—H18B	109.5
N1A—C3A—C6A	114.07 (14)	H18A—C18A—H18B	109.5
C4A—C3A—C6A	123.47 (14)	S—C18A—H18C	109.5

C5A—C4A—C3A	117.60 (14)	H18A—C18A—H18C	109.5
C5A—C4A—C12A	119.48 (14)	H18B—C18A—H18C	109.5
C3A—C4A—C12A	122.92 (14)	O2B—N1B—O3B	123.86 (16)
C1A—C5A—C4A	118.72 (15)	O2B—N1B—C2B	118.13 (15)
С1А—С5А—Н5АА	120.6	O3B—N1B—C2B	117.87 (15)
С4А—С5А—Н5АА	120.6	O4B—N2B—O5B	123.07 (15)
C7A—C6A—C11A	116.81 (14)	O4B—N2B—C4B	118.76 (15)
C7A—C6A—C3A	121.39 (14)	05B—N2B—C4B	118.16 (14)
C11A—C6A—C3A	121.65 (14)	07B—N3B—06B	122.22 (15)
N2A—C7A—C6A	120.60 (14)	07B—N3B—C6B	119.13 (14)
N2A—C7A—H7AA	119.7	O6B-N3B-C6B	118.59 (14)
C6A—C7A—H7AA	119.7	01B-C1B-C6B	126.59 (15)
N2A - C8A - C10A	117 52 (14)	01B-C1B-C2B	121.90(15)
N2A—C8A—C9A	117.64 (15)	C6B-C1B-C2B	111 45 (14)
C10A - C8A - C9A	124 83 (15)	C3B-C2B-N1B	116.85 (15)
C8A - C9A - H9AA	109 5	C3B - C2B - C1B	12475(15)
C8A - C9A - H9AB	109.5	N1B-C2B-C1B	121.75(13) 11840(14)
	109.5	C2B-C3B-C4B	118.46(14)
	109.5	C2B = C3B = C4B	120.7
	109.5	C4B-C3B-H3BA	120.7
H9AB-C9A-H9AC	109.5	C5B-C4B-C3B	120.7
$C_{11} = C_{10} = C_{8}$	120.01 (15)	C5B-C4B-N2B	121.29(15) 118.90(15)
$C_{11A} = C_{10A} = C_{0A}$	120.01 (15)	$C_{3B} = C_{4B} = N_{2B}$	110.90(15)
C_{8A} C_{10A} H_{10A}	120.0	$C_{3}D_{-}C_{4}D_{-}N_{2}D$	119.09 (15)
$C_{0A} = C_{0A} = IIIOA$	120.06 (15)	C4B $C5B$ $H5BA$	119.39 (10)
C10A = C11A = C0A	120.90 (15)	C4B = C5B = H5BA	120.2
C6A = C11A = H11A	119.5	C5B C6B N3B	120.2
C_{0A} C_{12A} C_{17A}	119.5	$C_{3B} = C_{0B} = C_{1B}$	113.40(13) 123.50(15)
C13A = C12A = C17A	120.20(13) 110.40(14)	$C_{3}D_{-}C_{0}D_{-}C_{1}D$	123.30(13)
C17A = C12A = C4A	119.49(14) 120.30(14)	N3B-C0B-C1B	121.01 (14)
CI/A—CI2A—C4A	120.30 (14)		
C3A—N1A—C2A—C1A	1.2 (2)	C18A—S—C15A—C16A	93.67 (14)
C5A—C1A—C2A—N1A	-4.2 (3)	O1A—S—C15A—C14A	161.04 (13)
Cl—C1A—C2A—N1A	178.19 (12)	O2A—S—C15A—C14A	30.96 (15)
C2A—N1A—C3A—C4A	4.7 (2)	C18A—S—C15A—C14A	-82.46 (14)
C2A—N1A—C3A—C6A	-172.79 (14)	C14A—C15A—C16A—C17A	2.8 (2)
N1A—C3A—C4A—C5A	-7.5 (2)	S-C15A-C16A-C17A	-173.15 (12)
C6A—C3A—C4A—C5A	169.75 (14)	C15A—C16A—C17A—C12A	1.3 (2)
N1A—C3A—C4A—C12A	171.79 (15)	C13A—C12A—C17A—C16A	-4.9 (2)
C6A—C3A—C4A—C12A	-10.9 (2)	C4A—C12A—C17A—C16A	174.19 (14)
C2A—C1A—C5A—C4A	1.2 (2)	O2B—N1B—C2B—C3B	-146.94 (17)
Cl—C1A—C5A—C4A	178.77 (12)	O3B—N1B—C2B—C3B	28.9 (2)
C3A—C4A—C5A—C1A	4.4 (2)	O2B—N1B—C2B—C1B	32.3 (2)
C12A—C4A—C5A—C1A	-174.96 (14)	O3B—N1B—C2B—C1B	-151.84 (16)
N1A—C3A—C6A—C7A	143.34 (15)	O1B—C1B—C2B—C3B	-167.28 (16)
C4A—C3A—C6A—C7A	-34.2 (2)	C6B—C1B—C2B—C3B	10.0 (2)
N1A—C3A—C6A—C11A	-32.2 (2)	O1B—C1B—C2B—N1B	13.6 (2)
C4A—C3A—C6A—C11A	150.31 (15)	C6B—C1B—C2B—N1B	-169.16 (14)
	· · ·		

C8A—N2A—C7A—C6A	0.2 (2)	N1B—C2B—C3B—C4B	173.89 (14)
C11A—C6A—C7A—N2A	-3.6 (2)	C1B—C2B—C3B—C4B	-5.3 (2)
C3A—C6A—C7A—N2A	-179.32 (14)	C2B—C3B—C4B—C5B	-2.1 (2)
C7A—N2A—C8A—C10A	3.2 (2)	C2B—C3B—C4B—N2B	-178.17 (14)
C7A—N2A—C8A—C9A	-177.65 (15)	O4B—N2B—C4B—C5B	179.15 (15)
N2A-C8A-C10A-C11A	-3.0 (2)	O5B—N2B—C4B—C5B	-0.7 (2)
C9A—C8A—C10A—C11A	177.88 (16)	O4B—N2B—C4B—C3B	-4.6 (2)
C8A—C10A—C11A—C6A	-0.4 (2)	O5B—N2B—C4B—C3B	175.46 (15)
C7A—C6A—C11A—C10A	3.6 (2)	C3B—C4B—C5B—C6B	3.5 (2)
C3A-C6A-C11A-C10A	179.36 (14)	N2B—C4B—C5B—C6B	179.62 (14)
C5A—C4A—C12A—C13A	-53.2 (2)	C4B—C5B—C6B—N3B	-176.48 (14)
C3A—C4A—C12A—C13A	127.46 (17)	C4B—C5B—C6B—C1B	2.3 (2)
C5A—C4A—C12A—C17A	127.70 (16)	O7B—N3B—C6B—C5B	173.90 (14)
C3A—C4A—C12A—C17A	-51.6 (2)	O6B—N3B—C6B—C5B	-3.5 (2)
C17A—C12A—C13A—C14A	4.4 (2)	O7B—N3B—C6B—C1B	-4.9 (2)
C4A-C12A-C13A-C14A	-174.62 (14)	O6B—N3B—C6B—C1B	177.70 (14)
C12A—C13A—C14A—C15A	-0.5 (2)	O1B—C1B—C6B—C5B	168.74 (16)
C13A—C14A—C15A—C16A	-3.2 (2)	C2B—C1B—C6B—C5B	-8.4 (2)
C13A—C14A—C15A—S	172.85 (12)	O1B—C1B—C6B—N3B	-12.5 (3)
O1A—S—C15A—C16A	-22.84 (15)	C2B—C1B—C6B—N3B	170.35 (13)
O2A—S—C15A—C16A	-152.91 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2A—H2AB…O1B	0.88	1.79	2.6588 (18)	172
N2 <i>A</i> —H2 <i>AB</i> ····O7 <i>B</i>	0.88	2.46	2.8898 (19)	111
$C2A$ — $H2AA$ ···O1 A^{i}	0.95	2.56	3.455 (2)	156
С9А—Н9АА…О1В	0.98	2.60	3.357 (2)	134
C13A—H13A····O2A ⁱⁱ	0.95	2.35	3.294 (2)	173
C18A—H18C····O2B ⁱⁱⁱ	0.98	2.38	3.249 (2)	147
$C5A$ — $H5AA$ ···O6 B^{iv}	0.95	2.45	3.329 (2)	153
$C7A$ — $H7AA$ ···· $O4B^{v}$	0.95	2.52	3.326 (2)	143

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*, *y*-1/2, -*z*+1/2; (iii) -*x*+1, -*y*+1, -*z*+1; (iv) *x*-1, *y*, *z*; (v) -*x*+1, *y*-1/2, -*z*+1/2.