organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Bi­phenyl-4-yl­­oxy)acetic acid

aHainan Provincial Key Laboratory of Tropical Pharmaceutical Herb Chemistry, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
*Correspondence e-mail: enjuwang@163.com

(Received 4 December 2010; accepted 20 January 2011; online 29 January 2011)

In the title compound, C14H12O3, the phenyl and benzene rings make a dihedral angle of 47.51 (4)°. In the crystal, mol­ecules are dimerized by double O—H⋯O hydrogen bonds, forming centrosymmetric R22(8) ring motifs. The dimers are inter­linked by C—H⋯π inter­actions into zigzag layers.

Related literature

For biological studies of biphenyl compounds, see: Kamoda et al. (2006[Kamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062-3069.]); Kumar et al. (2008[Kumar, H., Javed, S. A., Khan, S. A. & Amir, M. (2008). Eur. J. Med. Chem. 43, 2688-2698.]); Malamas et al. (2000[Malamas, M. S., Sredy, J., Moxham, C., Katz, A., Xu, W., McDevitt, R., Adebayo, F. O., Sawicki, D. R., Seestaller, L., Sullivan, D. & Taylor, J. R. (2000). J. Med. Chem. 43, 1293-1310.]). For related structures, see: Ali et al. (2008[Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.]); Cao (2009[Cao, Y.-J. (2009). Acta Cryst. E65, o1851.]); Margraf et al. (2009[Margraf, D., Schuetz, D., Prisner, T. F. & Bats, J. W. (2009). Acta Cryst. E65, o1784.]); Li et al. (2009[Li, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.]); Charbonneau & Delugeard (1977[Charbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586-1588.]); Brett et al. (1999[Brett, T. J., Stezowski, J. J., Liu, S. & Coppens, P. (1999). Chem. Commun. pp. 551-552.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O3

  • Mr = 228.24

  • Monoclinic, P 21 /n

  • a = 5.9118 (1) Å

  • b = 28.5786 (3) Å

  • c = 6.9017 (1) Å

  • β = 109.631 (2)°

  • V = 1098.27 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 293 K

  • 0.43 × 0.42 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.727, Tmax = 0.742

  • 11989 measured reflections

  • 2306 independent reflections

  • 2223 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.12

  • 2306 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.81 2.6235 (13) 169
C12—H12⋯Cgii 0.93 2.86 3.6392 (16) 142
Symmetry codes: (i) -x+1, -y, -z-1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Biphenyl moieties have been found to act as pharmacophores in many biological studies such as antimycobacterial testing (Kamoda et al., 2006). Several derivatives of biphenyl-4-yloxy acetic acid are reported to be potential drugs with anti-inflammatory activity, analgesic activity and lower ulcerogenic potential (Kumar et al., 2008). A series of benzofuran/benzothiophene biphenyl oxo-acetic acids act as potent inhibitors of protein tyrosine phosphatase 1B with good oral antihyperglycemic activity (Malamas et al., 2000). In this paper we report the crystal structure of the title compound, (I).

In the crystal of the title compound (Fig. 1), two carboxyl groups form a pair of hydrogen bonds in cyclic R22(8) arrangement (Etter, 1990). The pairs of hydrogen bonds link the molecules into inversion dimers. The dimers are arranged in a herringbone pattern with an angle of 66.15 (1)°. The adjacent dimers are linked via C—H···π interactions with the H···π distance of 2.86 Å (Fig. 2). Some crystal structures containing biphenyl moiety have been reported. The two benzene rings are usually nearly coplanar for the biphenyl compounds without 2-substituents (Ali et al., 2008; Cao, 2009; Margraf et al., 2009; Li et al., 2009; Charbonneau & Delugeard, 1977). But the title compound displays a twisted conformation with a dihedral angle of 47.51 (4)° between the phenyl and benzene planes. Planar conformations will be adopted by biphenyl compounds in the ground states. It is the crystal packing forces that produce the planar conformations for the biphenyl compounds (Brett et al., 1999).

Related literature top

For biological studies of biphenyl compounds, see: Kamoda et al. (2006); Kumar et al. (2008); Malamas et al. (2000). For related structures, see: Ali et al. (2008); Cao (2009); Margraf et al. (2009); Li et al. (2009); Charbonneau & Delugeard (1977); Brett et al. (1999). For hydrogen-bond motifs, see: Etter (1990).

Experimental top

The crystals of (biphenyl-4-yloxy)acetic acid were unexpectedly obtained in the preparation of (biphenyl-4-yloxy)acetic acid-β-cyclodextrin inclusion complex. The experiment scheme is as follows: An ethanol solution of (biphenyl-4-yloxy)acetic acid (1 mmol, 5 ml) was added dropwise to an aqueous solution of β-cyclodextrin (1 mmol, 50 ml) and stirred at 50 °C for 6 h. The resulting solution was filtered and then stored at 40 °C. Colorless crystals suitable for the single X-ray diffraction were obtained after one week.

Refinement top

H atoms bonded to C were positioned geometrically with aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å. Their displacement parameters were set at Uiso(H) = 1.2Ueq(C). The hydroxyl H atom was found in a Fourier map and refined with the constraint of O—H = 0.82 Å, Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines.
2-(Biphenyl-4-yloxy)acetic acid top
Crystal data top
C14H12O3F(000) = 480
Mr = 228.24Dx = 1.380 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 11208 reflections
a = 5.9118 (1) Åθ = 4.6–76.4°
b = 28.5786 (3) ŵ = 0.79 mm1
c = 6.9017 (1) ÅT = 293 K
β = 109.631 (2)°Plate, colourless
V = 1098.27 (3) Å30.43 × 0.42 × 0.40 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2306 independent reflections
Radiation source: fine-focus sealed tube2223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 77.0°, θmin = 6.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 77
Tmin = 0.727, Tmax = 0.742k = 3635
11989 measured reflectionsl = 78
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.2839P]
where P = (Fo2 + 2Fc2)/3
2306 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.23 e Å3
0 constraints
Crystal data top
C14H12O3V = 1098.27 (3) Å3
Mr = 228.24Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.9118 (1) ŵ = 0.79 mm1
b = 28.5786 (3) ÅT = 293 K
c = 6.9017 (1) Å0.43 × 0.42 × 0.40 mm
β = 109.631 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2306 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2223 reflections with I > 2σ(I)
Tmin = 0.727, Tmax = 0.742Rint = 0.028
11989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.12Δρmax = 0.21 e Å3
2306 reflectionsΔρmin = 0.23 e Å3
155 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.54080 (16)0.06250 (3)0.05489 (14)0.0328 (3)
O20.39398 (17)0.02975 (3)0.32997 (15)0.0364 (3)
O10.76170 (18)0.00213 (4)0.29161 (15)0.0380 (3)
H10.69550.00650.41050.057*
C80.4590 (2)0.11281 (5)0.2933 (2)0.0321 (3)
H80.29990.11390.20690.039*
C30.6254 (2)0.08550 (4)0.24154 (19)0.0303 (3)
C70.5320 (2)0.13840 (4)0.4743 (2)0.0321 (3)
H70.42030.15650.50850.039*
C60.7706 (2)0.13749 (4)0.6066 (2)0.0302 (3)
C50.9320 (2)0.10893 (5)0.5536 (2)0.0335 (3)
H51.09050.10730.64110.040*
C20.7191 (2)0.04138 (5)0.0118 (2)0.0328 (3)
H2A0.79310.01560.07900.039*
H2B0.84300.06410.00630.039*
C90.8549 (2)0.16649 (4)0.7961 (2)0.0309 (3)
C10.6092 (2)0.02357 (4)0.2277 (2)0.0314 (3)
C40.8611 (2)0.08296 (5)0.3732 (2)0.0342 (3)
H40.97110.06400.34080.041*
C111.1469 (3)0.22017 (5)1.0158 (2)0.0403 (3)
H111.28580.23791.04170.048*
C101.0651 (2)0.19293 (5)0.8395 (2)0.0351 (3)
H101.15120.19230.74890.042*
C130.8131 (3)0.19494 (5)1.1128 (2)0.0379 (3)
H130.72900.19541.20510.045*
C140.7289 (2)0.16808 (5)0.9348 (2)0.0335 (3)
H140.58760.15100.90790.040*
C121.0218 (3)0.22096 (5)1.1534 (2)0.0399 (3)
H121.07770.23891.27250.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0336 (5)0.0349 (5)0.0283 (5)0.0004 (4)0.0085 (4)0.0068 (4)
O20.0357 (5)0.0383 (5)0.0318 (5)0.0054 (4)0.0067 (4)0.0019 (4)
O10.0385 (5)0.0448 (6)0.0299 (5)0.0059 (4)0.0104 (4)0.0061 (4)
C80.0306 (6)0.0336 (6)0.0309 (7)0.0010 (5)0.0084 (5)0.0019 (5)
C30.0363 (7)0.0274 (6)0.0267 (6)0.0019 (5)0.0100 (5)0.0024 (4)
C70.0333 (6)0.0314 (6)0.0325 (7)0.0011 (5)0.0120 (5)0.0018 (5)
C60.0344 (6)0.0268 (6)0.0295 (6)0.0010 (5)0.0106 (5)0.0005 (5)
C50.0325 (6)0.0337 (6)0.0317 (7)0.0014 (5)0.0074 (5)0.0034 (5)
C20.0341 (6)0.0342 (6)0.0294 (6)0.0013 (5)0.0097 (5)0.0043 (5)
C90.0351 (6)0.0264 (6)0.0296 (6)0.0024 (5)0.0089 (5)0.0004 (5)
C10.0367 (7)0.0285 (6)0.0287 (6)0.0017 (5)0.0106 (5)0.0011 (5)
C40.0355 (7)0.0324 (6)0.0339 (7)0.0041 (5)0.0107 (5)0.0030 (5)
C110.0404 (7)0.0360 (7)0.0398 (8)0.0042 (6)0.0072 (6)0.0056 (6)
C100.0358 (7)0.0335 (6)0.0350 (7)0.0006 (5)0.0107 (6)0.0021 (5)
C130.0517 (8)0.0333 (7)0.0293 (7)0.0033 (6)0.0146 (6)0.0000 (5)
C140.0398 (7)0.0293 (6)0.0318 (7)0.0004 (5)0.0123 (5)0.0004 (5)
C120.0515 (8)0.0326 (7)0.0301 (7)0.0004 (6)0.0064 (6)0.0055 (5)
Geometric parameters (Å, º) top
O3—C31.3816 (15)C2—C11.5002 (17)
O3—C21.4190 (16)C2—H2A0.9700
O2—C11.2427 (16)C2—H2B0.9700
O1—C11.2848 (16)C9—C141.3971 (18)
O1—H10.8200C9—C101.3982 (19)
C8—C71.3852 (18)C4—H40.9300
C8—C31.3933 (18)C11—C121.386 (2)
C8—H80.9300C11—C101.3873 (19)
C3—C41.3862 (19)C11—H110.9300
C7—C61.3996 (19)C10—H100.9300
C7—H70.9300C13—C121.386 (2)
C6—C51.3946 (18)C13—C141.3914 (19)
C6—C91.4858 (17)C13—H130.9300
C5—C41.3880 (18)C14—H140.9300
C5—H50.9300C12—H120.9300
C3—O3—C2115.42 (10)C14—C9—C6121.53 (12)
C1—O1—H1109.5C10—C9—C6120.07 (12)
C7—C8—C3119.62 (12)O2—C1—O1125.12 (12)
C7—C8—H8120.2O2—C1—C2122.36 (12)
C3—C8—H8120.2O1—C1—C2112.52 (11)
O3—C3—C4123.75 (12)C3—C4—C5119.61 (12)
O3—C3—C8116.11 (11)C3—C4—H4120.2
C4—C3—C8120.14 (12)C5—C4—H4120.2
C8—C7—C6121.25 (12)C12—C11—C10120.08 (14)
C8—C7—H7119.4C12—C11—H11120.0
C6—C7—H7119.4C10—C11—H11120.0
C5—C6—C7117.92 (12)C11—C10—C9120.93 (13)
C5—C6—C9120.04 (12)C11—C10—H10119.5
C7—C6—C9122.03 (11)C9—C10—H10119.5
C4—C5—C6121.42 (12)C12—C13—C14120.31 (13)
C4—C5—H5119.3C12—C13—H13119.8
C6—C5—H5119.3C14—C13—H13119.8
O3—C2—C1110.21 (11)C13—C14—C9120.52 (13)
O3—C2—H2A109.6C13—C14—H14119.7
C1—C2—H2A109.6C9—C14—H14119.7
O3—C2—H2B109.6C11—C12—C13119.75 (13)
C1—C2—H2B109.6C11—C12—H12120.1
H2A—C2—H2B108.1C13—C12—H12120.1
C14—C9—C10118.40 (12)
C2—O3—C3—C49.49 (18)O3—C2—C1—O23.58 (18)
C2—O3—C3—C8169.80 (11)O3—C2—C1—O1176.89 (11)
C7—C8—C3—O3177.55 (11)O3—C3—C4—C5177.22 (11)
C7—C8—C3—C41.77 (19)C8—C3—C4—C52.0 (2)
C3—C8—C7—C60.2 (2)C6—C5—C4—C30.4 (2)
C8—C7—C6—C51.8 (2)C12—C11—C10—C90.9 (2)
C8—C7—C6—C9176.93 (12)C14—C9—C10—C110.1 (2)
C7—C6—C5—C41.5 (2)C6—C9—C10—C11179.91 (12)
C9—C6—C5—C4177.23 (12)C12—C13—C14—C90.8 (2)
C3—O3—C2—C1172.07 (10)C10—C9—C14—C130.80 (19)
C5—C6—C9—C14133.31 (14)C6—C9—C14—C13179.04 (12)
C7—C6—C9—C1448.02 (18)C10—C11—C12—C130.8 (2)
C5—C6—C9—C1046.52 (18)C14—C13—C12—C110.0 (2)
C7—C6—C9—C10132.15 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.812.6235 (13)169
C12—H12···Cgii0.932.863.6392 (16)142
Symmetry codes: (i) x+1, y, z1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12O3
Mr228.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.9118 (1), 28.5786 (3), 6.9017 (1)
β (°) 109.631 (2)
V3)1098.27 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.43 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.727, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
11989, 2306, 2223
Rint0.028
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.12
No. of reflections2306
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.812.6235 (13)169
C12—H12···Cgii0.932.863.6392 (16)142
Symmetry codes: (i) x+1, y, z1; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the Natural Science Foundation of Hainan Province (No. 808145)

References

First citationAli, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrett, T. J., Stezowski, J. J., Liu, S. & Coppens, P. (1999). Chem. Commun. pp. 551–552.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y.-J. (2009). Acta Cryst. E65, o1851.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCharbonneau, G. P. & Delugeard, Y. (1977). Acta Cryst. B33, 1586–1588.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationKamoda, O., Anzai, K., Mizoguchi, J., Shiojiri, M., Yanagi, T., Nishino, T. & Kamiya, S. (2006). Antimicrob. Agents Chemother. 50, 3062–3069.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, H., Javed, S. A., Khan, S. A. & Amir, M. (2008). Eur. J. Med. Chem. 43, 2688–2698.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, F., Wang, W.-W., Ji, X., Cao, C.-C. & Zhu, D.-Y. (2009). Acta Cryst. E65, o244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMalamas, M. S., Sredy, J., Moxham, C., Katz, A., Xu, W., McDevitt, R., Adebayo, F. O., Sawicki, D. R., Seestaller, L., Sullivan, D. & Taylor, J. R. (2000). J. Med. Chem. 43, 1293–1310.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMargraf, D., Schuetz, D., Prisner, T. F. & Bats, J. W. (2009). Acta Cryst. E65, o1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds