

metal-organic compounds

 $\beta = 118.741 \ (2)^{\circ}$

Z = 2

V = 1476.5 (3) Å³

Mo $K\alpha$ radiation

 $0.49 \times 0.34 \times 0.16 \text{ mm}$

7342 measured reflections

4734 independent reflections

4502 reflections with $I > 2\sigma(I)$

 $\mu = 2.74 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.036$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[hepta-µ₂-aqua-bis(µ₂-pyrazine-2carboxylato)dibarium] bis(pyrazine-2carboxylate)]

Qi Shuai,^a* Ke-Lian Ding,^a Fan Hu^b and Ping Yu^a

^aCollege of Science, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China, and ^bStudents Service, Northwest A&F University, Yangling 712100, Shanxi Province, People's Republic of China Correspondence e-mail: shuaiqi@nwsuaf.edu.cn

Received 5 December 2010; accepted 23 January 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.019 Å; R factor = 0.046; wR factor = 0.121; data-to-parameter ratio = 11.7.

In the layered title coordination polymer, $\{[Ba_2(C_5H_3N_2O_2)_2(H_2O)_7](C_5H_3N_2O_2)_2\}_n$, the coordination geometries around the two independent Ba^{II} ions can be described as bicapped square-antiprismatic [BaNO_9] arrangements. A two-dimensional polymeric framework with (6,3) topology can be observed in the *ac* plane, the nodes being provided by Ba^{II} ions and the connectors being N and O atoms belonging to pyrazine-2-carboxylate ligands and O atoms of bridging water molecules. Non-coordinating pyrazine-2-carboxylate ions are located between the polymeric layers in the crystal and are interconnected through extensive $O-H \cdots N$, O hydrogen bonding.

Related literature

For Ca^{II} and Sr^{II} complexes with pyrazine-2-carboxylate as ligand, see: Ptasiewicz-Bak *et al.* (1998). For different modes of coordination for pyrazine-2-carboxylate in polymers, see: Huang *et al.* (2003); Yin *et al.* (2006).

Experimental

Crystal data

 $\begin{bmatrix} Ba_2(C_5H_3N_2O_2)_2(H_2O)_7 \end{bmatrix} \\ \hline (C_5H_3N_2O_2)_2 \\ M_r = 893.17 \\ Monoclinic, P2_1 \\ a = 7.5652 (10) \text{ Å} \\ b = 29.263 (3) \text{ Å} \\ c = 7.6067 (10) \text{ Å}$

Data collection

```
Bruker SMART APEX CCD area-
detector diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
T_{min} = 0.348, T_{max} = 0.669
```

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.84 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -2.62 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983),
2096 Friedel pairs
Flack parameter: 0.04 (4)

Table 1	
I I.J	1.

Н	lyd	rogen-	bond	geome	try	(A,	°).	•
---	-----	--------	------	-------	-----	-----	-----	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O10−H10A···O7	0.85	2.23	3.000 (13)	152
O10−H10B···O5	0.85	1.92	2.769 (11)	177
O11−H11A···O4	0.85	1.88	2.669 (12)	153
$O11 - H11B \cdots O5$	0.85	2.04	2.861 (12)	163
$O11 - H11B \cdot \cdot \cdot N5$	0.85	2.62	3.191 (14)	126
$O13-H13A\cdots N5$	0.85	2.14	2.983 (14)	175
$O14-H14A\cdots O8$	0.85	1.87	2.685 (12)	160
$O9-H9A\cdots O7^{i}$	0.85	1.88	2.677 (12)	155
$O9-H9B\cdots O5^{i}$	0.85	1.89	2.689 (12)	156
$O13-H13B\cdots O6^{i}$	0.85	1.93	2.729 (12)	157
$O15-H15A\cdots O7^{i}$	0.85	2.04	2.860 (12)	161
$O15 - H15A \cdot \cdot \cdot N7^{1}$	0.85	2.62	3.208 (14)	127
$O12-H12A\cdots O7^{ii}$	0.85	1.96	2.811 (12)	179
$O12-H12B\cdots O5^{ii}$	0.85	2.26	3.018 (12)	149
$O14 - H14B \cdot \cdot \cdot N7^{n}$	0.85	2.18	3.028 (13)	174
$O15-H15B\cdots O2^{iii}$	0.85	1.90	2.676 (11)	152

Symmetry codes: (i) x + 1, y, z; (ii) x, y, z - 1; (iii) x, y, z + 1.

metal-organic compounds

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Scientific Research Foundation of Northwest A&F University (grant No. Z111020828).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2331).

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Huang, D., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2003). *Inorg. Chim. Acta*, **353**, 284–291.
- Ptasiewicz-Bak, H., Ostrowski, A. & Leciejewicz, J. (1998). Pol. J. Chem. 72, 2014–2023.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yin, H. D., Li, G., Gao, Z. J. & Xu, H. L. (2006). J. Organomet. Chem. 691, 1235–1241.

supporting information

Acta Cryst. (2011). E67, m283-m284 [doi:10.1107/S1600536811003023]

Poly[[hepta-µ₂-aqua-bis(µ₂-pyrazine-2-carboxylato)dibarium] bis(pyrazine-2-carboxylate)]

Qi Shuai, Ke-Lian Ding, Fan Hu and Ping Yu

S1. Comment

Ptasiewicz-Bak *et al.* obtained monomeric complexes of calcium and strontium $[M(C_5H_3N_2O_2)_2(H_2O)_4]$ ($M = Ca^{II}$ or Sr^{II}, Ptasiewicz-Bak *et al.*, 1998), based on 2-pyrazinecarboxylate ligand, which are isostructural.

Here, we report a complex, (I), assembled by alkaline earth metal Ba^{II} ion with 2-pyrazinecarboxylate as ligand. Different from complexes of calcium and strontium, the formula for the title complex is $[Ba_2(C_5H_3N_2O_2)_2(H_2O)_7]$ $(C_5H_3N_2O_2)_2$. X-ray single-crystal diffraction analysis indicates the presence of two independent Ba^{II} ions, two coordinated pyrazine-2-carboxylate ions, seven coordinated water molecules and two isolated pyrazine-2-carboxylate ions in the asymmetric unit. Only one independent Ca^{II} or Sr^{II} ions are found in the complexes reported by Ptasiewicz-Bak *et al.*

In the title complex, the coordination geometries (Fig. 1) around Ba1 and Ba2 centres could be described as bicapped square-antiprismatic [BaNO₉] arrangements with coordination number of 10, where one N and two O atoms come from 2-pyrazinecarboxylate ligands, the rest, seven O atoms, being from seven coordinated water molecules. There are two kinds of pyrizine-2-carboxylate coordination modes, which have been reported previously (Yin *et al.*, 2006; Huang *et al.*, 2003). In (I), only one kind of coordination mode, μ_2 bridging mode, is observed. All the water molecules are coordinated and act as μ_2 bridging ligands. In this case, every six Ba^{II} ions form metal hexameric rings which share common edges, to construct two-dimensional, infinite networks with (6,3) topology (Fig. 2) parallel to the *ac* plane. Within the (6,3) topology layer, the nodes are provided by Ba^{II} and the connectors are N and O atoms which come from 2-pyrazine-carboxylate ions, and O atoms of water molecules. Non coordinating pyrazine-2-carboxylate ions are placed between polymeric layers in the crystal.

S2. Experimental

A mixture of barium chloride dihydrate (0.0244 g, 0.1 mmol), sodium hydroxide (0.0160 g, 0.4 mmol), 2-pyrazinecarboxylic acid (0.0496 g, 0.4 mmol), and H_2O (3 ml) was placed in a Parr Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated to 443.15 K for 6 days. Then, the vessel was cooled to 373.15 K at a rate of 5 K.h⁻¹ and slowly cooled to room temperature. Colourless, rectangular single crystals suitable for X-ray diffraction were obtained.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with aromatic C—H = 0.93 Å, O—H = 0.85 Å and refined as riding on their parent atoms. The U_{iso} (H) values were set at 1.2 U_{eq} (carrier atom) for all H atoms.

Figure 1

Coordination environment of Ba^{II} ions in the title complex. Non-hydrogen atoms are shown as 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Figure 2

View of one two-dimensional layer structure along b axis in the title complex. Hydrogen atoms are omitted for clarity. Some redundant atoms are omitted for clarity.

Poly[[hepta- μ_2 -aqua-bis(μ_2 -pyrazine-2-carboxylato)dibarium] bis(pyrazine-2-carboxylate)]

Crystal data

$[Ba_{2}(C_{5}H_{3}N_{2}O_{2})_{2}(H_{2}O)_{7}](C_{5}H_{3}N_{2}O_{2})_{2}$	F(000) = 868
$M_r = 893.17$	$D_{\rm x} = 2.009 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 4314 reflections
a = 7.5652 (10) Å	$\theta = 2.8 - 27.6^{\circ}$
b = 29.263 (3) Å	$\mu = 2.74 \text{ mm}^{-1}$
c = 7.6067 (10) Å	T = 298 K
$\beta = 118.741 \ (2)^{\circ}$	Block, colourless
V = 1476.5 (3) Å ³	$0.49 \times 0.34 \times 0.16 \text{ mm}$
Z = 2	
Data collection	

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.348, T_{\max} = 0.669$ 7342 measured reflections 4734 independent reflections 4502 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 1.4^{\circ}$ $h = -8 \rightarrow 6$ $k = -34 \rightarrow 32$ $l = -8 \rightarrow 9$ Refinement

Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.062P)^2 + 10.4333P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 1.84 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -2.62 \text{ e } \text{\AA}^{-3}$
Extinction correction: SHELXL97 (Sheldrick,
2008)
Extinction coefficient: 0.00273 (13)
Absolute structure: Flack (1983), 2096 Friedel pairs
Absolute structure parameter: 0.04 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$	
Bal	0.77811 (9)	0.366622 (19)	0.36016 (9)	0.02014 (17)	
Ba2	1.10429 (9)	0.394536 (18)	0.03210 (9)	0.01982 (16)	
N1	0.8301 (16)	0.2639 (3)	0.3451 (15)	0.026 (2)	
N2	0.888 (2)	0.1707 (4)	0.308 (2)	0.043 (3)	
N3	1.0849 (15)	0.4975 (4)	0.0828 (17)	0.028 (2)	
N4	1.045 (2)	0.5910 (4)	0.137 (2)	0.045 (3)	
N5	0.6725 (18)	0.5151 (4)	0.6133 (18)	0.033 (3)	
N6	0.5658 (18)	0.6073 (4)	0.610(2)	0.039 (3)	
N7	0.3586 (18)	0.2445 (4)	0.9189 (19)	0.032 (3)	
N8	0.400 (2)	0.1538 (4)	0.828 (2)	0.052 (4)	
01	0.8792 (14)	0.3243 (3)	0.0951 (15)	0.034 (2)	
O2	0.9048 (17)	0.2671 (3)	-0.0797 (14)	0.039 (2)	
03	0.8422 (13)	0.4370 (3)	0.1352 (14)	0.033 (2)	
O4	0.6620 (16)	0.4940 (3)	0.1590 (18)	0.045 (3)	
05	0.4326 (14)	0.4487 (3)	0.6353 (16)	0.040 (2)	
06	0.2265 (14)	0.5026 (4)	0.6485 (15)	0.043 (3)	
O7	0.3818 (16)	0.3133 (3)	0.6871 (15)	0.042 (2)	
08	0.4035 (18)	0.2619 (4)	0.4835 (15)	0.051 (3)	
09	1.1777 (11)	0.3806 (3)	0.4331 (11)	0.0267 (17)	
H9A	1.2515	0.3573	0.4865	0.032*	
H9B	1.2312	0.4040	0.5061	0.032*	
O10	0.6963 (12)	0.3775 (3)	0.6959 (12)	0.0278 (18)	
H10A	0.6450	0.3534	0.7149	0.033*	
H10B	0.6182	0.4000	0.6777	0.033*	
011	0.4867 (12)	0.4342 (3)	0.2934 (13)	0.0288 (19)	
H11A	0.5066	0.4577	0.2396	0.035*	
H11B	0.4921	0.4421	0.4035	0.035*	
012	0.4417 (12)	0.3857 (3)	-0.0462 (12)	0.031 (2)	
H12A	0.4241	0.3637	-0.1259	0.038*	
H12B	0.4614	0.4102	-0.0945	0.038*	
O13	0.9582 (12)	0.4406 (3)	0.6526 (12)	0.0294 (18)	

H13A	0.8706	0.4607	0.6372	0.035*
H13B	1.0541	0.4533	0.6426	0.035*
O14	0.3952 (12)	0.3203 (3)	0.2065 (13)	0.0296 (19)
H14A	0.3838	0.3071	0.3001	0.036*
H14B	0.3806	0.3006	0.1182	0.036*
015	1.0377 (12)	0.3263 (3)	0.7417 (12)	0.0271 (18)
H15A	1.1486	0.3182	0.7481	0.032*
H15B	0.9823	0.3029	0.7608	0.032*
C1	0.8864 (17)	0.2828 (4)	0.0620 (17)	0.021 (2)
C2	0.874 (2)	0.2485 (4)	0.2049 (19)	0.027 (3)
C3	0.896 (2)	0.2017 (4)	0.184 (2)	0.036 (3)
H3	0.9171	0.1918	0.0790	0.043*
C5	0.847 (3)	0.1868 (6)	0.449 (3)	0.046 (4)
Н5	0.8360	0.1666	0.5373	0.056*
C6	0.822 (2)	0.2336 (5)	0.467 (2)	0.036 (3)
H6	0.7979	0.2435	0.5695	0.043*
C7	0.804 (2)	0.4782 (5)	0.1384 (19)	0.030 (3)
C8	0.944 (2)	0.5124 (4)	0.1270 (19)	0.030 (3)
C9	0.923 (2)	0.5590 (5)	0.149 (2)	0.039 (3)
H9	0.8193	0.5685	0.1736	0.047*
C11	1.187 (2)	0.5754 (5)	0.100 (3)	0.041 (4)
H11	1.2768	0.5960	0.0932	0.050*
C12	1.207 (2)	0.5296 (5)	0.071 (2)	0.034 (3)
H12	1.3088	0.5205	0.0432	0.041*
C13	0.3801 (19)	0.4890 (4)	0.640 (2)	0.026 (3)
C14	0.5088 (18)	0.5268 (4)	0.6264 (17)	0.022 (2)
C15	0.461 (2)	0.5730 (5)	0.624 (2)	0.036 (3)
H15	0.3458	0.5801	0.6341	0.043*
C17	0.727 (2)	0.5944 (5)	0.592 (2)	0.036 (3)
H17	0.8058	0.6168	0.5771	0.043*
C18	0.779 (2)	0.5490 (5)	0.595 (2)	0.041 (4)
H18	0.8932	0.5419	0.5840	0.049*
C19	0.396 (2)	0.2731 (4)	0.636 (2)	0.028 (3)
C20	0.3868 (17)	0.2347 (4)	0.7658 (19)	0.026 (3)
C21	0.409 (2)	0.1888 (5)	0.723 (2)	0.038 (3)
H21	0.4321	0.1828	0.6159	0.045*
C23	0.363 (2)	0.1655 (6)	0.977 (2)	0.045 (4)
H23	0.3494	0.1424	1.0533	0.054*
C24	0.346 (2)	0.2099 (5)	1.022 (2)	0.043 (4)
H24	0.3232	0.2159	1.1296	0.051*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ba1	0.0175 (3)	0.0207 (3)	0.0234 (3)	0.0000 (3)	0.0108 (3)	-0.0010 (3)
Ba2	0.0184 (3)	0.0207 (3)	0.0216 (3)	0.0006 (3)	0.0106 (3)	-0.0005 (3)
N1	0.036 (6)	0.013 (5)	0.030 (6)	-0.005 (4)	0.017 (5)	-0.003 (4)
N2	0.053 (8)	0.023 (6)	0.065 (8)	0.011 (5)	0.038 (7)	0.007 (6)

Acta Cryst. (2011). E67, m283-m284

N3	0.029 (6)	0.029 (6)	0.041 (6)	0.006 (5)	0.029 (5)	0.011 (5)
N4	0.053 (8)	0.019 (6)	0.073 (9)	-0.005 (5)	0.039 (7)	0.001 (6)
N5	0.028 (6)	0.032 (6)	0.042 (7)	0.000 (5)	0.018 (5)	0.005 (5)
N6	0.042 (7)	0.015 (6)	0.065 (9)	-0.006 (5)	0.028 (6)	0.002 (5)
N7	0.036 (6)	0.029 (6)	0.038 (6)	0.005 (5)	0.025 (6)	0.006 (5)
N8	0.096 (11)	0.018 (6)	0.049 (8)	0.005 (6)	0.041 (8)	0.007 (6)
01	0.042 (5)	0.019 (5)	0.053 (6)	-0.002 (4)	0.031 (5)	-0.001 (4)
O2	0.076 (7)	0.021 (5)	0.036 (5)	-0.003 (5)	0.042 (6)	0.001 (4)
03	0.040 (5)	0.022 (5)	0.055 (6)	0.006 (4)	0.037 (5)	0.010 (4)
O4	0.047 (6)	0.028 (5)	0.082 (8)	0.007 (4)	0.049 (6)	0.007 (5)
05	0.043 (6)	0.030 (5)	0.060 (6)	-0.002 (4)	0.034 (5)	-0.008(5)
06	0.043 (6)	0.035 (6)	0.070 (8)	-0.003 (4)	0.042 (6)	0.001 (5)
O7	0.052 (6)	0.037 (5)	0.046 (6)	0.013 (5)	0.031 (5)	-0.001 (5)
08	0.092 (9)	0.038 (6)	0.042 (6)	0.002 (6)	0.047 (7)	0.006 (5)
09	0.020 (4)	0.033 (4)	0.025 (4)	0.000 (3)	0.008 (3)	-0.004 (3)
O10	0.028 (4)	0.027 (5)	0.036 (4)	0.000 (3)	0.022 (4)	0.001 (4)
011	0.023 (4)	0.027 (5)	0.039 (5)	-0.004 (3)	0.017 (4)	-0.008(4)
012	0.041 (5)	0.031 (5)	0.030 (4)	-0.006 (4)	0.024 (4)	0.002 (4)
013	0.028 (4)	0.025 (4)	0.041 (5)	0.000 (3)	0.021 (4)	0.000 (4)
014	0.037 (5)	0.016 (4)	0.041 (5)	0.004 (3)	0.023 (4)	0.002 (4)
015	0.031 (5)	0.020 (4)	0.031 (5)	0.003 (3)	0.016 (4)	-0.002 (3)
C1	0.020 (6)	0.027 (7)	0.018 (6)	-0.009 (5)	0.011 (5)	-0.002 (5)
C2	0.041 (8)	0.021 (6)	0.028 (7)	-0.009 (5)	0.024 (6)	-0.008 (5)
C3	0.070 (10)	0.007 (6)	0.058 (9)	-0.001 (6)	0.052 (9)	0.002 (6)
C5	0.049 (9)	0.037 (9)	0.055 (10)	-0.001 (8)	0.027 (8)	0.014 (8)
C6	0.045 (8)	0.041 (8)	0.023 (7)	0.004 (7)	0.018 (6)	0.005 (6)
C7	0.033 (7)	0.030 (7)	0.032 (7)	0.004 (6)	0.020 (6)	0.006 (6)
C8	0.042 (8)	0.017 (6)	0.029 (7)	0.000 (5)	0.016 (6)	0.001 (5)
C9	0.049 (9)	0.033 (8)	0.049 (9)	-0.002 (6)	0.035 (8)	-0.003 (6)
C11	0.040 (8)	0.029 (8)	0.059 (10)	-0.006 (7)	0.027 (8)	0.013 (7)
C12	0.032 (7)	0.042 (8)	0.035 (8)	0.004 (6)	0.021 (6)	0.002 (6)
C13	0.024 (6)	0.029 (7)	0.030 (7)	-0.009 (5)	0.016 (6)	-0.008 (5)
C14	0.028 (6)	0.016 (6)	0.024 (6)	0.002 (5)	0.015 (5)	0.001 (5)
C15	0.044 (8)	0.027 (7)	0.048 (9)	0.004 (6)	0.033 (7)	0.001 (6)
C17	0.043 (8)	0.021 (7)	0.049 (9)	-0.008 (6)	0.027 (7)	0.006 (6)
C18	0.032 (7)	0.039 (8)	0.063 (10)	-0.011 (6)	0.031 (8)	-0.003 (7)
C19	0.037 (7)	0.029 (7)	0.025 (7)	0.007 (5)	0.020 (6)	0.003 (5)
C20	0.018 (6)	0.025 (7)	0.035 (7)	0.004 (5)	0.011 (5)	0.000 (5)
C21	0.053 (9)	0.025 (7)	0.039 (8)	0.003 (6)	0.025 (7)	0.005 (6)
C23	0.056 (10)	0.042 (9)	0.034 (8)	-0.003 (7)	0.019 (8)	0.010 (7)
C24	0.043 (9)	0.054 (10)	0.037 (8)	0.000(7)	0.024 (7)	-0.006 (7)

Geometric parameters (Å, °)

Ba1—O1	2.769 (9)	O9—H9A	0.8500	
Ba1011	2.821 (8)	O9—H9B	0.8500	
Ba1—O9	2.829 (7)	O10—Ba2 ⁱⁱⁱ	2.954 (8)	
Ba1—O15	2.862 (8)	O10—H10A	0.8500	

Ba1—O3	2.865 (8)	O10—H10B	0.8501
Ba1—O14	2.888 (8)	O11—Ba2 ^{iv}	2.853 (8)
Ba1—O10	2.920 (7)	O11—H11A	0.8499
Ba1—O13	2.930 (8)	O11—H11B	0.8500
Ba1—O12	2.963 (8)	O12—Ba2 ^{iv}	2.898 (8)
Ba1—N1	3.041 (10)	O12—H12A	0.8499
Ba2—O3	2.754 (8)	O12—H12B	0.8501
Ba2—O15 ⁱ	2.838 (8)	O13—Ba2 ⁱⁱⁱ	2.882 (8)
Ba2—O11 ⁱⁱ	2.853 (8)	O13—H13A	0.8499
Ba2—O1	2.853 (8)	O13—H13B	0.8499
Ba2—O9	2.854 (7)	O14—Ba2 ^{iv}	2.919 (8)
Ba2—O13 ⁱ	2.882 (8)	O14—H14A	0.8499
Ba2—O12 ⁱⁱ	2.898 (8)	O14—H14B	0.8501
Ba2—O14 ⁱⁱ	2.919 (8)	O15—Ba2 ⁱⁱⁱ	2.838 (8)
$Ba2 - O10^{i}$	2.954 (8)	O15—H15A	0.8500
Ba2—N3	3.050 (11)	O15—H15B	0.8501
N1—C6	1.305 (17)	C1—C2	1.515 (16)
N1—C2	1.336 (16)	C2—C3	1.401 (17)
N2—C3	1.332 (17)	С3—Н3	0.9300
N2—C5	1.34 (2)	C5—C6	1.40 (2)
N3—C8	1.334 (17)	C5—H5	0.9300
N3—C12	1.351 (17)	С6—Н6	0.9300
N4—C11	1.32 (2)	C7—C8	1.489 (18)
N4—C9	1.349 (18)	C8—C9	1.394 (19)
N5—C18	1.326 (18)	С9—Н9	0.9300
N5—C14	1.334 (16)	C11—C12	1.38 (2)
N6-C15	1.317 (17)	C11—H11	0.9300
N6—C17	1.341 (18)	C12—H12	0.9300
N7—C24	1.312 (19)	C13—C14	1.509 (16)
N7—C20	1.313 (16)	C14—C15	1.400 (18)
N8—C21	1.320 (18)	С15—Н15	0.9300
N8—C23	1.331 (19)	C17—C18	1.39 (2)
01—C1	1.246 (14)	С17—Н17	0.9300
O2—C1	1.240 (14)	C18—H18	0.9300
03	1.243 (15)	C19—C20	1.519 (18)
04—C7	1.248 (16)	C20—C21	1.413 (19)
O5—C13	1.249 (15)	C21—H21	0.9300
O6—C13	1.259 (15)	C23—C24	1.37 (2)
O7—C19	1.260 (16)	C23—H23	0.9300
O8—C19	1.233 (15)	C24—H24	0.9300
		-	
O1—Ba1—O11	130.4 (3)	O13 ⁱ —Ba2—Ba1 ⁱⁱ	115.01 (16)
O1—Ba1—O9	64.2 (2)	O12 ⁱⁱ —Ba2—Ba1 ⁱⁱ	39.69 (16)
O11—Ba1—O9	127.1 (2)	O14 ⁱⁱ —Ba2—Ba1 ⁱⁱ	38.27 (16)
O1—Ba1—O15	105.0 (2)	O10 ⁱ —Ba2—Ba1 ⁱⁱ	150.97 (15)
O11—Ba1—O15	124.6 (2)	N3—Ba2—Ba1 ⁱⁱ	102.6 (2)
O9—Ba1—O15	73.3 (2)	Ba1—Ba2—Ba1 ⁱⁱ	116.58 (2)
O1—Ba1—O3	72.6 (2)	C6—N1—C2	116.8 (11)
	× /		× /

O11—Ba1—O3	74.4 (2)	C6—N1—Ba1	126.5 (9)
O9—Ba1—O3	62.7 (2)	C2—N1—Ba1	116.6 (8)
O15—Ba1—O3	132.2 (3)	C3—N2—C5	115.8 (12)
O1—Ba1—O14	94.0 (2)	C8—N3—C12	116.4 (12)
O11—Ba1—O14	73.3 (2)	C8—N3—Ba2	116.6 (8)
O9—Ba1—O14	156.4 (2)	C12—N3—Ba2	127.0 (8)
O15—Ba1—O14	106.4 (2)	C11—N4—C9	115.5 (12)
O3—Ba1—O14	121.4 (3)	C18—N5—C14	116.8 (13)
O1—Ba1—O10	159.1 (2)	C15—N6—C17	114.2 (11)
O11—Ba1—O10	66.7 (2)	C24—N7—C20	116.9 (13)
O9—Ba1—O10	118.0 (2)	C21—N8—C23	114.0 (13)
O15—Ba1—O10	59.2 (2)	C1—O1—Ba1	129.6 (7)
O3—Ba1—O10	127.8 (2)	C1—O1—Ba2	125.5 (7)
O14—Ba1—O10	79.2 (2)	Ba1—O1—Ba2	101.3 (3)
O1—Ba1—O13	133.9 (2)	C7—O3—Ba2	130.5 (8)
O11—Ba1—O13	69.9 (2)	C7—O3—Ba1	125.3 (8)
O9—Ba1—O13	71.4 (2)	Ba2—O3—Ba1	101.4 (3)
O15—Ba1—O13	72.1 (2)	Ba1—O9—Ba2	99.8 (2)
O3—Ba1—O13	76.8 (2)	Ba1—O9—H9A	111.8
O14—Ba1—O13	131.6 (2)	Ba2—O9—H9A	111.8
O10—Ba1—O13	58.1 (2)	Ba1—O9—H9B	111.8
O1—Ba1—O12	74.0 (3)	Ba2—O9—H9B	111.8
O11—Ba1—O12	58.3 (2)	H9A—O9—H9B	109.6
O9—Ba1—O12	118.6 (2)	Ba1—O10—Ba2 ⁱⁱⁱ	101.7 (2)
O15—Ba1—O12	164.2 (2)	Ba1—O10—H10A	111.4
O3—Ba1—O12	63.1 (3)	Ba2 ⁱⁱⁱ —O10—H10A	111.4
O14—Ba1—O12	58.4 (2)	Ba1	111.4
O10—Ba1—O12	117.1 (2)	Ba2 ⁱⁱⁱ —O10—H10B	111.4
O13—Ba1—O12	120.4 (2)	H10A—O10—H10B	109.3
O1—Ba1—N1	56.2 (3)	Ba1—O11—Ba2 ^{iv}	106.4 (3)
O11—Ba1—N1	142.2 (3)	Ba1—O11—H11A	110.4
O9—Ba1—N1	90.3 (3)	Ba2 ^{iv} —O11—H11A	110.4
O15—Ba1—N1	65.9 (2)	Ba1—O11—H11B	110.4
O3—Ba1—N1	128.8 (3)	Ba2 ^{iv} —O11—H11B	110.4
O14—Ba1—N1	69.1 (3)	H11A—O11—H11B	108.7
O10—Ba1—N1	103.1 (3)	Ba2 ^{iv} —O12—Ba1	101.6 (2)
O13—Ba1—N1	137.6 (3)	Ba2 ^{iv} —O12—H12A	111.2
O12—Ba1—N1	102.1 (3)	Ba1—O12—H12A	111.2
O1—Ba1—Ba2	40.06 (17)	Ba2 ^{iv} —O12—H12B	111.6
O11—Ba1—Ba2	112.03 (18)	Ba1—O12—H12B	111.6
O9—Ba1—Ba2	40.31 (15)	H12A—O12—H12B	109.3
O15—Ba1—Ba2	110.94 (17)	Ba2 ⁱⁱⁱ —O13—Ba1	103.2 (2)
O3—Ba1—Ba2	38.39 (16)	Ba2 ⁱⁱⁱ —O13—H13A	111.0
O14—Ba1—Ba2	126.27 (17)	Ba1—O13—H13A	111.0
O10—Ba1—Ba2	154.02 (16)	Ba2 ⁱⁱⁱ —O13—H13B	111.2
O13—Ba1—Ba2	96.42 (16)	Ba1-013-H13B	111.1
O12—Ba1—Ba2	78.79 (15)	H13A—O13—H13B	109.2
N1—Ba1—Ba2	92.6 (2)	Ba1—O14—Ba2 ^{iv}	103.0 (2)

O1—Ba1—Ba2 ^{iv}	108.1 (2)	Ba1—O14—H14A	111.1
O11—Ba1—Ba2 ^{iv}	37.04 (16)	Ba2 ^{iv} —O14—H14A	111.1
O9—Ba1—Ba2 ^{iv}	153.20 (16)	Ba1—O14—H14B	111.2
O15—Ba1—Ba2 ^{iv}	132.27 (17)	Ba2 ^{iv} —O14—H14B	111.2
O3—Ba1—Ba2 ^{iv}	90.58 (18)	H14A—O14—H14B	109.2
O14—Ba1—Ba2 ^{iv}	38.76 (15)	Ba2 ⁱⁱⁱ —O15—Ba1	106.1 (2)
O10—Ba1—Ba2 ^{iv}	78.88 (15)	Ba2 ⁱⁱⁱ —O15—H15A	110.5
O13—Ba1—Ba2 ^{iv}	105.87 (16)	Ba1-015-H15A	110.5
O12—Ba1—Ba2 ^{iv}	38.66 (15)	Ba2 ⁱⁱⁱ —O15—H15B	110.5
N1—Ba1—Ba2 ^{iv}	106.8 (2)	Ba1-015-H15B	110.5
Ba2—Ba1—Ba2 ^{iv}	116.58 (2)	H15A—O15—H15B	108.7
O3—Ba2—O15 ⁱ	131.0 (3)	O2—C1—O1	124.8 (11)
O3—Ba2—O11 ⁱⁱ	104.2 (2)	O2—C1—C2	116.8 (10)
O15 ⁱ —Ba2—O11 ⁱⁱ	124.7 (2)	O1—C1—C2	118.4 (10)
O3—Ba2—O1	73.0 (2)	N1—C2—C3	120.7 (11)
O15 ⁱ —Ba2—O1	74.1 (2)	N1-C2-C1	118.4 (11)
O11 ⁱⁱ —Ba2—O1	131.6 (3)	C3—C2—C1	120.8 (10)
O3—Ba2—O9	63.7 (2)	N2—C3—C2	122.4 (12)
O15 ⁱ —Ba2—O9	127.0 (2)	N2—C3—H3	118.8
O11 ⁱⁱ —Ba2—O9	72.7 (2)	С2—С3—Н3	118.8
O1—Ba2—O9	62.8 (3)	N2—C5—C6	121.3 (14)
O3—Ba2—O13 ⁱ	95.3 (2)	N2—C5—H5	119.3
O15 ⁱ —Ba2—O13 ⁱ	73.2 (2)	С6—С5—Н5	119.3
O11 ⁱⁱ —Ba2—O13 ⁱ	106.2 (2)	N1—C6—C5	122.8 (13)
O1—Ba2—O13 ⁱ	122.2 (3)	N1—C6—H6	118.6
O9—Ba2—O13 ⁱ	157.1 (2)	С5—С6—Н6	118.6
O3—Ba2—O12 ⁱⁱ	157.6 (2)	O3—C7—O4	125.7 (12)
O15 ⁱ —Ba2—O12 ⁱⁱ	67.8 (2)	O3—C7—C8	118.2 (11)
O11 ⁱⁱ —Ba2—O12 ⁱⁱ	58.8 (2)	O4—C7—C8	116.1 (12)
O1—Ba2—O12 ⁱⁱ	128.8 (2)	N3—C8—C9	120.3 (12)
O9—Ba2—O12 ⁱⁱ	118.0 (2)	N3—C8—C7	118.1 (11)
O13 ⁱ —Ba2—O12 ⁱⁱ	77.7 (2)	C9—C8—C7	121.5 (12)
O3—Ba2—O14 ⁱⁱ	134.1 (2)	N4—C9—C8	123.2 (13)
O15 ⁱ —Ba2—O14 ⁱⁱ	69.0 (2)	N4—C9—H9	118.4
O11 ⁱⁱ —Ba2—O14 ⁱⁱ	72.3 (2)	С8—С9—Н9	118.4
O1—Ba2—O14 ⁱⁱ	76.6 (2)	N4—C11—C12	122.5 (13)
O9—Ba2—O14 ⁱⁱ	72.0 (2)	N4—C11—H11	118.8
O13 ⁱ —Ba2—O14 ⁱⁱ	130.2 (2)	C12—C11—H11	118.8
O12 ⁱⁱ —Ba2—O14 ⁱⁱ	58.7 (2)	N3—C12—C11	122.2 (12)
O3—Ba2—O10 ⁱ	74.2 (2)	N3—C12—H12	118.9
$O15^{i}$ —Ba2—O10 ⁱ	59.1 (2)	C11—C12—H12	118.9
$O11^{ii}$ —Ba2—O10 ⁱ	163.6 (2)	O5—C13—O6	127.8 (12)
O1—Ba2—O10 ⁱ	64.2 (2)	O5—C13—C14	117.7 (11)
O9—Ba2—O10 ⁱ	119.1 (2)	O6—C13—C14	114.4 (11)
O13 ⁱ —Ba2—O10 ⁱ	58.3 (2)	N5-C14-C15	119.5 (12)
$O12^{ii}$ —Ba2—O10 ⁱ	117.6 (2)	N5-C14-C13	118.1 (11)
$O14^{ii}$ —Ba2—O10 ⁱ	120.9 (2)	C15—C14—C13	122.5 (11)
O3—Ba2—N3	55.5 (2)	N6—C15—C14	124.9 (12)

O15 ⁱ —Ba2—N3	142.4 (3)	N6—C15—H15	117.6
O11 ⁱⁱ —Ba2—N3	66.7 (3)	C14—C15—H15	117.6
O1—Ba2—N3	128.4 (2)	N6-C17-C18	122.2 (12)
O9—Ba2—N3	90.1 (3)	N6—C17—H17	118.9
O13 ⁱ —Ba2—N3	69.2 (3)	C18—C17—H17	118.9
O12 ⁱⁱ —Ba2—N3	102.4 (3)	N5-C18-C17	122.4 (13)
O14 ⁱⁱ —Ba2—N3	138.6 (3)	N5—C18—H18	118.8
O10 ⁱ —Ba2—N3	100.5 (3)	C17—C18—H18	118.8
O3—Ba2—Ba1	40.23 (16)	O8—C19—O7	126.1 (12)
O15 ⁱ —Ba2—Ba1	112.16 (17)	O8—C19—C20	116.8 (11)
O11 ⁱⁱ —Ba2—Ba1	109.98 (17)	O7—C19—C20	116.9 (11)
O1—Ba2—Ba1	38.65 (17)	N7—C20—C21	119.9 (12)
O9—Ba2—Ba1	39.87 (15)	N7—C20—C19	119.6 (11)
O13 ⁱ —Ba2—Ba1	127.78 (16)	C21—C20—C19	120.5 (11)
O12 ⁱⁱ —Ba2—Ba1	154.19 (16)	N8—C21—C20	123.6 (13)
O14 ⁱⁱ —Ba2—Ba1	96.38 (17)	N8—C21—H21	118.2
O10 ⁱ —Ba2—Ba1	79.64 (15)	C20—C21—H21	118.2
N3—Ba2—Ba1	92.17 (18)	N8—C23—C24	122.9 (14)
O3—Ba2—Ba1 ⁱⁱ	134.1 (2)	N8—C23—H23	118.6
O15 ⁱ —Ba2—Ba1 ⁱⁱ	91.90 (17)	С24—С23—Н23	118.6
O11 ⁱⁱ —Ba2—Ba1 ⁱⁱ	36.55 (16)	N7—C24—C23	122.6 (14)
O1—Ba2—Ba1 ⁱⁱ	112.37 (18)	N7—C24—H24	118.7
O9—Ba2—Ba1 ⁱⁱ	78.29 (15)	С23—С24—Н24	118.7
O1—Ba1—Ba2—O3	139.0 (4)	O11 ⁱⁱ —Ba2—O1—Ba1	67.8 (4)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3	139.0 (4) 11.7 (4)	O11 ⁱⁱ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1	67.8 (4) 42.4 (3)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4)	O11 ⁱⁱ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 O13 ⁱ —Ba2—O1—Ba1	67.8 (4) 42.4 (3) -111.8 (3)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4)	O11 ⁱⁱ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 O13 ⁱ —Ba2—O1—Ba1 O12 ⁱⁱ —Ba2—O1—Ba1	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3 O14—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4)	O11 ⁱⁱ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 O13 ⁱ —Ba2—O1—Ba1 O12 ⁱⁱ —Ba2—O1—Ba1 O14 ⁱⁱ —Ba2—O1—Ba1	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3 O14—Ba1—Ba2—O3 O10—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{i} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3 O14—Ba1—Ba2—O3 O10—Ba1—Ba2—O3 O13—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{i} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3 O14—Ba1—Ba2—O3 O10—Ba1—Ba2—O3 O13—Ba1—Ba2—O3 O12—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3) 60.6 (4)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{i} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \\ Ba1^{ii} - Ba2 - O1 - Ba1 \\ \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3 O14—Ba1—Ba2—O3 O10—Ba1—Ba2—O3 O13—Ba1—Ba2—O3 O12—Ba1—Ba2—O3 N1—Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3) 60.6 (4) 162.4 (4)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{i} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \\ Ba1^{ii} - Ba2 - O1 - Ba1 \\ O15^{i} - Ba2 - O3 - C7 \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11)
O1—Ba1—Ba2—O3 O11—Ba1—Ba2—O3 O9—Ba1—Ba2—O3 O15—Ba1—Ba2—O3 O14—Ba1—Ba2—O3 O10—Ba1—Ba2—O3 O13—Ba1—Ba2—O3 O12—Ba1—Ba2—O3 N1—Ba1—Ba2—O3 Ba2 ^{iv} —Ba1—Ba2—O3	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3) 60.6 (4) 162.4 (4) 52.2 (3)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{ii} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \\ Ba1^{ii} - Ba2 - O1 - Ba1 \\ O15^{i} - Ba2 - O3 - C7 \\ O11^{ii} - Ba2 - O3 - C7 \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 014 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ N1 - Ba1 - Ba2 - O3 \\ Ba2^{iv} - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^{i} \end{array}$	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3) 60.6 (4) 162.4 (4) 52.2 (3) 10.9 (3)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{i} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \\ Ba1^{ii} - Ba2 - O1 - Ba1 \\ O15^{i} - Ba2 - O3 - C7 \\ O11^{ii} - Ba2 - O3 - C7 \\ O1 - Ba2 - O3 - C7 \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 014 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ Ba2^{iv} - Ba1 - Ba2 - O3 \\ Ba2^{iv} - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^{i} \\ 011 - Ba1 - Ba2 - O15^{i} \end{array}$	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3) 60.6 (4) 162.4 (4) 52.2 (3) 10.9 (3) -116.4 (2)	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{i} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{i} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \\ Ba1^{ii} - Ba2 - O1 - Ba1 \\ O15^{i} - Ba2 - O3 - C7 \\ O11^{ii} - Ba2 - O3 - C7 \\ O1 - Ba2 - O3 - C7 \\ O9 - Ba2 - O3 - C7 \end{array}$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O1 \\ 01 - Ba1 - Ba2 - O15^{i} \\ 011 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 01 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 01 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 01 - B$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$	$\begin{array}{l} O11^{ii} - Ba2 - O1 - Ba1 \\ O9 - Ba2 - O1 - Ba1 \\ O13^{ii} - Ba2 - O1 - Ba1 \\ O12^{ii} - Ba2 - O1 - Ba1 \\ O14^{ii} - Ba2 - O1 - Ba1 \\ O10^{ii} - Ba2 - O1 - Ba1 \\ N3 - Ba2 - O1 - Ba1 \\ Ba1^{ii} - Ba2 - O1 - Ba1 \\ O15^{i} - Ba2 - O3 - C7 \\ O11^{ii} - Ba2 - O3 - C7 \\ O1 - Ba2 - O3 - C7 \\ O9 - Ba2 - O3 - C7 \\ O13^{ii} - Ba2 - O3 - C7 \\ O3 - C$	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 014 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O15^{i} \\ 015 - Ba1 - Ba2 $	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{ii}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O1—Ba1 $O15^{i}$ —Ba2—O1—Ba1 $O15^{i}$ —Ba2—O3—C7 O1—Ba2—O3—C7 O1—Ba2—O3—C7 $O13^{i}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 014 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^{i} \\ 011 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 05 - Ba1 - Ba2 - O15^{i} \\ 03 - B$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{i}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O1—Ba1 $O15^{i}$ —Ba2—O1—Ba1 $O15^{i}$ —Ba2—O3—C7 $O11^{ii}$ —Ba2—O3—C7 $O13^{i}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^{i} \\ 011 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 09 - Ba1 - Ba2 - O15^{i} \\ 03 - Ba1 - Ba2 - O15^{i} \\ 014 - Ba1 - Ba2 - O15^{i} \\ 014 - Ba1 - Ba2 - O15^{i} \\ 015 - Ba1 - Ba2 - O15^{i} \\ 0$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{i}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O1—Ba1 $O15^{i}$ —Ba2—O3—C7 O11—Ba2—O3—C7 O1—Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O10^{i}$ —Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^{i} \\ 011 - Ba1 - Ba2 - O15^{i} \\ 011 - Ba1 - Ba2 - O15^{i} \\ 015 - Ba1 - Ba2 - O15^{i} \\ 03 - Ba1 - Ba2 - O15^{i} \\ 014 - Ba1 - Ba2 - O15^{i} \\ 010 - Ba1 - Ba2 - O15^{i} \\ 01 - Ba1 - Ba2 - O15^{i} $	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$ $161.8 (4)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{i}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 N3—Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O3—C7 $O11^{ii}$ —Ba2—O3—C7 $O13^{i}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O10^{i}$ —Ba2—O3—C7 N3—Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 014 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^i \\ 011 - Ba1 - Ba2 - O15^i \\ 09 - Ba1 - Ba2 - O15^i \\ 09 - Ba1 - Ba2 - O15^i \\ 03 - Ba1 - Ba2 - O15^i \\ 014 - Ba1 - Ba2 - O15^i \\ 010 - Ba1 - Ba2 - O15^i \\ 010 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 015 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 015 - Ba1 - Ba2 - O15^i \\$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$ $161.8 (4)$ $172.8 (2)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{ii}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{ii}$ —Ba2—O1—Ba1 N3—Ba2—O1—Ba1 $O15^{ii}$ —Ba2—O3—C7 O1—Ba2—O3—C7 O1—Ba2—O3—C7 $O13^{ii}$ —Ba2—O3—C7 $O13^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O10^{ii}$ —Ba2—O3—C7 $O10^{ii}$ —Ba2—O3—C7 N3—Ba2—O3—C7 Ba1—Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11) 161.3 (13)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^i \\ 011 - Ba1 - Ba2 - O15^i \\ 011 - Ba1 - Ba2 - O15^i \\ 015 - Ba1 - Ba2 - O15^i \\ 03 - Ba1 - Ba2 - O15^i \\ 014 - Ba1 - Ba2 - O15^i \\ 010 - Ba1 - Ba2 - O15^i \\ 010 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 012 - Ba1 - Ba2 - O15^i \\ 015 - Ba1 - Ba2 - O15^i$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$ $161.8 (4)$ $172.8 (2)$ $-67.5 (2)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{i}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O1—Ba1 $O15^{i}$ —Ba2—O3—C7 $O11^{ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O10^{ii}$ —Ba2—O3—C7 $O10^{ii}$ —Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11) 161.3 (13) 81.7 (12)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^i \\ 011 - Ba1 - Ba2 - O15^i \\ 015 - Ba1 - Ba2 - O15^i \\ 03 - Ba1 - Ba2 - O15^i \\ 014 - Ba1 - Ba2 - O15^i \\ 010 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 012 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 012 - Ba1 - Ba2 - O15^i \\ 012 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$ $161.8 (4)$ $172.8 (2)$ $-67.5 (2)$ $34.3 (3)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{i}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 N3—Ba2—O1—Ba1 $Ba1^{ii}$ —Ba2—O3—C7 O11—Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 N3—Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 $D15^{i}$ —Ba2—O3—C7 $O15^{i}$ —Ba2—O3—C7 $O15^{i}$ —Ba2—O3—C7	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11) 161.3 (13) 81.7 (12) 75.2 (4)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^i \\ 011 - Ba1 - Ba2 - O15^i \\ 09 - Ba1 - Ba2 - O15^i \\ 09 - Ba1 - Ba2 - O15^i \\ 03 - Ba1 - Ba2 - O15^i \\ 014 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\$	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$ $161.8 (4)$ $172.8 (2)$ $-67.5 (2)$ $34.3 (3)$ $-75.88 (18)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{i}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 N3—Ba2—O1—Ba1 $D15^{i}$ —Ba2—O3—C7 $O1^{ii}$ —Ba2—O3—C7 $O1^{2ii}$ —Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $D14^{ii}$ —Ba2—O3—C7 $D16^{i}$ —Ba2—O3—C7 $D16^{i}$ —Ba2—O3—C7 $D16^{i}$ —Ba2—O3—C7 $D16^{i}$ —Ba2—O3—C7 $D16^{i}$ —Ba2—O3—C7 $D15^{i}$ —Ba2—O3—C7 $O15^{i}$ —Ba2—O3—Ba1 $O11^{ii}$ —Ba2—O3—Ba1	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11) 161.3 (13) 81.7 (12) 75.2 (4) -104.3 (3)
$\begin{array}{c} 01 - Ba1 - Ba2 - O3 \\ 011 - Ba1 - Ba2 - O3 \\ 09 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 015 - Ba1 - Ba2 - O3 \\ 014 - Ba1 - Ba2 - O3 \\ 010 - Ba1 - Ba2 - O3 \\ 013 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 012 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O3 \\ 01 - Ba1 - Ba2 - O15^i \\ 011 - Ba1 - Ba2 - O15^i \\ 09 - Ba1 - Ba2 - O15^i \\ 09 - Ba1 - Ba2 - O15^i \\ 03 - Ba1 - Ba2 - O15^i \\ 014 - Ba1 - Ba2 - O15^i \\ 010 - Ba1 - Ba2 - O15^i \\ 013 - Ba1 - Ba2 - O15^i \\ 012 - Ba1 - Ba2 - O15^i \\ 01 - Ba1 - Ba2 - O11^{ii} \\ 01 - Ba - Ba2 - O11^{ii} \\ 01 - Ba1 - Ba2 - $	139.0 (4) $11.7 (4)$ $-110.2 (4)$ $-132.5 (4)$ $96.6 (4)$ $-70.1 (5)$ $-59.2 (3)$ $60.6 (4)$ $162.4 (4)$ $52.2 (3)$ $10.9 (3)$ $-116.4 (2)$ $121.7 (3)$ $99.5 (3)$ $-128.1 (4)$ $-31.5 (3)$ $161.8 (4)$ $172.8 (2)$ $-67.5 (2)$ $34.3 (3)$ $-75.88 (18)$ $-132.5 (4)$	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{ii}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{ii}$ —Ba2—O1—Ba1 N3—Ba2—O1—Ba1 $D15^{ii}$ —Ba2—O3—C7 O1—Ba2—O3—C7 O1—Ba2—O3—C7 $O13^{ii}$ —Ba2—O3—C7 $O13^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O10^{ii}$ —Ba2—O3—C7 $O10^{ii}$ —Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 $D15^{ii}$ —Ba2—O3—C7 $O15^{ii}$ —Ba2—O3—C7 $O15^{ii}$ —Ba2—O3—Ba1 O1—Ba2—O3—Ba1	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11) 161.3 (13) 81.7 (12) 75.2 (4) -104.3 (3) 25.4 (3)
O1-Ba1-Ba2-O3 O11-Ba1-Ba2-O3 O9-Ba1-Ba2-O3 O15-Ba1-Ba2-O3 O15-Ba1-Ba2-O3 O14-Ba1-Ba2-O3 O10-Ba1-Ba2-O3 O12-Ba1-Ba2-O3 O12-Ba1-Ba2-O3 O1-Ba1-Ba2-O3 $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O15-Ba1-Ba2-O15^i$ $O15-Ba1-Ba2-O15^i$ $O15-Ba1-Ba2-O15^i$ $O14-Ba1-Ba2-O15^i$ $O14-Ba1-Ba2-O15^i$ $O13-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O12-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$ $O1-Ba1-Ba2-O15^i$	139.0 (4) 11.7 (4) -110.2 (4) -132.5 (4) 96.6 (4) -70.1 (5) -59.2 (3) 60.6 (4) 162.4 (4) 52.2 (3) 10.9 (3) -116.4 (2) 121.7 (3) 99.5 (3) -128.1 (4) -31.5 (3) 161.8 (4) 172.8 (2) -67.5 (2) 34.3 (3) -75.88 (18) -132.5 (4) 100.2 (3)	$O11^{ii}$ —Ba2—O1—Ba1 O9—Ba2—O1—Ba1 $O13^{ii}$ —Ba2—O1—Ba1 $O12^{ii}$ —Ba2—O1—Ba1 $O14^{ii}$ —Ba2—O1—Ba1 $O10^{i}$ —Ba2—O1—Ba1 N3—Ba2—O1—Ba1 $D15^{i}$ —Ba2—O3—C7 O1—Ba2—O3—C7 O1—Ba2—O3—C7 $O12^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O14^{ii}$ —Ba2—O3—C7 $O10^{i}$ —Ba2—O3—C7 $O10^{i}$ —Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 Ba1—Ba2—O3—C7 $O15^{i}$ —Ba2—O3—C7 $O15^{i}$ —Ba2—O3—Ba1 O1—Ba2—O3—Ba1 O1—Ba2—O3—Ba1 O9—Ba2—O3—Ba1	67.8 (4) 42.4 (3) -111.8 (3) 147.6 (2) 118.8 (3) -106.6 (3) -23.8 (5) 105.1 (2) -123.5 (11) 57.0 (12) -173.3 (12) 119.2 (12) -51.2 (11) 19.2 (15) 136.0 (11) -106.1 (11) 9.1 (11) 161.3 (13) 81.7 (12) 75.2 (4) -104.3 (3) 25.4 (3) -42.1 (3)

O15—Ba1—Ba2—O11 ⁱⁱ	-43.9 (2)	O12 ⁱⁱ —Ba2—O3—Ba1	-142.2 (5)
O3—Ba1—Ba2—O11 ⁱⁱ	88.5 (4)	O14 ⁱⁱ —Ba2—O3—Ba1	-25.3 (5)
O14—Ba1—Ba2—O11 ⁱⁱ	-174.9 (3)	O10 ⁱ —Ba2—O3—Ba1	92.6 (3)
O10—Ba1—Ba2—O11 ⁱⁱ	18.4 (4)	N3—Ba2—O3—Ba1	-152.2 (4)
O13—Ba1—Ba2—O11 ⁱⁱ	29.4 (2)	Ba1 ⁱⁱ —Ba2—O3—Ba1	-79.6 (3)
O12—Ba1—Ba2—O11 ⁱⁱ	149.1 (2)	O1—Ba1—O3—C7	171.1 (11)
N1—Ba1—Ba2—O11 ⁱⁱ	-109.1 (3)	O11—Ba1—O3—C7	28.6 (10)
Ba2 ^{iv} —Ba1—Ba2—O11 ⁱⁱ	140.71 (17)	O9—Ba1—O3—C7	-119.5 (11)
O11—Ba1—Ba2—O1	-127.3 (4)	O15—Ba1—O3—C7	-94.2 (11)
O9—Ba1—Ba2—O1	110.8 (4)	O14—Ba1—O3—C7	87.2 (11)
O15—Ba1—Ba2—O1	88.6 (3)	O10—Ba1—O3—C7	-14.0 (11)
O3—Ba1—Ba2—O1	-139.0 (4)	O13—Ba1—O3—C7	-43.8 (10)
O14—Ba1—Ba2—O1	-42.4 (4)	O12—Ba1—O3—C7	90.6 (10)
O10—Ba1—Ba2—O1	150.9 (5)	N1—Ba1—O3—C7	174.5 (10)
O13—Ba1—Ba2—O1	161.9 (3)	Ba2—Ba1—O3—C7	-162.6 (12)
O12—Ba1—Ba2—O1	-78.4 (4)	Ba2 ^{iv} —Ba1—O3—C7	62.3 (10)
N1—Ba1—Ba2—O1	23.4 (4)	O1—Ba1—O3—Ba2	-26.3(3)
Ba2 ^{iv} —Ba1—Ba2—O1	-86.8 (3)	O11—Ba1—O3—Ba2	-168.8(3)
O1—Ba1—Ba2—O9	-110.8 (4)	O9—Ba1—O3—Ba2	43.1 (3)
O11—Ba1—Ba2—O9	121.9 (3)	O15—Ba1—O3—Ba2	68.4 (4)
O15—Ba1—Ba2—O9	-22.3(3)	O14—Ba1—O3—Ba2	-110.2(3)
O3—Ba1—Ba2—O9	110.2 (4)	O10—Ba1—O3—Ba2	148.6 (2)
O14—Ba1—Ba2—O9	-153.2 (3)	O13—Ba1—O3—Ba2	118.8 (3)
O10—Ba1—Ba2—O9	40.1 (4)	012—Ba1—03—Ba2	-106.7(3)
O13—Ba1—Ba2—O9	51.0 (3)	N1—Ba1—O3—Ba2	-22.9(5)
O12—Ba1—Ba2—O9	170.8 (3)	Ba2 ^{iv} —Ba1—O3—Ba2	-135.1 (2)
N1—Ba1—Ba2—O9	-87.4 (3)	O1—Ba1—O9—Ba2	41.9 (2)
Ba2 ^{iv} —Ba1—Ba2—O9	162.4 (3)	O11—Ba1—O9—Ba2	-80.6 (3)
O1—Ba1—Ba2—O13 ⁱ	96.4 (4)	O15—Ba1—O9—Ba2	158.3 (3)
O11—Ba1—Ba2—O13 ⁱ	-30.9(3)	O3—Ba1—O9—Ba2	-41.0(2)
O9—Ba1—Ba2—O13 ⁱ	-152.8(3)	O14—Ba1—O9—Ba2	65.4 (6)
O15—Ba1—Ba2—O13 ⁱ	-175.1 (3)	O10—Ba1—O9—Ba2	-161.4(2)
O3—Ba1—Ba2—O13 ⁱ	-42.6 (4)	O13—Ba1—O9—Ba2	-125.4(3)
O14—Ba1—Ba2—O13 ⁱ	54.0 (3)	O12—Ba1—O9—Ba2	-10.3 (4)
O10—Ba1—Ba2—O13 ⁱ	-112.8 (4)	N1—Ba1—O9—Ba2	93.6 (3)
O13—Ba1—Ba2—O13 ⁱ	-101.8(3)	Ba2 ^{iv} —Ba1—O9—Ba2	-36.9(5)
O12—Ba1—Ba2—O13 ⁱ	18.0 (3)	O3—Ba2—O9—Ba1	42.5 (2)
N1—Ba1—Ba2—O13 ^{i}	119.8 (3)	O15 ⁱ —Ba2—O9—Ba1	-80.5 (3)
Ba2 ^{iv} —Ba1—Ba2—O13 ⁱ	9.6 (2)	O11 ⁱⁱ —Ba2—O9—Ba1	158.7 (3)
O1—Ba1—Ba2—O12 ⁱⁱ	-73.5 (5)	O1—Ba2—O9—Ba1	-41.0(2)
O11—Ba1—Ba2—O12 ⁱⁱ	159.2 (4)	O13 ⁱ —Ba2—O9—Ba1	67.9 (6)
O9—Ba1—Ba2—O12 ⁱⁱ	37.3 (5)	O12 ⁱⁱ —Ba2—O9—Ba1	-162.6(2)
$O15$ —Ba1—Ba2— $O12^{ii}$	15.0 (4)	$O14^{ii}$ —Ba2—O9—Ba1	-124.8(3)
O3—Ba1—Ba2—O12 ⁱⁱ	147.5 (5)	O10 ⁱ —Ba2—O9—Ba1	-8.9 (3)
O14—Ba1—Ba2—O12 ⁱⁱ	-115.9 (4)	N3—Ba2—O9—Ba1	93.2 (3)
O10—Ba1—Ba2—O12 ⁱⁱ	77.3 (5)	Ba1 ⁱⁱ —Ba2—O9—Ba1	-163.9(2)
O13—Ba1—Ba2—O12 ⁱⁱ	88.3 (4)	O1—Ba1—O10—Ba2 ⁱⁱⁱ	86.2 (7)
O12—Ba1—Ba2—O12 ⁱⁱ	-151.9 (6)	O11—Ba1—O10—Ba2 ⁱⁱⁱ	-125.2 (3)

N1—Ba1—Ba2—O12 ⁱⁱ	-50.2 (4)	O9—Ba1—O10—Ba2 ⁱⁱⁱ	-4.2 (3)
Ba2 ^{iv} —Ba1—Ba2—O12 ⁱⁱ	-160.3 (4)	O15—Ba1—O10—Ba2 ⁱⁱⁱ	41.9 (2)
O1—Ba1—Ba2—O14 ⁱⁱ	-59.0 (3)	O3—Ba1—O10—Ba2 ⁱⁱⁱ	-79.9 (3)
O11—Ba1—Ba2—O14 ⁱⁱ	173.7 (2)	O14—Ba1—O10—Ba2 ⁱⁱⁱ	158.5 (3)
O9—Ba1—Ba2—O14 ⁱⁱ	51.8 (3)	O13—Ba1—O10—Ba2 ⁱⁱⁱ	-45.2 (2)
O15—Ba1—Ba2—O14 ⁱⁱ	29.5 (2)	O12—Ba1—O10—Ba2 ⁱⁱⁱ	-155.7 (2)
O3—Ba1—Ba2—O14 ⁱⁱ	162.0 (4)	N1—Ba1—O10—Ba2 ⁱⁱⁱ	93.2 (3)
O14—Ba1—Ba2—O14 ⁱⁱ	-101.4 (3)	Ba2—Ba1—O10—Ba2 ⁱⁱⁱ	-32.3(5)
O10—Ba1—Ba2—O14 ⁱⁱ	91.9 (4)	Ba2 ^{iv} —Ba1—O10—Ba2 ⁱⁱⁱ	-161.9 (2)
O13—Ba1—Ba2—O14 ⁱⁱ	102.8 (2)	O1—Ba1—O11—Ba2 ^{iv}	63.1 (4)
O12—Ba1—Ba2—O14 ⁱⁱ	-137.4 (2)	O9—Ba1—O11—Ba2 ^{iv}	148.9 (2)
N1—Ba1—Ba2—O14 ⁱⁱ	-35.6 (3)	O15—Ba1—O11—Ba2 ^{iv}	-116.3 (3)
Ba2 ^{iv} —Ba1—Ba2—O14 ⁱⁱ	-145.83 (17)	O3—Ba1—O11—Ba2 ^{iv}	112.9 (3)
O1—Ba1—Ba2—O10 ⁱ	61.3 (3)	O14—Ba1—O11—Ba2 ^{iv}	-17.6 (2)
O11—Ba1—Ba2—O10 ⁱ	-66.0(2)	O10-Ba1-O11-Ba2 ^{iv}	-102.8 (3)
O9—Ba1—Ba2—O10 ⁱ	172.1 (3)	O13—Ba1—O11—Ba2 ^{iv}	-165.8 (3)
O15—Ba1—Ba2—O10 ⁱ	149.8 (2)	O12—Ba1—O11—Ba2 ^{iv}	45.1 (3)
O3—Ba1—Ba2—O10 ⁱ	-77.7 (3)	N1—Ba1—O11—Ba2 ^{iv}	-21.6 (6)
O14—Ba1—Ba2—O10 ⁱ	18.9 (2)	Ba2—Ba1—O11—Ba2 ^{iv}	105.4 (2)
O10—Ba1—Ba2—O10 ⁱ	-147.8 (5)	O1—Ba1—O12—Ba2 ^{iv}	151.1 (3)
O13—Ba1—Ba2—O10 ⁱ	-136.9 (2)	O11—Ba1—O12—Ba2 ^{iv}	-43.1 (2)
O12—Ba1—Ba2—O10 ⁱ	-17.1 (2)	O9—Ba1—O12—Ba2 ^{iv}	-161.2 (2)
N1—Ba1—Ba2—O10 ⁱ	84.7 (3)	O15—Ba1—O12—Ba2 ^{iv}	62.6 (9)
Ba2 ^{iv} —Ba1—Ba2—O10 ⁱ	-25.53 (16)	O3—Ba1—O12—Ba2 ^{iv}	-130.6 (3)
O1—Ba1—Ba2—N3	161.6 (4)	O14—Ba1—O12—Ba2 ^{iv}	45.9 (2)
O11—Ba1—Ba2—N3	34.3 (3)	O10—Ba1—O12—Ba2 ^{iv}	-9.8 (4)
O9—Ba1—Ba2—N3	-87.6 (3)	O13—Ba1—O12—Ba2 ^{iv}	-77.0 (3)
O15—Ba1—Ba2—N3	-109.9 (3)	N1—Ba1—O12—Ba2 ^{iv}	101.8 (3)
O3—Ba1—Ba2—N3	22.6 (4)	Ba2—Ba1—O12—Ba2 ^{iv}	-167.9 (2)
O14—Ba1—Ba2—N3	119.2 (3)	O1—Ba1—O13—Ba2 ⁱⁱⁱ	-111.2 (3)
O10—Ba1—Ba2—N3	-47.5 (4)	O11—Ba1—O13—Ba2 ⁱⁱⁱ	121.5 (3)
O13—Ba1—Ba2—N3	-36.6 (3)	O9—Ba1—O13—Ba2 ⁱⁱⁱ	-95.3 (3)
O12—Ba1—Ba2—N3	83.2 (3)	O15—Ba1—O13—Ba2 ⁱⁱⁱ	-17.4 (2)
N1—Ba1—Ba2—N3	-175.0 (3)	O3—Ba1—O13—Ba2 ⁱⁱⁱ	-160.6(3)
Ba2 ^{iv} —Ba1—Ba2—N3	74.8 (2)	O14—Ba1—O13—Ba2 ⁱⁱⁱ	78.9 (3)
O1—Ba1—Ba2—Ba1 ⁱⁱ	-93.2 (3)	O10—Ba1—O13—Ba2 ⁱⁱⁱ	47.0 (2)
O11—Ba1—Ba2—Ba1 ⁱⁱ	139.50 (17)	O12—Ba1—O13—Ba2 ⁱⁱⁱ	151.9 (2)
O9—Ba1—Ba2—Ba1 ⁱⁱ	17.6 (3)	N1—Ba1—O13—Ba2 ⁱⁱⁱ	-26.4 (5)
O15—Ba1—Ba2—Ba1 ⁱⁱ	-4.63 (17)	Ba2—Ba1—O13—Ba2 ⁱⁱⁱ	-127.36 (19)
O3—Ba1—Ba2—Ba1 ⁱⁱ	127.8 (3)	Ba2 ^{iv} —Ba1—O13—Ba2 ⁱⁱⁱ	112.63 (19)
O14—Ba1—Ba2—Ba1 ⁱⁱ	-135.59 (19)	O1—Ba1—O14—Ba2 ^{iv}	-114.2 (3)
O10—Ba1—Ba2—Ba1 ⁱⁱ	57.7 (4)	O11—Ba1—O14—Ba2 ^{iv}	16.9 (2)
O13—Ba1—Ba2—Ba1 ⁱⁱ	68.66 (16)	O9—Ba1—O14—Ba2 ^{iv}	-135.3 (5)
O12—Ba1—Ba2—Ba1 ⁱⁱ	-171.60 (17)	O15—Ba1—O14—Ba2 ^{iv}	138.9 (2)
N1—Ba1—Ba2—Ba1 ⁱⁱ	-69.8 (2)	O3—Ba1—O14—Ba2 ^{iv}	-42.1 (4)
Ba2 ^{iv} —Ba1—Ba2—Ba1 ⁱⁱ	180.0	O10—Ba1—O14—Ba2 ^{iv}	85.7 (3)
O1—Ba1—N1—C6	175.3 (12)	O13—Ba1—O14—Ba2 ^{iv}	58.5 (4)
O11—Ba1—N1—C6	-70.4 (12)	O12-Ba1-O14-Ba2 ^{iv}	-45.8 (2)

O9—Ba1—N1—C6	117.2 (11)	N1—Ba1—O14—Ba2 ^{iv}	-165.7 (4)
O15—Ba1—N1—C6	45.6 (11)	Ba2—Ba1—O14—Ba2 ^{iv}	-88.4 (2)
O3—Ba1—N1—C6	171.4 (10)	O1—Ba1—O15—Ba2 ⁱⁱⁱ	149.8 (3)
O14—Ba1—N1—C6	-74.5 (11)	O11—Ba1—O15—Ba2 ⁱⁱⁱ	-30.7 (4)
O10—Ba1—N1—C6	-1.7 (12)	O9—Ba1—O15—Ba2 ⁱⁱⁱ	93.2 (3)
O13—Ba1—N1—C6	55.0 (13)	O3—Ba1—O15—Ba2 ⁱⁱⁱ	69.9 (4)
O12—Ba1—N1—C6	-123.5 (11)	O14—Ba1—O15—Ba2 ⁱⁱⁱ	-111.3 (3)
Ba2—Ba1—N1—C6	157.4 (11)	O10-Ba1-O15-Ba2 ⁱⁱⁱ	-45.1 (2)
Ba2 ^{iv} —Ba1—N1—C6	-83.8 (11)	O13—Ba1—O15—Ba2 ⁱⁱⁱ	17.9 (2)
O1—Ba1—N1—C2	-1.8 (8)	O12—Ba1—O15—Ba2 ⁱⁱⁱ	-126.1 (7)
O11—Ba1—N1—C2	112.5 (9)	N1—Ba1—O15—Ba2 ⁱⁱⁱ	-168.7 (4)
O9—Ba1—N1—C2	-59.9 (9)	Ba2—Ba1—O15—Ba2 ⁱⁱⁱ	108.1 (2)
O15—Ba1—N1—C2	-131.5 (9)	Ba2 ^{iv} —Ba1—O15—Ba2 ⁱⁱⁱ	-77.5 (3)
O3—Ba1—N1—C2	-5.7 (10)	Ba1—O1—C1—O2	168.9 (9)
O14—Ba1—N1—C2	108.4 (9)	Ba2—O1—C1—O2	-36.7 (17)
O10—Ba1—N1—C2	-178.8 (9)	Ba1—O1—C1—C2	-11.6 (16)
O13—Ba1—N1—C2	-122.1 (8)	Ba2—O1—C1—C2	142.7 (9)
O12—Ba1—N1—C2	59.4 (9)	C6—N1—C2—C3	4 (2)
Ba2—Ba1—N1—C2	-19.7 (9)	Ba1—N1—C2—C3	-178.6 (11)
Ba2 ^{iv} —Ba1—N1—C2	99.1 (9)	C6—N1—C2—C1	-179.5 (12)
O3—Ba2—N3—C8	-2.1 (8)	Ba1—N1—C2—C1	-2.1 (14)
O15 ⁱ —Ba2—N3—C8	112.3 (9)	O2—C1—C2—N1	-172.2 (12)
O11 ⁱⁱ —Ba2—N3—C8	-130.5 (10)	O1—C1—C2—N1	8.3 (17)
O1—Ba2—N3—C8	-5.0 (11)	O2—C1—C2—C3	4.3 (19)
O9—Ba2—N3—C8	-59.5 (9)	O1—C1—C2—C3	-175.2 (13)
O13 ⁱ —Ba2—N3—C8	110.3 (9)	C5—N2—C3—C2	3 (2)
O12 ⁱⁱ —Ba2—N3—C8	-178.2 (9)	N1—C2—C3—N2	-4 (2)
O14 ⁱⁱ —Ba2—N3—C8	-121.8 (9)	C1—C2—C3—N2	179.2 (13)
O10 ⁱ —Ba2—N3—C8	60.2 (9)	C3—N2—C5—C6	-2 (2)
Ba1—Ba2—N3—C8	-19.6 (9)	C2—N1—C6—C5	-3(2)
Ba1 ⁱⁱ —Ba2—N3—C8	-137.5 (9)	Ba1—N1—C6—C5	180.0 (11)
O3—Ba2—N3—C12	175.7 (12)	N2-C5-C6-N1	2 (3)
O15 ⁱ —Ba2—N3—C12	-69.9 (12)	Ba2—O3—C7—O4	168.8 (10)
O11 ⁱⁱ —Ba2—N3—C12	47.3 (11)	Ba1—O3—C7—O4	-34 (2)
O1—Ba2—N3—C12	172.8 (10)	Ba2—O3—C7—C8	-14.4 (18)
O9—Ba2—N3—C12	118.4 (11)	Ba1—O3—C7—C8	143.0 (9)
O13 ⁱ —Ba2—N3—C12	-71.9 (11)	C12—N3—C8—C9	3.1 (19)
O12 ⁱⁱ —Ba2—N3—C12	-0.3 (11)	Ba2—N3—C8—C9	-178.9 (10)
O14 ⁱⁱ —Ba2—N3—C12	56.0 (12)	C12—N3—C8—C7	179.2 (12)
O10 ⁱ —Ba2—N3—C12	-121.9 (11)	Ba2—N3—C8—C7	-2.7 (15)
Ba1—Ba2—N3—C12	158.2 (11)	O3—C7—C8—N3	10.2 (19)
Ba1 ⁱⁱ —Ba2—N3—C12	40.4 (11)	O4—C7—C8—N3	-172.7 (12)
O11—Ba1—O1—C1	-125.4 (10)	O3—C7—C8—C9	-173.7 (13)
O9—Ba1—O1—C1	116.7 (11)	O4—C7—C8—C9	3 (2)
O15—Ba1—O1—C1	54.1 (10)	C11—N4—C9—C8	1 (2)
O3—Ba1—O1—C1	-175.8 (11)	N3—C8—C9—N4	-3(2)
O14—Ba1—O1—C1	-54.1 (10)	C7—C8—C9—N4	-179.0 (14)
O10—Ba1—O1—C1	15.7 (15)	C9—N4—C11—C12	1 (2)

O13—Ba1—O1—C1	133.5 (9)	C8—N3—C12—C11	-1 (2)
O12—Ba1—O1—C1	-109.5 (10)	Ba2—N3—C12—C11	-178.9 (11)
N1—Ba1—O1—C1	7.4 (9)	N4-C11-C12-N3	-1 (3)
Ba2—Ba1—O1—C1	158.9 (12)	C18—N5—C14—C15	-1.2 (19)
Ba2 ^{iv} —Ba1—O1—C1	-91.0 (10)	C18—N5—C14—C13	177.9 (13)
O11—Ba1—O1—Ba2	75.7 (4)	O5-C13-C14-N5	-0.9 (18)
O9—Ba1—O1—Ba2	-42.2 (3)	O6-C13-C14-N5	-178.8 (12)
O15—Ba1—O1—Ba2	-104.9 (3)	O5-C13-C14-C15	178.1 (12)
O3—Ba1—O1—Ba2	25.3 (3)	O6-C13-C14-C15	0.2 (19)
O14—Ba1—O1—Ba2	147.0 (3)	C17—N6—C15—C14	1 (2)
O10—Ba1—O1—Ba2	-143.3 (6)	N5-C14-C15-N6	0 (2)
O13—Ba1—O1—Ba2	-25.4 (5)	C13—C14—C15—N6	-178.9 (14)
O12—Ba1—O1—Ba2	91.5 (3)	C15—N6—C17—C18	-2 (2)
N1—Ba1—O1—Ba2	-151.5 (4)	C14—N5—C18—C17	1 (2)
Ba2 ^{iv} —Ba1—O1—Ba2	110.1 (2)	N6-C17-C18-N5	1 (3)
O3—Ba2—O1—C1	173.6 (10)	C24—N7—C20—C21	-2 (2)
O15 ⁱ —Ba2—O1—C1	30.4 (9)	C24—N7—C20—C19	178.0 (13)
O11 ⁱⁱ —Ba2—O1—C1	-92.3 (10)	O8—C19—C20—N7	-173.2 (13)
O9—Ba2—O1—C1	-117.8 (10)	O7—C19—C20—N7	2.0 (19)
O13 ⁱ —Ba2—O1—C1	88.1 (10)	O8-C19-C20-C21	7.2 (19)
O12 ⁱⁱ —Ba2—O1—C1	-12.5 (11)	O7—C19—C20—C21	-177.6 (13)
O14 ⁱⁱ —Ba2—O1—C1	-41.3 (9)	C23—N8—C21—C20	1 (2)
O10 ⁱ —Ba2—O1—C1	93.3 (10)	N7—C20—C21—N8	1 (2)
N3—Ba2—O1—C1	176.1 (9)	C19—C20—C21—N8	-179.1 (14)
Ba1—Ba2—O1—C1	-160.1 (11)	C21—N8—C23—C24	-3 (2)
Ba1 ⁱⁱ —Ba2—O1—C1	-55.0 (10)	C20—N7—C24—C23	1 (2)
O3—Ba2—O1—Ba1	-26.3 (3)	N8—C23—C24—N7	2 (3)
O15 ⁱ —Ba2—O1—Ba1	-169.5 (3)		

Symmetry codes: (i) *x*, *y*, *z*-1; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*, *z*+1; (iv) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
010—H10A…O7	0.85	2.23	3.000 (13)	152
O10—H10B…O5	0.85	1.92	2.769 (11)	177
O11—H11A····O4	0.85	1.88	2.669 (12)	153
O11—H11 <i>B</i> …O5	0.85	2.04	2.861 (12)	163
O11—H11 <i>B</i> …N5	0.85	2.62	3.191 (14)	126
O13—H13A…N5	0.85	2.14	2.983 (14)	175
O14—H14A…O8	0.85	1.87	2.685 (12)	160
O9—H9A…O7 ⁱⁱ	0.85	1.88	2.677 (12)	155
О9—Н9 <i>В</i> …О5 ^{іі}	0.85	1.89	2.689 (12)	156
O13—H13 <i>B</i> ···O6 ⁱⁱ	0.85	1.93	2.729 (12)	157
O15—H15A…O7 ⁱⁱ	0.85	2.04	2.860 (12)	161
O15—H15A…N7 ⁱⁱ	0.85	2.62	3.208 (14)	127
O12—H12A····O7 ⁱ	0.85	1.96	2.811 (12)	179
O12—H12 <i>B</i> ···O5 ⁱ	0.85	2.26	3.018 (12)	149

			supporting information	
O14—H14 <i>B</i> …N7 ⁱ	0.85	2.18	3.028 (13)	174
O15—H15B····O2 ⁱⁱⁱ	0.85	1.90	2.676 (11)	152

Symmetry codes: (i) *x*, *y*, *z*–1; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*, *z*+1.