organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2-nitro­phen­­oxy)propan-2-ol

aSchool of Environment and Life Sciences, Kaili University, Kaili, Guizhou 556000, People's Republic of China
*Correspondence e-mail: gzzhiyoux@126.com

(Received 8 December 2010; accepted 4 January 2011; online 12 January 2011)

In the title compound, C15H14N2O7, the planes of the two benzene rings form a dihedral angle of 33.16 (17)°. In the crystal, inter­molecular hydrogen bonds involveing the OH group and nitro O atoms link the mol­ecules into chains propagating along the a axis.

Related literature

For a related structure, see: Elizondo et al. (2009[Elizondo, P., Rodríguez de Barbarín, C., Nájera, B. & Pérez, N. (2009). Acta Cryst. E65, o3217.]). For general background to the use of amines as inter­mediates in the preparation of dyes, herbicides, pesticides, and pharmaceuticals, see: Downing et al. (1997[Downing, R. S., Kunkeler, P. J. & Bekkum, H. V. (1997). Catal. Today, 37, 121-136.]); Tafesh et al. (1996[Tafesh, A. M. (1996). Chem. Rev. 96, 2035-2052.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O7

  • Mr = 334.28

  • Tetragonal, P 21 21 21

  • a = 7.287 (4) Å

  • c = 28.158 (17) Å

  • V = 1495.2 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.22 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.979

  • 10200 measured reflections

  • 1570 independent reflections

  • 1022 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 0.96

  • 1570 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O6i 0.82 2.43 3.079 (4) 137
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aromatic nitro compounds can be reduced to the corresponding amines, which are important intermediates in the preparation of dyes, herbicides, pesticides, and pharmaceuticals (Tafesh et al., 1996; Downing et al., 1997; Elizondo et al. 2009). Herein we report the crystal structure of the title compound. The crystal structure of the title compound is represented in Fig. 1. The aromatic rings in a molecule are not coplanar, and the planes of two benzene rings form dihedral angle of 33.16 (17) °. the nitro groups are twisted out of the planes of their attached benzene rings, and the dihedral angles are 30.8 (2) and 24.25 (19), respectively. The O—H···O hydrogen bonds are observed between OH-group and the nitro groups O atom, the distance of the O4—H4A···O6 hydrogen bonds is 3.079 (4) Å(Table 1). These intermolecular H-bond links the molecules into supramolecular structure, and crystal packing of the title compound is shown in Fig. 2.

Related literature top

For a related structure, see: Elizondo et al. (2009). For general background to the use of amines as intermediates in the preparation of dyes, herbicides, pesticides, and pharmaceuticals, see: Downing et al. (1997); Tafesh et al. (1996).

Experimental top

Epichlorohydrin (2.31 g, 0.025 mol) was added slowly to a stirred solution of NaOH (2.0 g,0.05 mol), O-nitrophenol (6.95 g,0.05 mol) in water (40 ml) at 60°C over a period of 40 min, and the solution was stirred at 60°C for 3 h, then the solvent was removed by reduced pressure filter, the solid product was rinsed with 30 ml water, then the crude product was dissolved in 50 ml 95% ethanol solution, and then set aside for five days to obtain 3.1 g light yellow crystals, in a yield of 36%.

Refinement top

H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing viewed down the a axis.
[Figure 3] Fig. 3. Intermolecular hydrogen link the molecules into a chains propagating along a axis. Hydrogen bonds are shown with dashed lines.
1,3-Bis(2-nitrophenoxy)propan-2-ol top
Crystal data top
C15H14N2O7Dx = 1.485 Mg m3
Mr = 334.28Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P212121Cell parameters from 1570 reflections
Hall symbol: P 2ac 2abθ = 1.5–25.0°
a = 7.287 (4) ŵ = 0.12 mm1
c = 28.158 (17) ÅT = 293 K
V = 1495.2 (13) Å3Block, yellow
Z = 40.22 × 0.19 × 0.18 mm
F(000) = 696
Data collection top
Bruker SMART CCD area-detector
diffractometer
1570 independent reflections
Radiation source: fine-focus sealed tube1022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 78
Tmin = 0.974, Tmax = 0.979k = 88
10200 measured reflectionsl = 3332
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0581P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
1570 reflectionsΔρmax = 0.15 e Å3
218 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0123 (17)
Crystal data top
C15H14N2O7Z = 4
Mr = 334.28Mo Kα radiation
Tetragonal, P212121µ = 0.12 mm1
a = 7.287 (4) ÅT = 293 K
c = 28.158 (17) Å0.22 × 0.19 × 0.18 mm
V = 1495.2 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1570 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1022 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.979Rint = 0.062
10200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.96Δρmax = 0.15 e Å3
1570 reflectionsΔρmin = 0.15 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0232 (5)0.8105 (5)0.40291 (10)0.0467 (9)
C20.1155 (6)0.8419 (5)0.43548 (12)0.0594 (10)
H20.09360.82660.46780.071*
C30.2854 (6)0.8957 (5)0.41980 (14)0.0709 (12)
H30.37940.91640.44150.085*
C40.3162 (6)0.9188 (6)0.37265 (14)0.0698 (11)
H40.43290.95190.36230.084*
C50.1785 (5)0.8944 (5)0.33975 (12)0.0589 (10)
H50.20140.91550.30770.071*
C60.0061 (5)0.8383 (5)0.35432 (10)0.0476 (9)
C70.1259 (5)0.8721 (5)0.27648 (9)0.0539 (10)
H7A0.11111.00410.27420.065*
H7B0.02260.81300.26100.065*
C80.3040 (5)0.8121 (5)0.25460 (11)0.0552 (9)
H80.40520.86450.27310.066*
C90.3240 (4)0.8721 (5)0.20369 (10)0.0561 (10)
H9A0.35201.00210.20230.067*
H9B0.42300.80510.18850.067*
C100.1474 (5)0.8550 (5)0.13208 (10)0.0433 (8)
C110.0153 (4)0.8131 (5)0.10830 (10)0.0427 (8)
C120.0277 (5)0.8204 (5)0.05975 (11)0.0576 (10)
H120.13710.78950.04470.069*
C130.1211 (6)0.8731 (5)0.03335 (11)0.0629 (11)
H130.11330.87800.00040.076*
C140.2825 (6)0.9190 (5)0.05595 (11)0.0576 (10)
H140.38280.95730.03810.069*
C150.2969 (5)0.9087 (4)0.10472 (11)0.0504 (9)
H150.40740.93790.11940.060*
N10.2012 (4)0.7496 (4)0.42086 (10)0.0571 (8)
N20.1829 (4)0.7619 (4)0.13400 (11)0.0553 (8)
O10.2440 (4)0.7981 (4)0.46074 (9)0.0978 (11)
O20.2959 (4)0.6490 (4)0.39666 (9)0.0702 (8)
O30.1401 (3)0.8157 (4)0.32490 (7)0.0598 (7)
O40.3173 (4)0.6194 (3)0.25628 (7)0.0711 (8)
H4A0.30710.58470.28390.107*
O50.1533 (3)0.8355 (3)0.17982 (7)0.0510 (6)
O60.2026 (3)0.8110 (4)0.17517 (8)0.0701 (8)
O70.2971 (4)0.6716 (4)0.11246 (10)0.0813 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.045 (2)0.0417 (18)0.0052 (19)0.0001 (17)0.0017 (15)
C20.072 (3)0.056 (2)0.050 (2)0.007 (2)0.014 (2)0.0026 (19)
C30.068 (3)0.065 (3)0.080 (3)0.000 (3)0.030 (2)0.005 (2)
C40.059 (3)0.069 (3)0.081 (3)0.011 (2)0.008 (2)0.003 (2)
C50.058 (3)0.062 (2)0.057 (2)0.009 (2)0.000 (2)0.0034 (18)
C60.047 (2)0.050 (2)0.0457 (19)0.0015 (19)0.0053 (17)0.0067 (16)
C70.061 (2)0.065 (2)0.0355 (17)0.006 (2)0.0027 (16)0.0052 (16)
C80.050 (2)0.072 (3)0.0440 (18)0.005 (2)0.0023 (18)0.0010 (18)
C90.042 (2)0.082 (3)0.0443 (19)0.010 (2)0.0042 (16)0.0027 (18)
C100.047 (2)0.047 (2)0.0362 (17)0.0020 (19)0.0045 (16)0.0021 (14)
C110.042 (2)0.045 (2)0.0414 (17)0.0013 (17)0.0007 (16)0.0012 (16)
C120.065 (2)0.063 (3)0.0451 (19)0.003 (2)0.0075 (19)0.0072 (18)
C130.084 (3)0.067 (3)0.0380 (19)0.012 (3)0.003 (2)0.0003 (18)
C140.059 (3)0.063 (2)0.050 (2)0.004 (2)0.017 (2)0.0098 (18)
C150.046 (2)0.059 (2)0.0457 (18)0.000 (2)0.0048 (17)0.0058 (17)
N10.058 (2)0.069 (2)0.0447 (17)0.0081 (19)0.0046 (16)0.0048 (15)
N20.0434 (19)0.061 (2)0.0613 (19)0.0023 (18)0.0029 (17)0.0045 (16)
O10.104 (2)0.144 (3)0.0458 (15)0.002 (2)0.0294 (15)0.0091 (16)
O20.0593 (18)0.0792 (19)0.0721 (16)0.0094 (18)0.0089 (14)0.0002 (15)
O30.0565 (15)0.0866 (18)0.0363 (12)0.0130 (15)0.0000 (11)0.0020 (12)
O40.0822 (19)0.0783 (19)0.0527 (14)0.0236 (17)0.0045 (13)0.0071 (12)
O50.0410 (13)0.0744 (16)0.0377 (12)0.0050 (13)0.0011 (10)0.0034 (11)
O60.0509 (16)0.105 (2)0.0544 (14)0.0034 (17)0.0118 (13)0.0020 (15)
O70.0492 (17)0.089 (2)0.105 (2)0.0169 (18)0.0067 (16)0.0063 (18)
Geometric parameters (Å, º) top
C1—C21.383 (4)C9—H9A0.9700
C1—C61.399 (4)C9—H9B0.9700
C1—N11.461 (4)C10—O51.352 (3)
C2—C31.372 (5)C10—C151.390 (4)
C2—H20.9300C10—C111.396 (4)
C3—C41.357 (5)C11—C121.371 (4)
C3—H30.9300C11—N21.468 (4)
C4—C51.378 (5)C12—C131.370 (5)
C4—H40.9300C12—H120.9300
C5—C61.383 (5)C13—C141.378 (5)
C5—H50.9300C13—H130.9300
C6—O31.359 (4)C14—C151.379 (4)
C7—O31.428 (3)C14—H140.9300
C7—C81.502 (4)C15—H150.9300
C7—H7A0.9700N1—O21.216 (3)
C7—H7B0.9700N1—O11.218 (3)
C8—O41.408 (4)N2—O61.222 (3)
C8—C91.506 (4)N2—O71.222 (3)
C8—H80.9800O4—H4A0.8200
C9—O51.439 (3)
C2—C1—C6120.9 (3)C8—C9—H9A110.1
C2—C1—N1118.0 (3)O5—C9—H9B110.1
C6—C1—N1121.2 (3)C8—C9—H9B110.1
C3—C2—C1119.5 (3)H9A—C9—H9B108.4
C3—C2—H2120.2O5—C10—C15123.8 (3)
C1—C2—H2120.2O5—C10—C11118.7 (3)
C4—C3—C2120.0 (4)C15—C10—C11117.5 (3)
C4—C3—H3120.0C12—C11—C10121.7 (3)
C2—C3—H3120.0C12—C11—N2116.5 (3)
C3—C4—C5121.4 (4)C10—C11—N2121.8 (3)
C3—C4—H4119.3C13—C12—C11120.0 (3)
C5—C4—H4119.3C13—C12—H12120.0
C4—C5—C6120.0 (3)C11—C12—H12120.0
C4—C5—H5120.0C12—C13—C14119.5 (3)
C6—C5—H5120.0C12—C13—H13120.2
O3—C6—C5124.5 (3)C14—C13—H13120.2
O3—C6—C1117.3 (3)C13—C14—C15120.7 (3)
C5—C6—C1118.1 (3)C13—C14—H14119.6
O3—C7—C8104.2 (3)C15—C14—H14119.6
O3—C7—H7A110.9C14—C15—C10120.5 (3)
C8—C7—H7A110.9C14—C15—H15119.7
O3—C7—H7B110.9C10—C15—H15119.7
C8—C7—H7B110.9O2—N1—O1123.1 (3)
H7A—C7—H7B108.9O2—N1—C1119.6 (3)
O4—C8—C7109.6 (3)O1—N1—C1117.3 (3)
O4—C8—C9108.4 (3)O6—N2—O7123.3 (3)
C7—C8—C9112.9 (3)O6—N2—C11119.4 (3)
O4—C8—H8108.6O7—N2—C11117.3 (3)
C7—C8—H8108.6C6—O3—C7119.3 (3)
C9—C8—H8108.6C8—O4—H4A109.5
O5—C9—C8107.9 (3)C10—O5—C9118.2 (2)
O5—C9—H9A110.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O6i0.822.433.079 (4)137
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O7
Mr334.28
Crystal system, space groupTetragonal, P212121
Temperature (K)293
a, c (Å)7.287 (4), 28.158 (17)
V3)1495.2 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.19 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.974, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
10200, 1570, 1022
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 0.96
No. of reflections1570
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O6i0.822.433.079 (4)137.1
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

We acknowledge the support of the Natural Science Foundation of Kaili University (Z0914).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowning, R. S., Kunkeler, P. J. & Bekkum, H. V. (1997). Catal. Today, 37, 121–136.  CrossRef CAS Web of Science Google Scholar
First citationElizondo, P., Rodríguez de Barbarín, C., Nájera, B. & Pérez, N. (2009). Acta Cryst. E65, o3217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTafesh, A. M. (1996). Chem. Rev. 96, 2035–2052.  CrossRef PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds