organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(2-hy­dr­oxy-5-nitro­phen­yl)acetate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guanjn@sina.com

(Received 21 December 2010; accepted 5 January 2011; online 29 January 2011)

In the crystal structure of the title compound, C10H11NO5, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along the b-axis direction. Weak C—H.·O hydrogen bonds also occur.

Related literature

For the use of the title compound as a pharmaceutical inter­mediate and for the preparation, see: Omar et al. (2003[Omar, M. M. & Eusebio, J. (2003). Tetrahedron, 59, 4223-4229.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO5

  • Mr = 225.20

  • Monoclinic, P 21 /c

  • a = 11.066 (2) Å

  • b = 10.860 (2) Å

  • c = 8.6970 (17) Å

  • β = 97.85 (3)°

  • V = 1035.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.966, Tmax = 0.988

  • 3894 measured reflections

  • 1905 independent reflections

  • 1382 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.153

  • S = 1.00

  • 1905 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2i 0.82 1.93 2.749 (2) 180
C2—H2A⋯O3ii 0.97 2.60 3.340 (3) 134
C4—H4A⋯O4iii 0.97 2.54 3.431 (3) 153
C6—H6A⋯O5iv 0.93 2.51 3.351 (3) 151
C8—H8A⋯O4v 0.93 2.59 3.430 (3) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z; (iv) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The compound, 5-nitrobenzofuran-2(3H)-one, which is an effective intermediate prepared dronedarone, plays an important role in the fields of natural products and medicinal chemistry. The title compound, ethyl 2-(2-hydroxy-5-nitrophenyl)acetate, (I), is a useful pharmaceutical intermediate (Omar et al., 2003).

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1.) link the molecules forming a stable structure and the other weak C-H···O hydrogen bonds reinforced the packing (Fig. 2).

Related literature top

For the use of the title compound as a pharmaceutical intermediate and for the preparation, see: Omar et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound I was prepared by the literature method (Omar et al., 2003). To a 100 mL flask provided with Dean–Stark tramp and magnetic stirrer was added (2-hydroxy-phenyl)-acetic acid (4.4 g, 29 mmol) in 60 mL of toluene and catalytic amounts of p-TsOH. The mixture was refluxed for 4 h with removal of water and then the residual solvent was removed at reduced pressure to give 3H-benzofuran-2-one in quantitative yield (3.9 g), mp 325K. Then, a mixture of concentrated nitric acid (4 ml) and glacial acetic acid (4 ml) was added drop wise to a solution of 3H-benzofuran-2-one (3.9 g) in acetic anhydride (25 ml) while the temperature was maintained below 293 K. The mixture was stirred and refluxed for 1 hour in ethanol (30 ml). The precipitate (the desired anthranilic acid esters ethyl 2-(2-hydroxy-5-nitrophenyl) acetate) was filtered off and washed with water, yield 80%. Crystals suitable for x-ray analysis were obtained by slow evaporation of an methanol solution.

Refinement top

H atoms were positioned geometrically, with O-H =1.92 Å (for OH) and C-H =0.93, 0.98 and 0.96 Å for aromatic, methine and methyl, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bond is shown as dashed line.
Ethyl 2-(2-hydroxy-5-nitrophenyl)acetate top
Crystal data top
C10H11NO5F(000) = 472
Mr = 225.20Dx = 1.445 Mg m3
Monoclinic, P21/cMelting point: 423 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.066 (2) ÅCell parameters from 25 reflections
b = 10.860 (2) Åθ = 9–12°
c = 8.6970 (17) ŵ = 0.12 mm1
β = 97.85 (3)°T = 293 K
V = 1035.4 (4) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1382 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.4°, θmin = 1.9°
ω/2θ scansh = 013
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.966, Tmax = 0.988l = 1010
3894 measured reflections3 standard reflections every 200 reflections
1905 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.099P)2]
where P = (Fo2 + 2Fc2)/3
1905 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C10H11NO5V = 1035.4 (4) Å3
Mr = 225.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.066 (2) ŵ = 0.12 mm1
b = 10.860 (2) ÅT = 293 K
c = 8.6970 (17) Å0.30 × 0.20 × 0.10 mm
β = 97.85 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1382 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.056
Tmin = 0.966, Tmax = 0.9883 standard reflections every 200 reflections
3894 measured reflections intensity decay: 1%
1905 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
1905 reflectionsΔρmin = 0.19 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.44757 (17)0.77034 (17)0.2435 (2)0.0459 (5)
O10.84749 (14)0.35380 (12)0.03010 (16)0.0410 (4)
C10.9150 (3)0.1519 (2)0.0185 (3)0.0683 (9)
H1A0.95440.10150.08740.102*
H1B0.83440.12090.01330.102*
H1C0.96140.15030.08320.102*
O20.86074 (14)0.51755 (12)0.11869 (19)0.0463 (4)
C20.9070 (2)0.2789 (2)0.0764 (3)0.0514 (6)
H2A0.98800.31060.08300.062*
H2B0.86040.28130.17920.062*
O30.83631 (14)0.75835 (12)0.23336 (18)0.0447 (4)
H3A0.84350.82520.27740.067*
C30.82574 (18)0.46958 (16)0.0074 (2)0.0328 (5)
O40.40609 (16)0.67242 (16)0.2982 (2)0.0621 (5)
C40.7546 (2)0.53250 (18)0.1045 (2)0.0428 (6)
H4A0.69000.47780.12720.051*
H4B0.80820.54670.20080.051*
C50.69929 (19)0.65258 (17)0.0481 (2)0.0344 (5)
O50.40459 (18)0.86915 (17)0.2870 (2)0.0748 (7)
C60.60137 (19)0.65579 (17)0.0694 (2)0.0357 (5)
H6A0.56930.58280.11370.043*
C70.55121 (18)0.76775 (18)0.1209 (2)0.0360 (5)
C80.5979 (2)0.87793 (19)0.0587 (3)0.0396 (5)
H8A0.56500.95250.09680.048*
C90.6931 (2)0.87561 (18)0.0595 (2)0.0391 (5)
H9A0.72430.94910.10320.047*
C100.74381 (18)0.76365 (17)0.1149 (2)0.0332 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0430 (11)0.0481 (11)0.0477 (12)0.0049 (9)0.0104 (9)0.0045 (9)
O10.0551 (10)0.0265 (7)0.0436 (9)0.0072 (6)0.0143 (7)0.0031 (6)
C10.100 (2)0.0364 (13)0.0666 (18)0.0172 (13)0.0056 (16)0.0105 (12)
O20.0520 (9)0.0380 (8)0.0525 (10)0.0080 (7)0.0201 (7)0.0112 (7)
C20.0547 (15)0.0494 (13)0.0546 (15)0.0148 (11)0.0232 (12)0.0012 (11)
O30.0476 (9)0.0418 (9)0.0440 (9)0.0038 (7)0.0040 (7)0.0097 (7)
C30.0372 (11)0.0253 (9)0.0353 (11)0.0013 (8)0.0026 (8)0.0022 (8)
O40.0566 (11)0.0569 (11)0.0692 (12)0.0035 (9)0.0048 (9)0.0059 (9)
C40.0644 (15)0.0314 (11)0.0344 (11)0.0096 (10)0.0134 (10)0.0023 (8)
C50.0467 (12)0.0283 (10)0.0318 (10)0.0064 (8)0.0181 (9)0.0006 (8)
O50.0697 (13)0.0553 (11)0.0918 (15)0.0148 (9)0.0167 (11)0.0160 (10)
C60.0454 (12)0.0273 (10)0.0371 (11)0.0010 (8)0.0162 (9)0.0039 (8)
C70.0378 (11)0.0347 (10)0.0381 (12)0.0027 (8)0.0149 (9)0.0021 (8)
C80.0487 (13)0.0310 (10)0.0424 (12)0.0093 (9)0.0178 (10)0.0040 (9)
C90.0527 (13)0.0268 (10)0.0407 (12)0.0027 (9)0.0169 (10)0.0037 (8)
C100.0372 (11)0.0352 (10)0.0307 (10)0.0036 (8)0.0171 (9)0.0032 (8)
Geometric parameters (Å, º) top
N—O51.213 (2)C3—C41.498 (3)
N—O41.228 (2)C4—C51.495 (3)
N—C71.455 (3)C4—H4A0.9700
O1—C31.313 (2)C4—H4B0.9700
O1—C21.456 (2)C5—C61.385 (3)
C1—C21.466 (3)C5—C101.399 (3)
C1—H1A0.9600C6—C71.385 (3)
C1—H1B0.9600C6—H6A0.9300
C1—H1C0.9600C7—C81.384 (3)
O2—C31.208 (2)C8—C91.369 (3)
C2—H2A0.9700C8—H8A0.9300
C2—H2B0.9700C9—C101.397 (3)
O3—C101.351 (3)C9—H9A0.9300
O3—H3A0.8200
O5—N—O4122.4 (2)C3—C4—H4A108.7
O5—N—C7118.79 (18)C5—C4—H4B108.7
O4—N—C7118.85 (17)C3—C4—H4B108.7
C3—O1—C2117.42 (16)H4A—C4—H4B107.6
C2—C1—H1A109.5C6—C5—C10118.72 (17)
C2—C1—H1B109.5C6—C5—C4120.57 (18)
H1A—C1—H1B109.5C10—C5—C4120.70 (19)
C2—C1—H1C109.5C5—C6—C7119.96 (18)
H1A—C1—H1C109.5C5—C6—H6A120.0
H1B—C1—H1C109.5C7—C6—H6A120.0
O1—C2—C1108.58 (19)C8—C7—C6121.4 (2)
O1—C2—H2A110.0C8—C7—N118.96 (18)
C1—C2—H2A110.0C6—C7—N119.64 (18)
O1—C2—H2B110.0C9—C8—C7119.06 (18)
C1—C2—H2B110.0C9—C8—H8A120.5
H2A—C2—H2B108.4C7—C8—H8A120.5
C10—O3—H3A109.5C8—C9—C10120.47 (18)
O2—C3—O1122.96 (19)C8—C9—H9A119.8
O2—C3—C4125.33 (17)C10—C9—H9A119.8
O1—C3—C4111.71 (17)O3—C10—C9121.81 (18)
C5—C4—C3114.36 (17)O3—C10—C5117.85 (17)
C5—C4—H4A108.7C9—C10—C5120.34 (19)
C3—O1—C2—C1176.2 (2)O4—N—C7—C8179.8 (2)
C2—O1—C3—O25.6 (3)O5—N—C7—C6179.8 (2)
C2—O1—C3—C4174.94 (19)O4—N—C7—C60.5 (3)
O2—C3—C4—C515.6 (3)C6—C7—C8—C92.1 (3)
O1—C3—C4—C5164.98 (18)N—C7—C8—C9178.19 (18)
C3—C4—C5—C671.4 (3)C7—C8—C9—C101.0 (3)
C3—C4—C5—C10109.9 (2)C8—C9—C10—O3178.73 (19)
C10—C5—C6—C71.4 (3)C8—C9—C10—C51.3 (3)
C4—C5—C6—C7179.79 (18)C6—C5—C10—O3177.52 (17)
C5—C6—C7—C80.9 (3)C4—C5—C10—O31.3 (3)
C5—C6—C7—N179.43 (17)C6—C5—C10—C92.5 (3)
O5—N—C7—C80.4 (3)C4—C5—C10—C9178.75 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.932.749 (2)180
C2—H2A···O3ii0.972.603.340 (3)134
C4—H4A···O4iii0.972.543.431 (3)153
C6—H6A···O5iv0.932.513.351 (3)151
C8—H8A···O4v0.932.593.430 (3)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y1/2, z1/2; (v) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11NO5
Mr225.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.066 (2), 10.860 (2), 8.6970 (17)
β (°) 97.85 (3)
V3)1035.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
3894, 1905, 1382
Rint0.056
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.153, 1.00
No. of reflections1905
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.821.932.749 (2)180
C2—H2A···O3ii0.972.603.340 (3)134
C4—H4A···O4iii0.972.543.431 (3)153
C6—H6A···O5iv0.932.513.351 (3)151
C8—H8A···O4v0.932.593.430 (3)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y1/2, z1/2; (v) x+1, y+1/2, z1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOmar, M. M. & Eusebio, J. (2003). Tetrahedron, 59, 4223–4229.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds