organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1-Ethyl-1H-1,3-benzimidazol-2-yl)-N,N-di­phenyl­aniline monohydrate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 23 December 2010; accepted 9 January 2011; online 15 January 2011)

In the title compound, C27H23N3O·H2O, the benzimidazole ring system has an r.m.s. deviation of 0.0071 Å and makes dihedral angles of 34.51 (2), 55.22 (3) and 41.05 (5)° with the central and N-bonded phenyl rings, respectively. In the crystal, the water mol­ecular is connected to the organic mol­ecule by inter­molecular O—H⋯N hydrogen bonds. Weak inter­molecular C—H⋯O hydrogen bonds also occur.

Related literature

For the synthetic procedure, see: Vinodkumar et al. (2008[Vinodkumar, R., Vaidya, S. D., Kumar, B. V. S., Bhise, U. N. & Mashelkar, U. C. (2008). ARKIVOC, 14, 37-49.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to the use of the title compound as an inter­mediate in the preparation of OLED materials, see: Kakimoto et al. (2008[Kakimoto, M., Ge, Z. Y., Hayakawa, T., Ando, S. & Ueda, M. (2008). Adv. Funct. Mater. 18, 584-590.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23N3·H2O

  • Mr = 407.50

  • Monoclinic, P 21 /c

  • a = 12.278 (3) Å

  • b = 9.2690 (19) Å

  • c = 19.468 (4) Å

  • β = 97.81 (3)°

  • V = 2195.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.992

  • 4223 measured reflections

  • 4024 independent reflections

  • 2487 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.169

  • S = 1.01

  • 4024 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW—HWB⋯N2 0.85 2.50 2.903 (3) 110
OW—HWA⋯N2 0.85 2.49 2.903 (3) 111
C24—H24A⋯OWi 0.93 2.43 3.352 (4) 173
Symmetry code: (i) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is a kind of important organic intermediate which can be used for many fields such as OLED materials. (Kakimoto et al., 2008). We herein report its crystal structure.

In the molecule of (I), (Fig.1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The benzimidazole ring (A) is obviously almost coplanar with an r.m.s. deviation of 0.0071 °. The dihedral angles between A and the rest three phenyl rings B (C13-C18), C (C7-C12) and D (C1-C6) are 34.51 (2) ° 55.22 (3) ° and 41.05 (5) °, respectively. The H2O molecule stems from the solvent ethanol, and the water molecular is connected with the target molecular by intermolecular C—H···O and O—H···N hydrogen bonds (Table 1), which seems to be very effective in the stabilization of the crystal structure.

Related literature top

For the synthetic procedure, see: Vinodkumar et al. (2008). For bond-length data, see: Allen et al. (1987). For background to the use of the title compound as an intermediate in the preparation of OLED materials, see: Kakimoto et al. (2008). Scheme - show water as H2O

Experimental top

The title compound, (I) was synthesized according to the literature (Vinodkumar et al., 2008) The crystals were obtained by dissolving (I) (0.52 g, 1.28 mmol) in 25 ml ethanol and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.85 (2) and N—H = 0.90 (2) Å, and with Uiso(H) = 1.2Ueq(N,O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.97 (2) Å, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
4-(1-Ethyl-1H-1,3-benzimidazol-2-yl)-N,N- diphenylaniline monohydrate top
Crystal data top
C27H23N3·H2OF(000) = 864
Mr = 407.50Dx = 1.233 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 12.278 (3) Åθ = 10–14°
b = 9.2690 (19) ŵ = 0.08 mm1
c = 19.468 (4) ÅT = 293 K
β = 97.81 (3)°Block, colorless
V = 2195.0 (8) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2487 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.4°, θmin = 1.7°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.978, Tmax = 0.992l = 2323
4223 measured reflections3 standard reflections every 200 reflections
4024 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.090P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4024 reflectionsΔρmax = 0.18 e Å3
281 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (17)
Crystal data top
C27H23N3·H2OV = 2195.0 (8) Å3
Mr = 407.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.278 (3) ŵ = 0.08 mm1
b = 9.2690 (19) ÅT = 293 K
c = 19.468 (4) Å0.30 × 0.20 × 0.10 mm
β = 97.81 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2487 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.978, Tmax = 0.9923 standard reflections every 200 reflections
4223 measured reflections intensity decay: 1%
4024 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
4024 reflectionsΔρmin = 0.26 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12417 (17)0.8084 (2)0.08205 (12)0.0535 (6)
C10.0167 (2)1.0299 (3)0.09280 (14)0.0502 (7)
H1A0.04680.97640.09060.060*
N20.53509 (16)0.6320 (2)0.14215 (10)0.0457 (5)
C20.0102 (2)1.1782 (3)0.10031 (16)0.0599 (8)
H2B0.05781.22380.10380.072*
N30.47737 (16)0.4037 (2)0.12179 (11)0.0435 (5)
C30.1033 (3)1.2582 (3)0.10260 (16)0.0622 (8)
H3A0.09861.35800.10720.075*
C40.2031 (2)1.1914 (3)0.09818 (15)0.0567 (7)
H4A0.26641.24610.09930.068*
C50.2108 (2)1.0429 (3)0.09211 (14)0.0522 (7)
H5A0.27870.99770.09050.063*
C60.1169 (2)0.9614 (3)0.08850 (13)0.0442 (6)
C70.03574 (19)0.7225 (3)0.11420 (13)0.0419 (6)
C80.0220 (2)0.6349 (3)0.07465 (15)0.0514 (7)
H8A0.00170.62990.02690.062*
C90.1095 (2)0.5549 (3)0.10554 (18)0.0625 (8)
H9A0.14770.49550.07860.075*
C100.1405 (3)0.5620 (3)0.1750 (2)0.0737 (10)
H10A0.20040.50880.19560.088*
C110.0834 (3)0.6476 (4)0.21467 (17)0.0733 (9)
H11A0.10420.65160.26240.088*
C120.0048 (2)0.7282 (3)0.18469 (14)0.0609 (8)
H12A0.04330.78610.21210.073*
C130.20766 (19)0.7440 (3)0.03508 (13)0.0431 (6)
C140.2497 (2)0.8104 (3)0.02666 (13)0.0461 (6)
H14A0.22340.90050.03750.055*
C150.3298 (2)0.7442 (3)0.07189 (13)0.0443 (6)
H15A0.35780.79100.11280.053*
C160.37033 (19)0.6077 (3)0.05776 (13)0.0408 (6)
C170.32912 (19)0.5432 (3)0.00436 (13)0.0435 (6)
H17A0.35600.45360.01540.052*
C180.2488 (2)0.6091 (3)0.05033 (13)0.0446 (6)
H18A0.22200.56330.09170.053*
C190.4598 (2)0.5481 (3)0.10699 (13)0.0419 (6)
C200.6054 (2)0.5389 (3)0.18193 (13)0.0457 (6)
C210.6991 (2)0.5681 (3)0.22815 (14)0.0560 (7)
H21A0.72250.66250.23710.067*
C220.7562 (3)0.4543 (4)0.26021 (16)0.0706 (9)
H22A0.81960.47160.29100.085*
C230.7204 (3)0.3122 (3)0.24720 (16)0.0681 (9)
H23A0.76110.23740.26970.082*
C240.6278 (2)0.2793 (3)0.20264 (15)0.0587 (8)
H24A0.60400.18470.19470.070*
C250.5710 (2)0.3962 (3)0.16973 (13)0.0443 (6)
C260.4069 (2)0.2785 (3)0.10055 (15)0.0556 (7)
H26A0.33500.31250.08030.067*
H26B0.39750.22210.14130.067*
C270.4534 (3)0.1826 (3)0.04887 (17)0.0717 (9)
H27A0.40460.10290.03700.108*
H27B0.52410.14710.06890.108*
H27C0.46110.23710.00790.108*
OW0.5578 (2)0.9300 (3)0.18768 (15)0.1158 (10)
HWB0.51510.86730.20150.139*
HWA0.59190.88880.15790.139*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0452 (12)0.0373 (12)0.0720 (15)0.0054 (10)0.0136 (11)0.0103 (11)
C10.0447 (15)0.0436 (16)0.0618 (18)0.0048 (12)0.0060 (13)0.0013 (13)
N20.0466 (12)0.0395 (12)0.0487 (13)0.0007 (10)0.0017 (10)0.0037 (10)
C20.0593 (18)0.0438 (17)0.076 (2)0.0047 (14)0.0084 (15)0.0064 (14)
N30.0456 (12)0.0314 (11)0.0524 (13)0.0009 (9)0.0030 (10)0.0064 (9)
C30.076 (2)0.0335 (15)0.076 (2)0.0049 (15)0.0059 (17)0.0042 (14)
C40.0601 (18)0.0439 (17)0.0637 (18)0.0169 (14)0.0005 (14)0.0051 (14)
C50.0432 (14)0.0482 (16)0.0631 (18)0.0050 (13)0.0007 (13)0.0064 (14)
C60.0455 (14)0.0373 (14)0.0476 (15)0.0025 (12)0.0012 (12)0.0054 (12)
C70.0381 (13)0.0333 (13)0.0520 (16)0.0002 (11)0.0019 (12)0.0013 (11)
C80.0511 (15)0.0469 (16)0.0554 (17)0.0007 (13)0.0041 (13)0.0050 (13)
C90.0478 (16)0.0487 (17)0.090 (2)0.0096 (14)0.0067 (16)0.0052 (16)
C100.0583 (19)0.0508 (19)0.104 (3)0.0061 (16)0.0186 (19)0.0158 (19)
C110.085 (2)0.071 (2)0.0557 (19)0.004 (2)0.0171 (18)0.0122 (17)
C120.0669 (19)0.0648 (19)0.0495 (17)0.0021 (16)0.0026 (15)0.0044 (14)
C130.0378 (13)0.0357 (14)0.0544 (16)0.0037 (11)0.0013 (12)0.0076 (12)
C140.0448 (14)0.0386 (14)0.0537 (16)0.0036 (12)0.0025 (12)0.0012 (12)
C150.0458 (14)0.0399 (14)0.0458 (15)0.0016 (12)0.0009 (12)0.0031 (11)
C160.0377 (13)0.0367 (14)0.0476 (15)0.0032 (11)0.0040 (11)0.0025 (11)
C170.0415 (13)0.0332 (13)0.0560 (16)0.0002 (11)0.0073 (12)0.0011 (12)
C180.0450 (14)0.0381 (14)0.0487 (15)0.0049 (12)0.0003 (12)0.0016 (12)
C190.0430 (13)0.0360 (14)0.0469 (14)0.0002 (12)0.0063 (11)0.0028 (12)
C200.0463 (15)0.0440 (15)0.0460 (15)0.0011 (12)0.0041 (12)0.0036 (12)
C210.0570 (17)0.0506 (17)0.0563 (17)0.0022 (14)0.0067 (14)0.0013 (14)
C220.0651 (19)0.076 (2)0.064 (2)0.0051 (18)0.0142 (16)0.0095 (17)
C230.072 (2)0.061 (2)0.067 (2)0.0176 (17)0.0079 (17)0.0206 (16)
C240.0676 (19)0.0433 (16)0.0645 (19)0.0062 (14)0.0067 (16)0.0122 (14)
C250.0469 (14)0.0404 (14)0.0458 (15)0.0033 (12)0.0072 (12)0.0076 (12)
C260.0544 (16)0.0392 (15)0.0715 (19)0.0095 (13)0.0032 (14)0.0105 (14)
C270.077 (2)0.0437 (17)0.091 (2)0.0017 (16)0.0020 (18)0.0060 (16)
OW0.154 (2)0.0616 (15)0.146 (2)0.0265 (16)0.073 (2)0.0184 (15)
Geometric parameters (Å, º) top
N1—C131.410 (3)C13—C141.386 (4)
N1—C71.421 (3)C13—C181.396 (3)
N1—C61.426 (3)C14—C151.373 (3)
C1—C61.377 (3)C14—H14A0.9300
C1—C21.383 (4)C15—C161.401 (3)
C1—H1A0.9300C15—H15A0.9300
N2—C191.324 (3)C16—C171.382 (3)
N2—C201.381 (3)C16—C191.464 (3)
C2—C31.369 (4)C17—C181.380 (3)
C2—H2B0.9300C17—H17A0.9300
N3—C191.380 (3)C18—H18A0.9300
N3—C251.381 (3)C20—C211.388 (3)
N3—C261.473 (3)C20—C251.398 (4)
C3—C41.365 (4)C21—C221.369 (4)
C3—H3A0.9300C21—H21A0.9300
C4—C51.384 (4)C22—C231.401 (4)
C4—H4A0.9300C22—H22A0.9300
C5—C61.388 (3)C23—C241.368 (4)
C5—H5A0.9300C23—H23A0.9300
C7—C121.374 (4)C24—C251.397 (3)
C7—C81.380 (3)C24—H24A0.9300
C8—C91.375 (4)C26—C271.511 (4)
C8—H8A0.9300C26—H26A0.9700
C9—C101.356 (5)C26—H26B0.9700
C9—H9A0.9300C27—H27A0.9600
C10—C111.365 (5)C27—H27B0.9600
C10—H10A0.9300C27—H27C0.9600
C11—C121.378 (4)OW—HWB0.8499
C11—H11A0.9300OW—HWA0.8501
C12—H12A0.9300
C13—N1—C7119.5 (2)C13—C14—H14A119.7
C13—N1—C6120.7 (2)C14—C15—C16121.4 (2)
C7—N1—C6118.9 (2)C14—C15—H15A119.3
C6—C1—C2120.2 (3)C16—C15—H15A119.3
C6—C1—H1A119.9C17—C16—C15117.7 (2)
C2—C1—H1A119.9C17—C16—C19124.3 (2)
C19—N2—C20105.2 (2)C15—C16—C19117.8 (2)
C3—C2—C1120.4 (3)C18—C17—C16121.4 (2)
C3—C2—H2B119.8C18—C17—H17A119.3
C1—C2—H2B119.8C16—C17—H17A119.3
C19—N3—C25106.37 (19)C17—C18—C13120.4 (2)
C19—N3—C26129.6 (2)C17—C18—H18A119.8
C25—N3—C26123.6 (2)C13—C18—H18A119.8
C4—C3—C2119.9 (3)N2—C19—N3112.5 (2)
C4—C3—H3A120.0N2—C19—C16121.7 (2)
C2—C3—H3A120.0N3—C19—C16125.7 (2)
C3—C4—C5120.4 (3)N2—C20—C21129.9 (2)
C3—C4—H4A119.8N2—C20—C25110.1 (2)
C5—C4—H4A119.8C21—C20—C25120.0 (2)
C4—C5—C6119.9 (3)C22—C21—C20118.2 (3)
C4—C5—H5A120.1C22—C21—H21A120.9
C6—C5—H5A120.1C20—C21—H21A120.9
C1—C6—C5119.2 (2)C21—C22—C23120.9 (3)
C1—C6—N1120.6 (2)C21—C22—H22A119.6
C5—C6—N1120.2 (2)C23—C22—H22A119.6
C12—C7—C8119.1 (2)C24—C23—C22122.6 (3)
C12—C7—N1120.6 (2)C24—C23—H23A118.7
C8—C7—N1120.3 (2)C22—C23—H23A118.7
C9—C8—C7120.3 (3)C23—C24—C25116.0 (3)
C9—C8—H8A119.9C23—C24—H24A122.0
C7—C8—H8A119.9C25—C24—H24A122.0
C10—C9—C8120.4 (3)N3—C25—C24131.8 (2)
C10—C9—H9A119.8N3—C25—C20105.8 (2)
C8—C9—H9A119.8C24—C25—C20122.4 (2)
C9—C10—C11119.8 (3)N3—C26—C27112.9 (2)
C9—C10—H10A120.1N3—C26—H26A109.0
C11—C10—H10A120.1C27—C26—H26A109.0
C10—C11—C12120.6 (3)N3—C26—H26B109.0
C10—C11—H11A119.7C27—C26—H26B109.0
C12—C11—H11A119.7H26A—C26—H26B107.8
C7—C12—C11119.8 (3)C26—C27—H27A109.5
C7—C12—H12A120.1C26—C27—H27B109.5
C11—C12—H12A120.1H27A—C27—H27B109.5
C14—C13—C18118.6 (2)C26—C27—H27C109.5
C14—C13—N1121.8 (2)H27A—C27—H27C109.5
C18—C13—N1119.6 (2)H27B—C27—H27C109.5
C15—C14—C13120.5 (2)HWB—OW—HWA106.9
C15—C14—H14A119.7
C6—C1—C2—C30.9 (4)C19—C16—C17—C18176.2 (2)
C1—C2—C3—C40.7 (5)C16—C17—C18—C130.4 (4)
C2—C3—C4—C50.7 (4)C14—C13—C18—C170.5 (4)
C3—C4—C5—C61.8 (4)N1—C13—C18—C17178.8 (2)
C2—C1—C6—C50.3 (4)C20—N2—C19—N30.0 (3)
C2—C1—C6—N1178.8 (3)C20—N2—C19—C16179.3 (2)
C4—C5—C6—C11.6 (4)C25—N3—C19—N20.2 (3)
C4—C5—C6—N1179.8 (3)C26—N3—C19—N2172.0 (2)
C13—N1—C6—C1136.8 (3)C25—N3—C19—C16179.0 (2)
C7—N1—C6—C132.2 (4)C26—N3—C19—C168.7 (4)
C13—N1—C6—C544.7 (4)C17—C16—C19—N2142.4 (3)
C7—N1—C6—C5146.3 (2)C15—C16—C19—N232.3 (3)
C13—N1—C7—C12130.9 (3)C17—C16—C19—N336.8 (4)
C6—N1—C7—C1259.9 (3)C15—C16—C19—N3148.5 (2)
C13—N1—C7—C850.7 (3)C19—N2—C20—C21179.5 (3)
C6—N1—C7—C8118.5 (3)C19—N2—C20—C250.2 (3)
C12—C7—C8—C90.2 (4)N2—C20—C21—C22178.5 (3)
N1—C7—C8—C9178.2 (2)C25—C20—C21—C220.6 (4)
C7—C8—C9—C100.5 (4)C20—C21—C22—C230.6 (5)
C8—C9—C10—C111.0 (5)C21—C22—C23—C240.2 (5)
C9—C10—C11—C120.7 (5)C22—C23—C24—C250.8 (5)
C8—C7—C12—C110.5 (4)C19—N3—C25—C24179.4 (3)
N1—C7—C12—C11177.9 (3)C26—N3—C25—C247.8 (4)
C10—C11—C12—C70.1 (5)C19—N3—C25—C200.4 (3)
C7—N1—C13—C14137.3 (3)C26—N3—C25—C20172.5 (2)
C6—N1—C13—C1431.7 (4)C23—C24—C25—N3178.9 (3)
C7—N1—C13—C1842.1 (3)C23—C24—C25—C200.8 (4)
C6—N1—C13—C18149.0 (2)N2—C20—C25—N30.4 (3)
C18—C13—C14—C150.3 (4)C21—C20—C25—N3179.7 (2)
N1—C13—C14—C15179.0 (2)N2—C20—C25—C24179.4 (2)
C13—C14—C15—C160.9 (4)C21—C20—C25—C240.0 (4)
C14—C15—C16—C171.8 (4)C19—N3—C26—C27110.2 (3)
C14—C15—C16—C19176.8 (2)C25—N3—C26—C2778.7 (3)
C15—C16—C17—C181.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.852.502.903 (3)110
OW—HWA···N20.852.492.903 (3)111
C24—H24A···OWi0.932.433.352 (4)173
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H23N3·H2O
Mr407.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.278 (3), 9.2690 (19), 19.468 (4)
β (°) 97.81 (3)
V3)2195.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4223, 4024, 2487
Rint0.025
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.169, 1.01
No. of reflections4024
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—HWB···N20.852.502.903 (3)110
OW—HWA···N20.852.492.903 (3)111
C24—H24A···OWi0.932.433.352 (4)173
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKakimoto, M., Ge, Z. Y., Hayakawa, T., Ando, S. & Ueda, M. (2008). Adv. Funct. Mater. 18, 584–590.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVinodkumar, R., Vaidya, S. D., Kumar, B. V. S., Bhise, U. N. & Mashelkar, U. C. (2008). ARKIVOC, 14, 37–49.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds