organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{2-[(2,6-Di­chloro­phen­yl)amino]­phen­yl}ethanol

aInstitute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 December 2010; accepted 28 December 2010; online 8 January 2011)

In the title compound, C14H13Cl2NO, the 2,6-dichloro­anilino unit is roughly planar (r.m.s. deviation = 0.0298 Å) and makes a dihedral angle of 67.71 (4)° with the benzene ring containing the ethanol group. The C–C–O fragment is oriented at a dihedral angle of 64.94 (9)° with respect to its parent benzene ring. The molecular conformation is stabilised by a bifurcated N—H⋯(O,Cl) hydrogen bond. C—H⋯π, O—H⋯π and ππ inter­actions [centroid–centroid distance = 3.5706 (11) Å] stabilize the crystal structure.

Related literature

For related structures, see: Nasirullah et al. (2010[Nasirullah, Islam, N. U., Tahir, M. N. & Khan, I. (2010). Acta Cryst. E66, o2373.]); Rodriguez et al. (2007[Rodriguez, M., Santillan, R., Lopez, Y., Farfan, N., Barba, V., Nakatani, K., Baez, E. V. G. & Padilla-Martinez, I. I. (2007). Supramol. Chem. 19, 641-653.]); Damas et al. (1997[Damas, A. M., Roleira, F. F. & Pinto, M. M. M. (1997). Acta Cryst. C53, 1143-1145.]); Nawaz et al. (2007[Nawaz, H., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o1658-o1659.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13Cl2NO

  • Mr = 282.15

  • Monoclinic, P 21 /c

  • a = 8.3521 (3) Å

  • b = 15.0986 (5) Å

  • c = 10.9225 (5) Å

  • β = 107.180 (1)°

  • V = 1315.93 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.28 × 0.18 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.903, Tmax = 0.934

  • 9878 measured reflections

  • 2348 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.06

  • 2348 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.796 (18) 2.628 (18) 2.9888 (16) 109.5 (15)
N1—H1⋯O1 0.796 (18) 2.155 (18) 2.877 (2) 151.0 (18)
O1—H1ACg1i 0.82 2.58 3.3465 (19) 156
C3—H3⋯Cg1ii 0.93 2.95 3.791 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) has been prepared for further derivatization and in continuation to the reduction of carboxylic moieties of some important drugs (Nasirullah et al., 2010) without affecting the medicinally important functional groups.

The crystal structures of (II) i.e., (Z)-3-(4-(2-hydroxyethyl)phenylamino)-1-phenylbut-2-en-1-one (Rodriguez et al., 2007) and (III) 2-[2-(hydroxyethyl)phenoxy]benzoic acid (Damas et al., 1997) have been published previously which seems relavant to the present structure.

In (I), the 2,6-dichloroanilinic moiety A (N1/C1—C6/CL1/CL2) and the benzene ring of 2-phenylethanol B (C7—C12) are planar with r. m. s. deviations of 0.0298 Å and 0.0031 Å, respectively. The ethanol moiety C (C13/C14/O1) is of course planar. The dihedral angles between A/B, A/C and B/C are 67.71 (4)°, 10.40 (20)° and 64.94 (9)°, respectively. The molecules are stabilized as monomers due to intramolecular H-bondings of N—H···Cl and N—H···O types (Table 1, Fig. 1) with S(5) and S(7) ring motifs (Bernstein et al., 1995). In the stabilization of molecules C—H···π and ππ interaction at a distance of 3.5706 (11) Å between the centroids of chloro containing benzene rings play an important role.

Related literature top

For related structures, see: Nasirullah et al. (2010); Rodriguez et al. (2007); Damas et al. (1997); Nawaz et al. (2007); For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of dichlofenac sodium (6.75 mmol) in THF (10 ml) was slowly added to suspension of NaBH4 (10 mmol) in THF (10 ml), at room temperature. The mixture was stirred until evolution of hydrogen ceased. Iodine (6.75 mmol) in THF (10 ml) was drop wise added to this mixture. When the addition of iodine was complete, the reaction mixture was refluxed for 8 h and cooled to room temperature. 10 ml of 2 N HCl was added and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with 20 ml of 2 N NaOH and then with brine. Finally the ethyl acetate layer was dried over MgSO4. On evaporation of the solvent 1.3 g of the crude product was obtained. The product was further purified by column chromatography on silica gel. Light yellow needles of (I) were obtained by recrystallization from ethyl acetate and n-hexane. m.p. of pure product:383 K.

Refinement top

The coordinates of amide H-atoms were refined. Other H-atoms were positioned geometrically (O—H = 0.82, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dotted lines represent the intramolecular H-bonding.
2-{2-[(2,6-Dichlorophenyl)amino]phenyl}ethanol top
Crystal data top
C14H13Cl2NOF(000) = 584
Mr = 282.15Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2029 reflections
a = 8.3521 (3) Åθ = 2.4–25.3°
b = 15.0986 (5) ŵ = 0.48 mm1
c = 10.9225 (5) ÅT = 296 K
β = 107.180 (1)°Needle, light yellow
V = 1315.93 (9) Å30.28 × 0.18 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2348 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1818
Tmin = 0.903, Tmax = 0.934l = 1311
9878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.510P]
where P = (Fo2 + 2Fc2)/3
2348 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H13Cl2NOV = 1315.93 (9) Å3
Mr = 282.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3521 (3) ŵ = 0.48 mm1
b = 15.0986 (5) ÅT = 296 K
c = 10.9225 (5) Å0.28 × 0.18 × 0.14 mm
β = 107.180 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2348 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2029 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.934Rint = 0.022
9878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082All H-atom parameters refined
S = 1.06Δρmax = 0.30 e Å3
2348 reflectionsΔρmin = 0.30 e Å3
167 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75713 (7)0.13208 (3)0.78183 (5)0.0643 (2)
Cl21.11847 (6)0.17019 (3)0.84323 (5)0.0563 (2)
O10.45224 (19)0.01954 (11)0.67674 (19)0.0809 (6)
N10.80367 (17)0.06112 (10)0.74340 (13)0.0391 (4)
C10.94805 (19)0.01500 (11)0.81022 (15)0.0363 (5)
C20.9460 (2)0.07553 (11)0.83623 (16)0.0426 (5)
C31.0862 (3)0.12212 (13)0.90315 (18)0.0533 (7)
C41.2364 (3)0.07878 (14)0.9456 (2)0.0586 (7)
C51.2460 (2)0.01071 (14)0.92471 (19)0.0540 (7)
C61.1029 (2)0.05691 (11)0.85975 (16)0.0415 (5)
C70.78660 (18)0.10202 (10)0.62459 (14)0.0322 (4)
C80.90748 (19)0.09185 (10)0.56114 (16)0.0373 (5)
C90.8907 (2)0.13202 (11)0.44481 (17)0.0438 (6)
C100.7518 (2)0.18261 (12)0.38800 (17)0.0476 (6)
C110.6306 (2)0.19269 (11)0.44974 (17)0.0428 (5)
C120.64417 (18)0.15399 (10)0.56786 (16)0.0353 (5)
C130.5069 (2)0.16759 (12)0.62982 (19)0.0469 (6)
C140.3779 (2)0.09453 (15)0.6051 (2)0.0599 (7)
H10.719 (2)0.0399 (12)0.7492 (18)0.0469*
H1A0.391150.023590.653440.0971*
H31.078940.182230.919280.0639*
H41.332480.109970.988880.0703*
H51.348150.040010.954080.0648*
H81.001460.057230.598030.0448*
H90.973660.124890.404550.0525*
H100.739680.209610.309250.0571*
H110.536350.226620.410860.0514*
H13A0.450390.222960.599050.0562*
H13B0.557570.173220.721620.0562*
H14A0.281500.113440.630790.0719*
H14B0.340440.080210.514530.0719*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0701 (3)0.0482 (3)0.0678 (3)0.0170 (2)0.0101 (3)0.0019 (2)
Cl20.0524 (3)0.0452 (3)0.0661 (3)0.0084 (2)0.0096 (2)0.0026 (2)
O10.0531 (9)0.0673 (10)0.1199 (14)0.0221 (7)0.0219 (9)0.0031 (10)
N10.0316 (7)0.0469 (8)0.0403 (8)0.0002 (6)0.0131 (6)0.0060 (6)
C10.0394 (9)0.0411 (9)0.0301 (8)0.0027 (7)0.0130 (7)0.0022 (7)
C20.0513 (10)0.0418 (9)0.0355 (9)0.0022 (8)0.0142 (7)0.0006 (7)
C30.0689 (13)0.0453 (10)0.0473 (11)0.0117 (9)0.0197 (9)0.0107 (8)
C40.0536 (12)0.0628 (13)0.0569 (12)0.0191 (10)0.0126 (9)0.0153 (10)
C50.0389 (10)0.0667 (13)0.0536 (11)0.0038 (9)0.0093 (8)0.0069 (9)
C60.0417 (9)0.0442 (9)0.0392 (9)0.0014 (7)0.0127 (7)0.0045 (7)
C70.0313 (8)0.0298 (7)0.0341 (8)0.0033 (6)0.0077 (6)0.0027 (6)
C80.0339 (8)0.0381 (8)0.0400 (9)0.0042 (7)0.0111 (7)0.0026 (7)
C90.0457 (10)0.0464 (10)0.0428 (10)0.0006 (7)0.0187 (8)0.0036 (8)
C100.0531 (10)0.0468 (10)0.0400 (10)0.0006 (8)0.0094 (8)0.0096 (8)
C110.0373 (9)0.0352 (8)0.0480 (10)0.0024 (7)0.0002 (7)0.0022 (7)
C120.0301 (8)0.0308 (8)0.0425 (9)0.0019 (6)0.0067 (7)0.0071 (7)
C130.0359 (9)0.0479 (10)0.0569 (11)0.0038 (7)0.0139 (8)0.0110 (8)
C140.0332 (9)0.0786 (14)0.0688 (13)0.0077 (9)0.0163 (9)0.0147 (11)
Geometric parameters (Å, º) top
Cl1—C21.7369 (18)C9—C101.374 (2)
Cl2—C61.7288 (17)C10—C111.381 (2)
O1—C141.412 (3)C11—C121.390 (2)
O1—H1A0.8200C12—C131.508 (2)
N1—C11.397 (2)C13—C141.510 (3)
N1—C71.406 (2)C3—H30.9300
N1—H10.796 (18)C4—H40.9300
C1—C21.397 (2)C5—H50.9300
C1—C61.397 (2)C8—H80.9300
C2—C31.377 (3)C9—H90.9300
C3—C41.369 (3)C10—H100.9300
C4—C51.377 (3)C11—H110.9300
C5—C61.385 (3)C13—H13A0.9700
C7—C81.392 (2)C13—H13B0.9700
C7—C121.407 (2)C14—H14A0.9700
C8—C91.377 (2)C14—H14B0.9700
C14—O1—H1A109.00C12—C13—C14114.67 (15)
C1—N1—C7122.53 (14)O1—C14—C13108.25 (16)
C1—N1—H1114.1 (13)C2—C3—H3120.00
C7—N1—H1113.6 (14)C4—C3—H3120.00
N1—C1—C2122.23 (15)C3—C4—H4120.00
N1—C1—C6122.27 (15)C5—C4—H4120.00
C2—C1—C6115.46 (15)C4—C5—H5120.00
C1—C2—C3123.25 (17)C6—C5—H5120.00
Cl1—C2—C1118.41 (13)C7—C8—H8119.00
Cl1—C2—C3118.34 (14)C9—C8—H8119.00
C2—C3—C4119.10 (18)C8—C9—H9120.00
C3—C4—C5120.4 (2)C10—C9—H9120.00
C4—C5—C6119.71 (18)C9—C10—H10121.00
C1—C6—C5122.03 (16)C11—C10—H10121.00
Cl2—C6—C1119.81 (13)C10—C11—H11119.00
Cl2—C6—C5118.15 (14)C12—C11—H11119.00
N1—C7—C12119.57 (14)C12—C13—H13A109.00
N1—C7—C8121.37 (14)C12—C13—H13B109.00
C8—C7—C12119.06 (14)C14—C13—H13A109.00
C7—C8—C9121.32 (15)C14—C13—H13B109.00
C8—C9—C10120.24 (16)H13A—C13—H13B108.00
C9—C10—C11118.92 (16)O1—C14—H14A110.00
C10—C11—C12122.44 (16)O1—C14—H14B110.00
C7—C12—C13122.31 (15)C13—C14—H14A110.00
C7—C12—C11118.02 (15)C13—C14—H14B110.00
C11—C12—C13119.67 (15)H14A—C14—H14B108.00
C7—N1—C1—C2117.26 (18)C4—C5—C6—Cl2176.57 (16)
C7—N1—C1—C665.2 (2)C4—C5—C6—C12.2 (3)
C1—N1—C7—C86.0 (2)N1—C7—C8—C9179.93 (15)
C1—N1—C7—C12174.38 (15)C12—C7—C8—C90.4 (2)
N1—C1—C2—Cl10.6 (2)N1—C7—C12—C11179.35 (15)
N1—C1—C2—C3179.22 (17)N1—C7—C12—C130.2 (2)
C6—C1—C2—Cl1178.28 (12)C8—C7—C12—C110.3 (2)
C6—C1—C2—C31.5 (3)C8—C7—C12—C13179.44 (15)
N1—C1—C6—Cl22.0 (2)C7—C8—C9—C100.8 (3)
N1—C1—C6—C5179.29 (16)C8—C9—C10—C110.3 (3)
C2—C1—C6—Cl2175.70 (13)C9—C10—C11—C120.4 (3)
C2—C1—C6—C53.0 (2)C10—C11—C12—C70.7 (2)
Cl1—C2—C3—C4179.35 (16)C10—C11—C12—C13179.89 (16)
C1—C2—C3—C40.8 (3)C7—C12—C13—C1483.6 (2)
C2—C3—C4—C51.8 (3)C11—C12—C13—C1495.6 (2)
C3—C4—C5—C60.4 (3)C12—C13—C14—O172.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.796 (18)2.628 (18)2.9888 (16)109.5 (15)
N1—H1···O10.796 (18)2.155 (18)2.877 (2)151.0 (18)
O1—H1A···Cg1i0.822.583.3465 (19)156
C3—H3···Cg1ii0.932.953.791 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H13Cl2NO
Mr282.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.3521 (3), 15.0986 (5), 10.9225 (5)
β (°) 107.180 (1)
V3)1315.93 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.28 × 0.18 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.903, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
9878, 2348, 2029
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.06
No. of reflections2348
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.796 (18)2.628 (18)2.9888 (16)109.5 (15)
N1—H1···O10.796 (18)2.155 (18)2.877 (2)151.0 (18)
O1—H1A···Cg1i0.822.583.3465 (19)156
C3—H3···Cg1ii0.932.953.791 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamas, A. M., Roleira, F. F. & Pinto, M. M. M. (1997). Acta Cryst. C53, 1143–1145.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNasirullah, Islam, N. U., Tahir, M. N. & Khan, I. (2010). Acta Cryst. E66, o2373.  Google Scholar
First citationNawaz, H., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o1658–o1659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodriguez, M., Santillan, R., Lopez, Y., Farfan, N., Barba, V., Nakatani, K., Baez, E. V. G. & Padilla-Martinez, I. I. (2007). Supramol. Chem. 19, 641–653.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds