organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­­oxy­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 January 2011; accepted 5 January 2011; online 8 January 2011)

In the title compound, C13H13NO3S, the benzene ring of the benzene­sulfonamide moiety is disordered with an occupancy ratio of 0.56 (3):0.44 (3), the disorder components being twisted at and angle of 21 (1)° to each other. The meth­oxy­benzene group is roughly planar (r.m.s. deviation = 0.0144 Å) and the amide N atom is displaced from this plane by 0.090 (6) Å. The dihedral angles between the meth­oxy­benzene group and the major and minor occupancy components of the disordered benzene ring are 54.6 (4) and 62.9 (5)°, respectively. In the crystal, infinite polymeric chains are formed along [100] due to inter­molecular N—H⋯O hydrogen bonding. Weak C—H⋯π inter­actions are also present in the crystal.

Related literature

For related structures, see: Kato et al. (2006[Kato, T., Okamoto, I., Tanatani, A., Hatano, T., Uchiyama, M., Kagechika, H., Masu, H., Katagiri, K., Tominaga, M., Yamaguchi, K. & Azumaya, I. (2006). Org. Lett. 8, 5017-5020.]); Perlovich et al. (2009[Perlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738-4755.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3S

  • Mr = 263.30

  • Orthorhombic, P 21 21 21

  • a = 5.3094 (5) Å

  • b = 8.5309 (10) Å

  • c = 27.925 (3) Å

  • V = 1264.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.30 × 0.14 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.970

  • 7272 measured reflections

  • 2457 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.131

  • S = 1.02

  • 2457 reflections

  • 138 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 961 Friedel pairs

  • Flack parameter: 0.09 (16)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C7–C12 and C1B–C6B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.83 (2) 2.22 (2) 3.039 (4) 170 (4)
C8—H8⋯Cg2ii 0.93 2.93 3.613 (5) 132
C13—H13BCg1iii 0.96 2.98 3.766 (6) 140
C13—H13BCg3iii 0.96 2.96 3.763 (7) 143
Symmetry codes: (i) x+1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I, Fig. 1) is a part of the synthesis of sulfonamides and consequently the study of their bioactivity. The crystal structures of 4-amino-N-(4-methoxyphenyl)benzenesulfonamide (Perlovich et al., 2009) and P-(+)-N-Phenyl-4-methoxybenzenesulfonamide (Kato, et al., 2006) have been published previously which are related to the title compound (I).

In (I), the phenyl ring of benzenethiol moiety is disordered over two set of sites A (C1A—C6A) and B (C1B—C6B) with occupancy ratio of 0.56 (3):0.44 (3). The dihedral angle between A/B is 21 (1)°. The methoxybenzene group C (C7—C13/O2) is almost planar with r. m. s. deviation of 0.0144 Å and amide atom N1 is at a distance of 0.0897 (55)Å. The dihedral angle between A/C and B/C is 54.63 (35)° and 62.86 (50)°, respectively. The sulfonyl group D (S1/O1/O2) is of course planar. The dihedral angles between A/D, B/D and C/D are 53.37 (43)°, 51.65 (50)° and 24.10 (28)°, respectively. The molecules are stabilized in the form of infinite one-dimensional polymeric chains due to N—H···O type (Table 1, Fig. 2) extending along the crystallographic a-axis. The C—H···π interactions (Table 1) also play important role in stabilizing the molecules.

Related literature top

For related background and crystal structures, see: Kato et al. (2006); Perlovich et al. (2009).

Experimental top

Equal molar (10 mmol) quantity of benzene sulfonyl chloride and para anisidine was mixed in 10 ml distilled water under stirring at room temperature. During the reaction pH was adjusted at 8 using dilute solution of sodium carbonate. The reaction was monitored using TLC. On the completion of reaction the pH was made acidified using 3 N HCl. The crude product was separated by filtration, dried and recrystalized in methanol to afford white needles of (I) after 72 h.

Refinement top

The benzene ring of benzenethiol moiety is disordered over two set of sites with occupancy ratio of 0.56 (3):0.44 (3). The rings are fitted in regular hexagons with nearly equal bond distances and bond angles. The thermal parameters of C-atoms within disordered benzene rings are treated to be equal.

The coordinates of amide H-atom were refined. All other H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H-atoms and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme having atoms of greater occupancy ratio. The thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) which shows that molecules form polymeric chains extending along the a axis.
N-(4-Methoxyphenyl)benzenesulfonamide top
Crystal data top
C13H13NO3SF(000) = 552
Mr = 263.30Dx = 1.383 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1503 reflections
a = 5.3094 (5) Åθ = 2.5–25.2°
b = 8.5309 (10) ŵ = 0.26 mm1
c = 27.925 (3) ÅT = 296 K
V = 1264.8 (2) Å3Needle, white
Z = 40.30 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2457 independent reflections
Radiation source: fine-focus sealed tube1503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scansh = 46
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 910
Tmin = 0.961, Tmax = 0.970l = 3231
7272 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.2719P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2457 reflectionsΔρmax = 0.41 e Å3
138 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 961 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (16)
Crystal data top
C13H13NO3SV = 1264.8 (2) Å3
Mr = 263.30Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3094 (5) ŵ = 0.26 mm1
b = 8.5309 (10) ÅT = 296 K
c = 27.925 (3) Å0.30 × 0.14 × 0.12 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2457 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1503 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.970Rint = 0.060
7272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131Δρmax = 0.41 e Å3
S = 1.02Δρmin = 0.28 e Å3
2457 reflectionsAbsolute structure: Flack (1983), 961 Friedel pairs
138 parametersAbsolute structure parameter: 0.09 (16)
1 restraint
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.5888 (2)1.17782 (15)0.14716 (4)0.0434 (4)
O10.6723 (6)1.2938 (4)0.18015 (10)0.0615 (14)
O20.3371 (4)1.1850 (4)0.12785 (9)0.0549 (13)
O30.7036 (6)0.8660 (4)0.07098 (11)0.0570 (12)
N10.7813 (6)1.1858 (5)0.10190 (12)0.0427 (14)
C1A0.6261 (14)0.9927 (7)0.1750 (2)0.0500 (19)0.56 (3)
C2A0.7618 (19)0.9727 (8)0.2171 (3)0.0500 (19)0.56 (3)
C3A0.786 (2)0.8243 (10)0.2371 (2)0.0500 (19)0.56 (3)
C4A0.6743 (17)0.6959 (8)0.2150 (2)0.0500 (19)0.56 (3)
C5A0.5386 (12)0.7159 (8)0.1729 (3)0.0500 (19)0.56 (3)
C6A0.5145 (17)0.8643 (9)0.1529 (3)0.0500 (19)0.56 (3)
C70.7490 (7)1.0996 (5)0.05846 (15)0.0353 (16)
C80.5531 (8)1.1329 (5)0.02810 (14)0.0403 (16)
C90.5314 (8)1.0566 (5)0.01519 (16)0.0413 (17)
C100.7056 (8)0.9465 (6)0.02856 (16)0.0407 (17)
C110.9050 (9)0.9139 (5)0.00183 (17)0.0490 (17)
C120.9241 (9)0.9870 (6)0.04544 (16)0.0473 (16)
C130.4974 (11)0.8934 (7)0.10251 (17)0.075 (3)
C3B0.879 (3)0.8430 (11)0.2267 (4)0.054 (3)0.44 (3)
C4B0.726 (2)0.7133 (10)0.2186 (3)0.054 (3)0.44 (3)
C5B0.5220 (14)0.7245 (11)0.1876 (6)0.054 (3)0.44 (3)
C6B0.4708 (16)0.8655 (12)0.1646 (5)0.054 (3)0.44 (3)
C2B0.827 (3)0.9840 (9)0.2037 (5)0.054 (3)0.44 (3)
C1B0.6235 (18)0.9952 (10)0.1726 (3)0.054 (3)0.44 (3)
H6A0.423690.877690.124700.0601*0.56 (3)
H5A0.463900.629980.158120.0601*0.56 (3)
H111.027140.841880.007420.0589*
H121.054440.961010.066230.0569*
H13A0.342170.883100.085170.1122*
H13B0.501470.818230.128090.1122*
H13C0.509670.997260.115520.1122*
H80.433981.207590.036800.0480*
H90.397671.080010.035470.0494*
H10.930 (4)1.197 (5)0.1105 (13)0.0514*
H2A0.836521.058630.231890.0601*0.56 (3)
H3A0.876720.810920.265320.0601*0.56 (3)
H4A0.690410.596600.228430.0601*0.56 (3)
H2B0.929551.070750.209040.0646*0.44 (3)
H3B1.015050.835490.247420.0646*0.44 (3)
H4B0.760210.618990.234000.0646*0.44 (3)
H5B0.419880.637750.182210.0646*0.44 (3)
H6B0.334380.873010.143840.0646*0.44 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0335 (6)0.0474 (8)0.0494 (7)0.0026 (6)0.0036 (5)0.0007 (7)
O10.060 (2)0.060 (3)0.0646 (19)0.0021 (18)0.0064 (16)0.022 (2)
O20.0254 (16)0.075 (3)0.0642 (18)0.0085 (17)0.0046 (13)0.004 (2)
O30.056 (2)0.057 (2)0.058 (2)0.0110 (17)0.0010 (17)0.0093 (18)
N10.0250 (19)0.054 (3)0.049 (2)0.005 (2)0.0056 (17)0.005 (2)
C1A0.042 (3)0.056 (4)0.052 (3)0.004 (2)0.001 (2)0.014 (2)
C2A0.042 (3)0.056 (4)0.052 (3)0.004 (2)0.001 (2)0.014 (2)
C3A0.042 (3)0.056 (4)0.052 (3)0.004 (2)0.001 (2)0.014 (2)
C4A0.042 (3)0.056 (4)0.052 (3)0.004 (2)0.001 (2)0.014 (2)
C5A0.042 (3)0.056 (4)0.052 (3)0.004 (2)0.001 (2)0.014 (2)
C6A0.042 (3)0.056 (4)0.052 (3)0.004 (2)0.001 (2)0.014 (2)
C70.025 (2)0.034 (3)0.047 (3)0.0053 (19)0.005 (2)0.004 (2)
C80.026 (2)0.046 (3)0.049 (3)0.007 (2)0.003 (2)0.007 (2)
C90.036 (3)0.041 (3)0.047 (3)0.006 (2)0.003 (2)0.007 (2)
C100.033 (3)0.037 (3)0.052 (3)0.004 (2)0.002 (2)0.003 (2)
C110.035 (3)0.041 (3)0.071 (3)0.006 (2)0.000 (3)0.005 (3)
C120.028 (2)0.053 (3)0.061 (3)0.003 (2)0.006 (2)0.010 (3)
C130.088 (5)0.081 (5)0.055 (3)0.018 (3)0.017 (3)0.017 (3)
C3B0.055 (4)0.055 (5)0.052 (4)0.021 (3)0.010 (3)0.010 (3)
C4B0.055 (4)0.055 (5)0.052 (4)0.021 (3)0.010 (3)0.010 (3)
C5B0.055 (4)0.055 (5)0.052 (4)0.021 (3)0.010 (3)0.010 (3)
C6B0.055 (4)0.055 (5)0.052 (4)0.021 (3)0.010 (3)0.010 (3)
C2B0.055 (4)0.055 (5)0.052 (4)0.021 (3)0.010 (3)0.010 (3)
C1B0.055 (4)0.055 (5)0.052 (4)0.021 (3)0.010 (3)0.010 (3)
Geometric parameters (Å, º) top
S1—O11.423 (3)C7—C121.385 (6)
S1—O21.442 (2)C8—C91.378 (6)
S1—N11.627 (3)C9—C101.370 (6)
S1—C1A1.771 (6)C10—C111.385 (6)
S1—C1B1.722 (9)C11—C121.372 (7)
O3—C101.369 (6)C2A—H2A0.9300
O3—C131.424 (6)C2B—H2B0.9300
N1—C71.429 (6)C3A—H3A0.9300
N1—H10.83 (2)C3B—H3B0.9300
C1A—C6A1.390 (10)C4A—H4A0.9300
C1A—C2A1.389 (11)C4B—H4B0.9300
C1B—C2B1.390 (18)C5A—H5A0.9300
C1B—C6B1.390 (13)C5B—H5B0.9300
C2A—C3A1.390 (11)C6A—H6A0.9300
C2B—C3B1.391 (14)C6B—H6B0.9300
C3A—C4A1.390 (11)C8—H80.9300
C3B—C4B1.391 (15)C9—H90.9300
C4A—C5A1.389 (10)C11—H110.9300
C4B—C5B1.390 (15)C12—H120.9300
C5A—C6A1.390 (11)C13—H13B0.9600
C5B—C6B1.390 (16)C13—H13C0.9600
C7—C81.372 (6)C13—H13A0.9600
S1···H83.2000C9···H8viii3.0000
O1···C3Ai3.366 (9)C10···H11vi2.8200
O2···C83.045 (5)C11···H11vi2.9700
O2···N1ii3.039 (4)C13···H5Av2.9300
O1···H4Aiii2.9200C13···H92.5100
O1···H2B2.4800H1···O2vii2.22 (2)
O1···H3Aiv2.8400H1···H122.4500
O1···H3Biv2.6400H2A···O12.6200
O1···H2A2.6200H2B···O12.4800
O2···H1ii2.22 (2)H2B···H4Biv2.3300
O2···H6A2.6600H2B···C4Biv2.9800
O2···H82.6000H2B···H3Biv2.5800
O2···H6B2.7000H3A···O1xi2.8400
O3···H5Av2.8000H3B···O1xi2.6400
O3···H6Av2.8200H3B···H2Bxi2.5800
O3···H12vi2.9000H4A···O1xii2.9200
N1···O2vii3.039 (4)H4A···C2Aix3.0300
N1···H9viii2.8000H4B···C2Bxi3.0300
C2A···C4Ai3.547 (12)H4B···H2Bxi2.3300
C3A···O1ix3.366 (9)H5A···O3vi2.8000
C3B···C6Bvii3.594 (18)H5A···C13vi2.9300
C4A···C2Aix3.547 (12)H6A···O3vi2.8200
C5A···C13v3.266 (9)H6A···O22.6600
C6A···C73.540 (9)H6B···H13Bvi2.4500
C6B···C3Bii3.594 (18)H6B···O22.7000
C7···C9viii3.509 (6)H8···S13.2000
C7···C6A3.540 (9)H8···O22.6000
C8···C12ii3.597 (6)H8···C8x3.0400
C8···O23.045 (5)H8···C9x3.0000
C9···C7x3.509 (6)H9···C132.5100
C9···C11ii3.573 (6)H9···H13A2.2000
C10···C11vi3.544 (7)H9···H13C2.4200
C11···C10v3.544 (7)H9···N1x2.8000
C11···C9vii3.573 (6)H9···C7x2.9200
C12···C8vii3.597 (6)H9···C8x3.0600
C13···C5Avi3.266 (9)H11···C11v2.9700
C2A···H4Ai3.0300H11···C10v2.8200
C2B···H4Biv3.0300H12···O3v2.9000
C4A···H13Bv2.9900H12···H12.4500
C4B···H13Bv2.9300H13A···C92.6500
C4B···H2Bxi2.9800H13A···C5Avi3.0500
C5A···H13Av3.0500H13A···H92.2000
C5A···H13Bv2.7700H13B···C4Avi2.9900
C5B···H13Bv3.0600H13B···C6Avi3.1000
C6A···H13Bv3.1000H13B···C4Bvi2.9300
C7···H9viii2.9200H13B···C5Bvi3.0600
C8···H8viii3.0400H13B···H6Bv2.4500
C8···H9viii3.0600H13B···C5Avi2.7700
C9···H13C2.8500H13C···C92.8500
C9···H13A2.6500H13C···H92.4200
O1—S1—O2120.1 (2)C10—C11—C12120.6 (4)
O1—S1—N1106.2 (2)C7—C12—C11119.9 (4)
O1—S1—C1A107.5 (2)C1A—C2A—H2A120.00
O1—S1—C1B109.2 (3)C3A—C2A—H2A120.00
O2—S1—N1106.85 (17)C1B—C2B—H2B120.00
O2—S1—C1A107.8 (3)C3B—C2B—H2B120.00
O2—S1—C1B107.0 (3)C4A—C3A—H3A120.00
N1—S1—C1A107.9 (3)C2A—C3A—H3A120.00
N1—S1—C1B106.9 (3)C4B—C3B—H3B120.00
C10—O3—C13117.3 (4)C2B—C3B—H3B120.00
S1—N1—C7124.2 (3)C3A—C4A—H4A120.00
S1—N1—H1112 (2)C5A—C4A—H4A120.00
C7—N1—H1115 (3)C5B—C4B—H4B120.00
S1—C1A—C2A122.6 (5)C3B—C4B—H4B120.00
S1—C1A—C6A117.4 (5)C6A—C5A—H5A120.00
C2A—C1A—C6A120.0 (6)C4A—C5A—H5A120.00
S1—C1B—C2B113.8 (7)C4B—C5B—H5B120.00
C2B—C1B—C6B120.0 (8)C6B—C5B—H5B120.00
S1—C1B—C6B126.3 (8)C1A—C6A—H6A120.00
C1A—C2A—C3A120.0 (7)C5A—C6A—H6A120.00
C1B—C2B—C3B120.2 (11)C5B—C6B—H6B120.00
C2A—C3A—C4A120.0 (7)C1B—C6B—H6B120.00
C2B—C3B—C4B119.8 (12)C9—C8—H8120.00
C3A—C4A—C5A120.0 (6)C7—C8—H8120.00
C3B—C4B—C5B120.1 (9)C8—C9—H9120.00
C4A—C5A—C6A120.0 (7)C10—C9—H9120.00
C4B—C5B—C6B120.0 (8)C12—C11—H11120.00
C1A—C6A—C5A120.0 (7)C10—C11—H11120.00
C1B—C6B—C5B120.0 (10)C11—C12—H12120.00
N1—C7—C12119.9 (4)C7—C12—H12120.00
N1—C7—C8120.6 (4)O3—C13—H13C109.00
C8—C7—C12119.4 (4)O3—C13—H13B109.00
C7—C8—C9120.5 (4)H13B—C13—H13C109.00
C8—C9—C10120.4 (4)H13A—C13—H13B109.00
O3—C10—C11115.8 (4)H13A—C13—H13C109.00
O3—C10—C9125.1 (4)O3—C13—H13A109.00
C9—C10—C11119.1 (4)
O1—S1—N1—C7173.2 (3)C2A—C1A—C6A—C5A0.0 (12)
O2—S1—N1—C743.9 (4)C1A—C2A—C3A—C4A0.1 (14)
C1A—S1—N1—C771.8 (4)C2A—C3A—C4A—C5A0.0 (13)
O1—S1—C1A—C2A11.8 (7)C3A—C4A—C5A—C6A0.0 (12)
O1—S1—C1A—C6A168.6 (6)C4A—C5A—C6A—C1A0.0 (12)
O2—S1—C1A—C2A142.6 (7)N1—C7—C8—C9175.8 (4)
O2—S1—C1A—C6A37.8 (6)C12—C7—C8—C90.7 (6)
N1—S1—C1A—C2A102.3 (7)N1—C7—C12—C11174.4 (4)
N1—S1—C1A—C6A77.3 (6)C8—C7—C12—C112.2 (7)
C13—O3—C10—C93.3 (7)C7—C8—C9—C100.1 (7)
C13—O3—C10—C11178.3 (4)C8—C9—C10—O3178.9 (4)
S1—N1—C7—C867.4 (5)C8—C9—C10—C110.6 (7)
S1—N1—C7—C12116.2 (4)O3—C10—C11—C12179.4 (4)
S1—C1A—C2A—C3A179.6 (7)C9—C10—C11—C122.1 (7)
C6A—C1A—C2A—C3A0.0 (13)C10—C11—C12—C72.9 (7)
S1—C1A—C6A—C5A179.6 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+2, y+1/2, z+1/2; (v) x+1/2, y+3/2, z; (vi) x1/2, y+3/2, z; (vii) x+1, y, z; (viii) x+1/2, y+5/2, z; (ix) x+1, y1/2, z+1/2; (x) x1/2, y+5/2, z; (xi) x+2, y1/2, z+1/2; (xii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C7–C12 and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2vii0.83 (2)2.22 (2)3.039 (4)170 (4)
C8—H8···Cg2x0.932.933.613 (5)132
C13—H13B···Cg1vi0.962.983.766 (6)140
C13—H13B···Cg3vi0.962.963.763 (7)143
Symmetry codes: (vi) x1/2, y+3/2, z; (vii) x+1, y, z; (x) x1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC13H13NO3S
Mr263.30
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)5.3094 (5), 8.5309 (10), 27.925 (3)
V3)1264.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.30 × 0.14 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.961, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
7272, 2457, 1503
Rint0.060
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.131, 1.02
No. of reflections2457
No. of parameters138
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.28
Absolute structureFlack (1983), 961 Friedel pairs
Absolute structure parameter0.09 (16)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C7–C12 and C1B–C6B rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.83 (2)2.22 (2)3.039 (4)170 (4)
C8—H8···Cg2ii0.932.933.613 (5)132
C13—H13B···Cg1iii0.962.983.766 (6)140
C13—H13B···Cg3iii0.962.963.763 (7)143
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+5/2, z; (iii) x1/2, y+3/2, z.
 

Acknowledgements

The authors are grateful to Professor Dr Islam Ullah Khan for providing research facilities at Government College University, Lahore, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKato, T., Okamoto, I., Tanatani, A., Hatano, T., Uchiyama, M., Kagechika, H., Masu, H., Katagiri, K., Tominaga, M., Yamaguchi, K. & Azumaya, I. (2006). Org. Lett. 8, 5017–5020.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Strakhova, N. N., Kazachenko, V. P., Volkova, T. V., Surov, O. V., Schaper, K.-J. & Raevsky, O. A. (2009). J. Pharm. Sci. 98, 4738–4755.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds