metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m275-m276

catena-Poly[[{bis­­[tetra­aqua­(2-hy­dr­oxy-3,4-dioxo­cyclo­but-1-en-1-olato-κO1)bariumstrontium(0.35/0.65)]di-μ-aqua}­bis­­(μ-2-hy­dr­oxy-4-oxo­cyclo­but-1-ene-1,3-diolato-κ2O1:O3)] monohydrate]

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi, Algeria, and cSciences Chimiques de Rennes, UMR 6226 CNRS – Université de Rennes 1, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: Bouacida_Sofiane@yahoo.fr

(Received 9 January 2011; accepted 22 January 2011; online 29 January 2011)

The title structure, {[Ba0.71Sr1.29(C4HO4)4(H2O)10]·H2O}n, is built from dimers of edge-sharing monocapped square anti­prisms [(Ba/Sr)O3(H2O)6], in which barium and strontium are statistically disordered [ratio 0.353 (8):0.647 (8)] on the same crystallographic site. Such dimers are connected via bidentate hydrogen squarate groups [HC4O4], leading to chains that propagate along the b axis. Inter- and intra­molecular O—H⋯O hydrogen bonds maintain the crystal packing through a three-dimensional network.

Related literature

For related transition metal squarate structures, see: West & Niu (1963[West, R. & Niu, H. Y. (1963). Inorg. Chem. 85, 2589-2590.]); Lee et al. (1996[Lee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966-975.]); Haben-Schuss & Gerstein (1974[Haben-Schuss, M. & Gerstein, B. C. (1974). J. Chem. Phys. 61, 852-860.]). For related alkaline earth squarate structures, see: Robl & Weis (1986[Robl, C. & Weis, Z. (1986). Z. Naturforsch. Teil B. 41, 1485-1489.], 1987[Robl, C. & Weis, A. (1987). Mater. Res. Bull. 22, 373-380.]); Robl et al. (1987[Robl, C., Weis, A. & Gnutzmann, V. (1987). Z. Anorg. Allg. Chem. 549, 187-194.]); Bouayad et al. (1995[Bouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1-7.]). For related rare earth squarate structures, see: Trombe et al. (1988[Trombe, J. C., Petit, J. F. & Gleizes, A. (1988). New J. Chem. 12, 197-200.], 1990[Trombe, J. C., Petit, J. F. & Gleizes, A. (1990). Inorg. Chim. Acta, 167, 96-81.], 1991[Trombe, J. C., Petit, J. F. & Gleizes, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 669-681.]); Bénard-Rocherullé & Akkari (2005[Bénard-Rocherullé, P. & Akkari, H. (2005). Acta Cryst. A61, c333-c334.]). For the first synthesis of squaric acid (3,4-dihy­droxy­cyclo­but-3-ene-1,2-dione), see: Cohen et al. (1959[Cohen, S., Lacher, J. R. & Park, J. D. (1959). J. Am. Chem. Soc. 81, 3480.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba0.71Sr1.29(C4HO4)4(H2O)10]·H2O

  • Mr = 860.70

  • Monoclinic, C 2/c

  • a = 25.3592 (9) Å

  • b = 8.8993 (3) Å

  • c = 14.1286 (5) Å

  • β = 119.974 (2)°

  • V = 2762.07 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.62 mm−1

  • T = 295 K

  • 0.09 × 0.08 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 18241 measured reflections

  • 3173 independent reflections

  • 2616 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.06

  • 3173 reflections

  • 239 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.96 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Ba1—O1 2.728 (2)
Ba1—O5 2.688 (2)
Ba1—O9W 2.729 (3)
Ba1—O10W 2.772 (3)
Ba1—O11W 2.722 (3)
Ba1—O12W 2.644 (3)
Ba1—O13W 2.782 (3)
Ba1—O3i 2.6720 (19)
Ba1—O10Wii 2.786 (2)
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2ii 0.82 (4) 2.55 (4) 2.874 (2) 105 (3)
O1W—H1W⋯O7iii 0.82 (4) 2.47 (4) 3.193 (3) 148 (4)
O4—H4⋯O5iv 0.82 1.79 2.603 (3) 171
O8—H8⋯O1 0.82 1.77 2.575 (3) 169
O9W—H9A⋯O1Wiv 0.84 (3) 2.47 (3) 3.197 (5) 147 (4)
O9W—H9B⋯O3v 0.87 (4) 1.97 (4) 2.821 (3) 167 (5)
O10W—H10A⋯O11Wvi 0.78 (5) 2.54 (4) 3.150 (4) 137 (4)
O10W—H10B⋯O2ii 0.86 (4) 1.88 (4) 2.711 (4) 164 (4)
O11W—H11A⋯O1W 0.86 (3) 2.06 (4) 2.880 (5) 159 (4)
O11W—H11B⋯O6vii 0.87 (4) 1.91 (4) 2.777 (3) 176 (5)
O12W—H12A⋯O13Wviii 0.83 (4) 2.00 (4) 2.803 (3) 164 (4)
O12W—H12B⋯O7ix 0.84 (4) 1.87 (4) 2.711 (3) 178 (5)
O13W—H13A⋯O6x 0.86 (5) 2.00 (4) 2.736 (3) 143 (3)
O13W—H13B⋯O8xi 0.84 (4) 2.24 (4) 3.014 (3) 154 (4)
Symmetry codes: (ii) -x+1, -y, -z+1; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) -x+1, -y+1, -z+1; (vi) [-x+1, y, -z+{\script{1\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (viii) [x, -y, z-{\script{1\over 2}}]; (ix) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (x) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (xi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Squaric acid, (3,4-dihydroxycyclobut-3-ene-1,2-dione, H2C4O4, H2sq), synthesized for the first time by Cohen et al. (1959), has been of interest because of its cyclic structure and its possible aromaticity. (West et al., 1963) have described the preparation from aqueous solutions of 'isostructural' divalent metal squarates of general formula MC4O4.2H2O, and predicted a chelated linear polymer structure, the structure of Ni(C4O4).2H2O being reported later by (Haben-schuss et al., 1974). In the structurally well understood metal squarates M(C4O4)(H2O)4 (M = Mn, Fe,Co, Ni, Zn) (Lee et al., 1996), the C4O42- entity serves as a bridging ligand between two metal ions (µ-2) in trans positions while it acts as a fourfold monodentate (µ-4) ligand between metals in the three-dimensional polymeric structures of M(C4O4)(H2O)2 (M = Mn, Fe, Co, Ni, Cu, Zn). However, the cyclic group only chelate the largest cations such as alkaline earth (Robl & Weis, 1986, 1987; Robl et al., 1987; Bouayad et al., 1995) or rare earth elements (Trombe et al., 1988; Trombe et al., 1990; Trombe et al., 1991; Bérnard-Rocherullé & Akkari, 2005).

Surprisingly, the crystal structures of barium squarate hydrate and strontium squarate hydrate are rather different. It is of interest to explore the possibilities of mixing cations, to obtain new compounds or solid solutions. Here, we synthesized hemi hydrate barium strontium squarate, [Ba0.35 Sr0.65 (HC4O4)2 (H2O)5] 0.5 H2O, for which the Ba / Sr ratio has been determined from EDX and single-crystal diffraction data.

The asymmetric unit contains two metal atoms, two hydrogen squarate anions, five aqua ligands and half water molecule. The Barium and Strontium ions are disordered on the same site as well as a solvent water molecule situated on the twofold axis at (4 e; 0, y, 1/4).

The structure is formed from chains, bridged by the hydrogeno squarate group acting as a bidentate ligand in a trans position (Fig. 2). The three-dimensionality is ensured by a strong O—H···O hydrogen bond (Table 1. The free water molecule is sandwiched between these chains.

Related literature top

For related transition metal squarate structures, see: West & Niu (1963); Lee et al. (1996); Haben-schuss & Gerstein (1974). For related alkaline earth squarate structures, see: Robl & Weis (1986, 1987); Robl et al. (1987); Bouayad et al. (1995). For related rare earth squarate structures, see: Trombe et al. (1988, 1990, 1991); Bénard-Rocherullé & Akkari (2005). For the first synthesis of squaric acid (3,4-dihydroxycyclobut-3-ene-1,2-dione), see: Cohen et al. (1959).

Experimental top

All chemical were commercially available and used as received. For convenience, 3,4-dihydroxycyclobut-3-ene-1,2-dione (H2C4O4) is named squaric acid hereafter. Typically, Poly [pentaaqua di squarato barium strontium] hemi hydrate was synthesized by hydrothermal reaction starting from a mixture of barium chloride BaCl2, 2H2O (2 mmol), strontium chloride SrCl2, 6H2O (2 mmol) squaric acid H2C4O4, oxalic acid H2C2O4, 2H2O (1 mmol) and water (4 ml). The whole was stirred for 30 minutes until homogeneous. The final mixture was sealed in a 23 ml Teflon-lined acid digestion bomb (Parr) and heated at 423 K for 48 h under autogeneous pressure and then cooled down to room temperature. The yellow crystalline product obtained were collected by filtration, thoroughly washed with distilled water and ethanol, and finally dried at room temperature. The chemical formula was derived from the Ba/Sr ratio (1/2) obtained by energy dispersive X-ray spectrometry (EDX), and from the crystal structure determination reported below.

Refinement top

All H atoms were localized on Fourier maps and refined isotropically, except for H atoms for hydroxy groups of hydrogenosquarate (H4 and H8) which were introduced in calculated positions and treated as riding on their parent O atom (with O—H = 0.82Å and Uiso(H) =1.5Ueq(O)). Some distances (O—H)of coordinate water molecule are refined with soft constraints, the O—H distances is restrained to 0.85 Å. (O11W—H11A, O9W—H9A and O1W—H1W).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) drawing of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I), showing the chains.
catena-Poly[[{bis[tetraaqua(2-hydroxy-3,4-dioxocyclobut-1-en- 1-olato-κO1)bariumstrontium(0.35/0.65)]di-µ-aqua}bis(µ-2- hydroxy-4-oxocyclobut-1-ene-1,3-diolato-κ2O1:O3)] monohydrate] top
Crystal data top
[Ba0.71Sr1.29(C4HO4)4(H2O)10]·H2OF(000) = 1706.4
Mr = 860.70Dx = 2.070 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 18241 reflections
a = 25.3592 (9) Åθ = 2.9–27.5°
b = 8.8993 (3) ŵ = 3.62 mm1
c = 14.1286 (5) ÅT = 295 K
β = 119.974 (2)°Cube, yellow
V = 2762.07 (18) Å30.09 × 0.08 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.077
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 3.2°
18241 measured reflectionsh = 3232
3173 independent reflectionsk = 1011
2616 reflections with I > 2σ(I)l = 1818
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0418P)2 + 2.6738P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.004
wR(F2) = 0.088Δρmax = 0.96 e Å3
S = 1.06Δρmin = 1.02 e Å3
3173 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
239 parametersExtinction coefficient: 0.0016 (2)
4 restraints
Crystal data top
[Ba0.71Sr1.29(C4HO4)4(H2O)10]·H2OV = 2762.07 (18) Å3
Mr = 860.70Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.3592 (9) ŵ = 3.62 mm1
b = 8.8993 (3) ÅT = 295 K
c = 14.1286 (5) Å0.09 × 0.08 × 0.08 mm
β = 119.974 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2616 reflections with I > 2σ(I)
18241 measured reflectionsRint = 0.077
3173 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0334 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.96 e Å3
3173 reflectionsΔρmin = 1.02 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.36573 (13)0.3970 (3)0.3325 (2)0.0289 (6)
C20.41697 (13)0.4566 (3)0.4371 (2)0.0316 (6)
C30.39687 (13)0.6124 (3)0.3940 (2)0.0306 (6)
C40.34755 (13)0.5476 (3)0.2960 (2)0.0283 (6)
C50.25484 (12)0.0504 (3)0.1164 (2)0.0271 (6)
C60.20204 (13)0.1154 (3)0.0196 (2)0.0285 (6)
C70.17992 (13)0.0393 (3)0.0209 (2)0.0306 (6)
C80.23261 (13)0.0965 (3)0.0768 (2)0.0292 (6)
O10.34685 (9)0.2666 (2)0.29723 (16)0.0340 (5)
O20.45673 (10)0.4025 (2)0.52317 (17)0.0443 (6)
O1W0.50.4640 (6)0.250.089
O30.41410 (10)0.7405 (2)0.42950 (17)0.0382 (5)
O40.30067 (9)0.6011 (2)0.20752 (16)0.0363 (5)
H40.30020.69290.21160.055*
O50.29950 (9)0.1065 (2)0.20118 (15)0.0338 (5)
O60.18250 (10)0.2429 (2)0.01205 (16)0.0360 (5)
O70.13455 (10)0.0922 (2)0.10122 (17)0.0414 (5)
O80.24809 (10)0.2349 (2)0.11254 (17)0.0382 (5)
H80.27890.23360.17290.057*
O9W0.48959 (13)0.2259 (3)0.3538 (2)0.0565 (7)
O10W0.52933 (11)0.1012 (3)0.4460 (2)0.0431 (6)
O11W0.42281 (12)0.2067 (3)0.2105 (2)0.0590 (8)
O12W0.38389 (14)0.1093 (3)0.1430 (2)0.0563 (7)
O13W0.33586 (12)0.0026 (2)0.4289 (2)0.0374 (6)
Sr10.410752 (9)0.005151 (19)0.337327 (15)0.02353 (12)0.647 (8)
Ba10.410752 (9)0.005151 (19)0.337327 (15)0.02353 (12)0.353 (8)
H1W0.5265 (15)0.516 (3)0.298 (3)0.05*
H9A0.4765 (16)0.306 (3)0.319 (3)0.05*
H9B0.5230 (19)0.233 (4)0.416 (3)0.05*
H10A0.5449 (18)0.078 (5)0.413 (3)0.05*
H10B0.5316 (18)0.197 (5)0.443 (3)0.05*
H11A0.4449 (16)0.286 (3)0.237 (3)0.05*
H11B0.3907 (19)0.220 (5)0.147 (3)0.05*
H12A0.3669 (18)0.064 (5)0.084 (3)0.05*
H12B0.3786 (18)0.202 (5)0.132 (3)0.05*
H13A0.3201 (18)0.084 (5)0.424 (3)0.05*
H13B0.3087 (19)0.067 (4)0.396 (3)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (15)0.0260 (14)0.0249 (13)0.0003 (11)0.0131 (12)0.0017 (10)
C20.0354 (16)0.0259 (13)0.0279 (14)0.0017 (12)0.0116 (13)0.0019 (11)
C30.0335 (15)0.0255 (14)0.0290 (14)0.0012 (11)0.0127 (13)0.0016 (11)
C40.0318 (14)0.0242 (13)0.0263 (13)0.0012 (11)0.0126 (12)0.0012 (11)
C50.0287 (14)0.0253 (13)0.0256 (13)0.0012 (11)0.0124 (11)0.0019 (10)
C60.0313 (15)0.0276 (14)0.0229 (13)0.0020 (11)0.0107 (12)0.0016 (10)
C70.0313 (15)0.0304 (13)0.0263 (14)0.0006 (12)0.0115 (12)0.0037 (11)
C80.0307 (15)0.0278 (14)0.0268 (13)0.0021 (11)0.0126 (12)0.0001 (11)
O10.0396 (12)0.0240 (10)0.0297 (11)0.0027 (8)0.0109 (9)0.0018 (7)
O20.0470 (13)0.0351 (12)0.0297 (11)0.0089 (10)0.0033 (10)0.0010 (9)
O1W0.1470.0560.03200.020
O30.0419 (13)0.0241 (10)0.0354 (11)0.0001 (8)0.0093 (10)0.0042 (8)
O40.0363 (11)0.0258 (10)0.0313 (11)0.0007 (9)0.0051 (9)0.0007 (8)
O50.0336 (11)0.0275 (10)0.0259 (10)0.0022 (8)0.0040 (9)0.0023 (8)
O60.0433 (13)0.0274 (10)0.0287 (11)0.0059 (8)0.0114 (10)0.0003 (8)
O70.0369 (12)0.0364 (12)0.0314 (11)0.0010 (9)0.0023 (10)0.0061 (9)
O80.0370 (12)0.0254 (10)0.0350 (12)0.0009 (8)0.0050 (10)0.0017 (8)
O9W0.0461 (15)0.073 (2)0.0362 (14)0.0110 (14)0.0100 (12)0.0038 (12)
O10W0.0410 (13)0.0407 (13)0.0470 (14)0.0010 (10)0.0215 (11)0.0042 (11)
O11W0.0410 (14)0.073 (2)0.0435 (15)0.0081 (13)0.0068 (12)0.0231 (14)
O12W0.083 (2)0.0384 (14)0.0344 (13)0.0009 (13)0.0191 (14)0.0022 (10)
O13W0.0392 (13)0.0308 (13)0.0392 (13)0.0006 (8)0.0174 (11)0.0031 (8)
Sr10.02376 (16)0.02152 (16)0.01978 (15)0.00041 (7)0.00672 (10)0.00061 (7)
Ba10.02376 (16)0.02152 (16)0.01978 (15)0.00041 (7)0.00672 (10)0.00061 (7)
Geometric parameters (Å, º) top
Ba1—O12.728 (2)O7—C71.236 (4)
Ba1—O52.688 (2)O8—C81.315 (3)
Ba1—O9W2.729 (3)O4—H40.8200
Ba1—O10W2.772 (3)O8—H80.8200
Ba1—O11W2.722 (3)O9W—H9A0.84 (3)
Ba1—O12W2.644 (3)O9W—H9B0.87 (4)
Ba1—O13W2.782 (3)O10W—H10B0.86 (4)
Ba1—O3i2.6720 (19)O10W—H10A0.78 (5)
Ba1—O10Wii2.786 (2)O11W—H11B0.87 (4)
Sr1—O12.728 (2)O11W—H11A0.86 (3)
Sr1—O52.688 (2)O12W—H12A0.83 (4)
Sr1—O9W2.729 (3)O12W—H12B0.84 (4)
Sr1—O10W2.772 (3)O13W—H13A0.86 (5)
Sr1—O11W2.722 (3)O13W—H13B0.84 (4)
Sr1—O12W2.644 (3)O1W—H1W0.82 (4)
Sr1—O13W2.782 (3)O1W—H1Wiii0.82 (3)
Sr1—O3i2.6720 (19)C1—C21.495 (4)
Sr1—O10Wii2.786 (2)C1—C41.427 (4)
O1—C11.259 (3)C2—C31.498 (4)
O2—C21.226 (3)C3—C41.444 (4)
O3—C31.234 (3)C5—C81.423 (4)
O4—C41.311 (3)C5—C61.473 (4)
O5—C51.269 (3)C6—C71.490 (4)
O6—C61.230 (3)C7—C81.451 (4)
O1···O43.218 (3)O3···H9Bviii1.97 (4)
O1···O82.575 (3)O4···H13Bxii2.83 (5)
O1···O12W3.104 (4)O4···H13Axii2.68 (5)
O1···O13W3.130 (3)O5···H4i1.7900
O1···C83.372 (3)O5···H13B2.67 (4)
O1W···O11Wiii2.880 (5)O6···H13Axiii2.00 (4)
O1W···O9Wiv3.197 (5)O6···H11Bvi1.91 (4)
O1W···O2ii2.874 (2)O7···H1Wxiv2.47 (4)
O1W···O2v2.874 (2)O7···H12Bxi1.87 (4)
O1W···O7vi3.193 (3)O8···H13Bxii2.24 (4)
O1W···O7vii3.193 (3)O9W···H1Wx2.74 (3)
O1W···O11W2.880 (5)O11W···H10Aiii2.54 (5)
O1W···O9Wi3.197 (5)O11W···H12A2.91 (4)
O2···C3viii3.291 (4)O12W···H10Aiii2.85 (5)
O2···C2viii3.217 (4)O13W···H12Aix2.00 (4)
O2···O1Wix2.874 (2)O13W···H10Aii2.81 (4)
O2···O10Wii2.711 (4)C1···O83.373 (3)
O2···O1Wii2.874 (2)C1···C5xii3.506 (5)
O2···O2viii3.113 (4)C1···O7xi3.266 (4)
O3···O13Wx3.024 (3)C1···C6xii3.305 (5)
O3···O10Wx3.146 (4)C2···O2viii3.217 (4)
O3···O9Wviii2.821 (3)C2···C6xii3.426 (5)
O4···O13.218 (3)C2···O9W3.340 (4)
O4···O5x2.603 (3)C2···O7xii3.401 (4)
O4···C6xi3.178 (3)C2···C7xii3.300 (5)
O4···C5x3.336 (3)C3···C7xii3.304 (5)
O4···O13Wxii3.144 (4)C3···C8xii3.511 (5)
O4···C7xi3.171 (4)C3···O7xii3.401 (4)
O4···O7xi3.222 (3)C3···O2viii3.291 (4)
O5···C4i3.335 (3)C4···O7xi3.252 (4)
O5···O63.228 (3)C4···C5xii3.499 (5)
O5···O4i2.603 (3)C4···C8xii3.347 (5)
O5···O6vi3.219 (3)C4···C7xii3.578 (4)
O5···O11W3.191 (4)C4···O5x3.335 (3)
O5···O13W3.015 (3)C5···O4i3.336 (3)
O6···O13Wxiii2.736 (3)C5···C4xiii3.499 (5)
O6···C5vi3.229 (4)C5···O6vi3.229 (4)
O6···O11Wvi2.777 (3)C5···C1xiii3.506 (5)
O6···O53.228 (3)C6···O6vi3.238 (4)
O6···C6vi3.238 (4)C6···O4xi3.178 (3)
O6···O5vi3.219 (3)C6···C1xiii3.305 (5)
O6···O73.229 (3)C6···C2xiii3.426 (5)
O7···C4xi3.252 (4)C7···C2xiii3.300 (5)
O7···O1Wvi3.193 (3)C7···C4xiii3.578 (4)
O7···O12Wxi2.711 (3)C7···O8xi3.377 (4)
O7···C3xiii3.401 (4)C7···C3xiii3.304 (5)
O7···O63.229 (3)C7···O4xi3.171 (4)
O7···O1Wxiv3.193 (3)C8···O13.372 (3)
O7···O4xi3.222 (3)C8···O8xi3.310 (4)
O7···C2xiii3.401 (4)C8···C3xiii3.511 (5)
O7···C1xi3.266 (4)C8···C4xiii3.347 (5)
O7···O83.215 (3)C1···H9A3.02 (4)
O8···C13.373 (3)C1···H82.6600
O8···O73.215 (3)C2···H9A3.06 (4)
O8···O13Wxii3.014 (3)C2···H10Bii2.78 (4)
O8···O12.575 (3)C3···H9Bviii2.78 (4)
O8···C7xi3.377 (4)C5···H4i2.6100
O8···C8xi3.310 (4)C6···H13Axiii2.93 (4)
O9W···O3viii2.821 (3)C6···H11Bvi2.77 (4)
O9W···C23.340 (4)C7···H12Bxi2.76 (4)
O9W···O9Wiii3.229 (4)H1W···H9Aiv2.26 (5)
O9W···O10W3.142 (4)H1W···O9Wi2.74 (3)
O9W···O12W3.026 (4)H1W···H9Ai2.14 (5)
O9W···O1Wxv3.197 (5)H1W···O2ii2.55 (4)
O9W···O1Wx3.197 (5)H1W···O7vii2.47 (4)
O9W···C13.366 (5)H1W···H11Aiii2.31 (4)
O10W···O3i3.146 (4)H4···C5x2.6100
O10W···O10Wii3.171 (4)H4···O5x1.7900
O10W···O13Wii3.103 (4)H8···O11.7700
O10W···O9W3.142 (4)H8···C12.6600
O10W···O11W3.204 (4)H9A···O1Wx2.47 (3)
O10W···O2ii2.711 (4)H9A···C13.02 (4)
O10W···O11Wiii3.150 (4)H9A···O1Wxv2.47 (3)
O11W···O10Wiii3.150 (4)H9A···H1Wxv2.26 (5)
O11W···O12W2.975 (4)H9A···C23.06 (4)
O11W···C3i3.384 (4)H9A···H1Wx2.14 (5)
O11W···O1W2.880 (5)H9B···O3viii1.97 (4)
O11W···O53.191 (4)H9B···C3viii2.78 (4)
O11W···O6vi2.777 (3)H10A···O12Wiii2.85 (5)
O11W···O1W2.880 (5)H10A···O11Wiii2.54 (4)
O11W···O10W3.204 (4)H10A···H12Aiii2.55 (7)
O12W···O7xi2.711 (3)H10A···H11Biii2.52 (7)
O12W···O11W2.975 (4)H10B···C2ii2.78 (4)
O12W···O9W3.026 (4)H10B···O2ii1.88 (4)
O12W···O13.104 (4)H11A···H1Wiii2.31 (4)
O12W···O13Wv2.803 (3)H11A···O1W2.06 (4)
O12W···C53.412 (5)H11A···O1W2.06 (4)
O13W···O3i3.024 (3)H11B···C6vi2.77 (4)
O13W···O10Wii3.103 (4)H11B···O6vi1.91 (4)
O13W···O6xii2.736 (3)H11B···H10Aiii2.52 (7)
O13W···O12Wix2.803 (3)H12A···H13Av2.36 (6)
O13W···O4xiii3.144 (4)H12A···O13Wv2.00 (4)
O13W···O8xiii3.014 (3)H12A···H10Aiii2.55 (7)
O13W···O13.130 (3)H12A···H13Bv2.31 (5)
O13W···O53.015 (3)H12B···O7xi1.87 (4)
O1···H81.7700H12B···C7xi2.76 (4)
O1···H13A2.74 (4)H13A···C6xii2.93 (4)
O1···H12B2.88 (4)H13A···H12Aix2.36 (6)
O1W···H9Ai2.47 (3)H13A···O4xiii2.68 (5)
O1W···H9Aiv2.47 (3)H13A···O6xii2.00 (4)
O1W···H11Aiii2.06 (4)H13B···H12Aix2.31 (5)
O1W···H11A2.06 (4)H13B···O4xiii2.83 (5)
O2···H10Bii1.88 (4)H13B···O8xiii2.24 (4)
O2···H1Wii2.55 (4)
O1—Ba1—O582.21 (6)O12W—Sr1—O13W127.59 (10)
O1—Ba1—O9W74.79 (8)O3i—Sr1—O12W138.07 (7)
O1—Ba1—O10W140.69 (7)O10Wii—Sr1—O12W138.54 (8)
O1—Ba1—O11W134.79 (7)O3i—Sr1—O13W67.32 (7)
O1—Ba1—O12W70.57 (8)O10Wii—Sr1—O13W67.73 (8)
O1—Ba1—O13W69.21 (6)O3i—Sr1—O10Wii82.41 (7)
O1—Ba1—O3i136.38 (8)Ba1—O1—C1129.4 (2)
O1—Ba1—O10Wii84.71 (7)Sr1—O1—C1129.4 (2)
O5—Ba1—O9W142.14 (7)Ba1x—O3—C3134.23 (18)
O5—Ba1—O10W136.94 (7)Ba1—O5—C5130.74 (18)
O5—Ba1—O11W72.29 (8)Sr1—O5—C5130.74 (18)
O5—Ba1—O12W75.68 (8)Ba1—O10W—Ba1ii110.43 (10)
O5—Ba1—O13W66.88 (7)C4—O4—H4109.00
O3i—Ba1—O577.84 (6)C8—O8—H8109.00
O5—Ba1—O10Wii134.51 (8)Ba1—O9W—H9A120 (3)
O9W—Ba1—O10W69.68 (9)H9A—O9W—H9B115 (4)
O9W—Ba1—O11W103.67 (9)Sr1—O9W—H9B117 (3)
O9W—Ba1—O12W68.52 (9)Ba1—O9W—H9B117 (3)
O9W—Ba1—O13W128.28 (8)Sr1—O9W—H9A120 (3)
O3i—Ba1—O9W138.55 (8)Ba1—O10W—H10B113 (3)
O9W—Ba1—O10Wii73.22 (8)Ba1—O10W—H10A108 (3)
O10W—Ba1—O11W71.37 (8)Sr1—O10W—H10A108 (3)
O10W—Ba1—O12W109.89 (10)Sr1—O10W—H10B113 (3)
O10W—Ba1—O13W122.53 (8)H10A—O10W—H10B100 (5)
O3i—Ba1—O10W70.58 (8)Ba1ii—O10W—H10A115 (3)
O10W—Ba1—O10Wii69.57 (8)Ba1ii—O10W—H10B110 (2)
O11W—Ba1—O12W67.33 (8)Ba1—O11W—H11A123 (2)
O11W—Ba1—O13W128.05 (8)Ba1—O11W—H11B115 (3)
O3i—Ba1—O11W73.96 (7)H11A—O11W—H11B114 (4)
O10Wii—Ba1—O11W139.20 (8)Sr1—O11W—H11A123 (2)
O12W—Ba1—O13W127.59 (10)Sr1—O11W—H11B115 (3)
O3i—Ba1—O12W138.07 (7)H12A—O12W—H12B110 (4)
O10Wii—Ba1—O12W138.54 (8)Ba1—O12W—H12A128 (3)
O3i—Ba1—O13W67.32 (7)Ba1—O12W—H12B118 (3)
O10Wii—Ba1—O13W67.73 (8)Sr1—O12W—H12A128 (3)
O3i—Ba1—O10Wii82.41 (7)Sr1—O12W—H12B118 (3)
O1—Sr1—O582.21 (6)Ba1—O13W—H13A110 (3)
O1—Sr1—O9W74.79 (8)Ba1—O13W—H13B109 (3)
O1—Sr1—O10W140.69 (7)Sr1—O13W—H13A110 (3)
O1—Sr1—O11W134.79 (7)Sr1—O13W—H13B109 (3)
O1—Sr1—O12W70.57 (8)H13A—O13W—H13B111 (4)
O1—Sr1—O13W69.21 (6)H1W—O1W—H1Wiii111 (3)
O1—Sr1—O3i136.38 (8)C2—C1—C489.3 (2)
O1—Sr1—O10Wii84.71 (7)O1—C1—C2133.6 (2)
O5—Sr1—O9W142.14 (7)O1—C1—C4137.1 (3)
O5—Sr1—O10W136.94 (7)C1—C2—C388.6 (2)
O5—Sr1—O11W72.29 (8)O2—C2—C1136.0 (3)
O5—Sr1—O12W75.68 (8)O2—C2—C3135.3 (3)
O5—Sr1—O13W66.88 (7)O3—C3—C4136.1 (3)
O3i—Sr1—O577.84 (6)O3—C3—C2135.3 (3)
O5—Sr1—O10Wii134.51 (8)C2—C3—C488.6 (2)
O9W—Sr1—O10W69.68 (9)O4—C4—C3135.1 (2)
O9W—Sr1—O11W103.67 (9)O4—C4—C1131.4 (2)
O9W—Sr1—O12W68.52 (9)C1—C4—C393.4 (2)
O9W—Sr1—O13W128.28 (8)C6—C5—C889.9 (2)
O3i—Sr1—O9W138.55 (8)O5—C5—C6133.7 (2)
O9W—Sr1—O10Wii73.22 (8)O5—C5—C8136.4 (3)
O10W—Sr1—O11W71.37 (8)C5—C6—C789.2 (2)
O10W—Sr1—O12W109.89 (10)O6—C6—C5135.6 (3)
O10W—Sr1—O13W122.53 (8)O6—C6—C7135.1 (3)
O3i—Sr1—O10W70.58 (8)C6—C7—C888.1 (2)
O10W—Sr1—O10Wii69.57 (8)O7—C7—C6134.7 (3)
O11W—Sr1—O12W67.33 (8)O7—C7—C8137.1 (3)
O11W—Sr1—O13W128.05 (8)C5—C8—C792.8 (2)
O3i—Sr1—O11W73.96 (7)O8—C8—C5136.6 (3)
O10Wii—Sr1—O11W139.20 (8)O8—C8—C7130.5 (3)
O5—Sr1—O1—C1179.3 (2)O1—C1—C2—C3178.6 (4)
O9W—Sr1—O1—C129.6 (2)C4—C1—C2—O2176.0 (4)
O10W—Sr1—O1—C13.8 (3)O2—C2—C3—O31.7 (7)
O11W—Sr1—O1—C1123.9 (2)C1—C2—C3—C41.2 (3)
O12W—Sr1—O1—C1101.8 (3)O2—C2—C3—C4176.0 (4)
O13W—Sr1—O1—C1112.6 (2)C1—C2—C3—O3178.8 (4)
O3i—Sr1—O1—C1117.6 (2)O3—C3—C4—O42.4 (7)
O10Wii—Sr1—O1—C144.4 (2)C2—C3—C4—C11.2 (3)
O1—Sr1—O5—C536.9 (2)O3—C3—C4—C1178.9 (4)
O9W—Sr1—O5—C515.7 (3)C2—C3—C4—O4175.3 (4)
O10W—Sr1—O5—C5138.9 (2)O5—C5—C6—O61.2 (7)
O11W—Sr1—O5—C5105.3 (3)O5—C5—C6—C7177.8 (4)
O12W—Sr1—O5—C534.9 (3)C8—C5—C6—O6176.1 (4)
O13W—Sr1—O5—C5107.6 (3)C8—C5—C6—C70.5 (3)
O3i—Sr1—O5—C5177.9 (3)O5—C5—C8—O82.2 (7)
O10Wii—Sr1—O5—C5111.5 (3)O5—C5—C8—C7177.7 (4)
Sr1—O1—C1—C232.4 (5)C6—C5—C8—O8174.9 (4)
Sr1—O1—C1—C4151.4 (3)C6—C5—C8—C70.6 (3)
Sr1—O5—C5—C6156.2 (3)O6—C6—C7—O71.1 (7)
Sr1—O5—C5—C827.8 (6)O6—C6—C7—C8176.1 (4)
O1—C1—C2—O21.4 (7)C5—C6—C7—O7177.8 (4)
C4—C1—C2—C31.2 (3)C5—C6—C7—C80.5 (3)
O1—C1—C4—O41.8 (7)O7—C7—C8—O81.7 (7)
O1—C1—C4—C3178.4 (4)O7—C7—C8—C5177.7 (4)
C2—C1—C4—O4175.5 (4)C6—C7—C8—O8175.4 (4)
C2—C1—C4—C31.2 (3)C6—C7—C8—C50.6 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1, y, z+1/2; (iv) x+1, y1, z+1/2; (v) x, y, z1/2; (vi) x+1/2, y1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1, y+1, z+1; (ix) x, y, z+1/2; (x) x, y+1, z; (xi) x+1/2, y+1/2, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2; (xiv) x1/2, y1/2, z1/2; (xv) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2ii0.82 (4)2.55 (4)2.874 (2)105 (3)
O1W—H1W···O7vii0.82 (4)2.47 (4)3.193 (3)148 (4)
O4—H4···O5x0.821.792.603 (3)171
O8—H8···O10.821.772.575 (3)169
O9W—H9A···O1Wx0.84 (3)2.47 (3)3.197 (5)147 (4)
O9W—H9B···O3viii0.87 (4)1.97 (4)2.821 (3)167 (5)
O10W—H10A···O11Wiii0.78 (5)2.54 (4)3.150 (4)137 (4)
O10W—H10B···O2ii0.86 (4)1.88 (4)2.711 (4)164 (4)
O11W—H11A···O1W0.86 (3)2.06 (4)2.880 (5)159 (4)
O11W—H11B···O6vi0.87 (4)1.91 (4)2.777 (3)176 (5)
O12W—H12A···O13Wv0.83 (4)2.00 (4)2.803 (3)164 (4)
O12W—H12B···O7xi0.84 (4)1.87 (4)2.711 (3)178 (5)
O13W—H13A···O6xii0.86 (5)2.00 (4)2.736 (3)143 (3)
O13W—H13B···O8xiii0.84 (4)2.24 (4)3.014 (3)154 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y, z+1/2; (v) x, y, z1/2; (vi) x+1/2, y1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1, y+1, z+1; (x) x, y+1, z; (xi) x+1/2, y+1/2, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ba0.71Sr1.29(C4HO4)4(H2O)10]·H2O
Mr860.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)25.3592 (9), 8.8993 (3), 14.1286 (5)
β (°) 119.974 (2)
V3)2762.07 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.62
Crystal size (mm)0.09 × 0.08 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18241, 3173, 2616
Rint0.077
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.06
No. of reflections3173
No. of parameters239
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.96, 1.02

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ba1—O12.728 (2)Ba1—O12W2.644 (3)
Ba1—O52.688 (2)Ba1—O13W2.782 (3)
Ba1—O9W2.729 (3)Ba1—O3i2.6720 (19)
Ba1—O10W2.772 (3)Ba1—O10Wii2.786 (2)
Ba1—O11W2.722 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2ii0.82 (4)2.55 (4)2.874 (2)105 (3)
O1W—H1W···O7iii0.82 (4)2.47 (4)3.193 (3)148 (4)
O4—H4···O5iv0.82001.79002.603 (3)171.00
O8—H8···O10.82001.77002.575 (3)169.00
O9W—H9A···O1Wiv0.84 (3)2.47 (3)3.197 (5)147 (4)
O9W—H9B···O3v0.87 (4)1.97 (4)2.821 (3)167 (5)
O10W—H10A···O11Wvi0.78 (5)2.54 (4)3.150 (4)137 (4)
O10W—H10B···O2ii0.86 (4)1.88 (4)2.711 (4)164 (4)
O11W—H11A···O1W0.86 (3)2.06 (4)2.880 (5)159 (4)
O11W—H11B···O6vii0.87 (4)1.91 (4)2.777 (3)176 (5)
O12W—H12A···O13Wviii0.83 (4)2.00 (4)2.803 (3)164 (4)
O12W—H12B···O7ix0.84 (4)1.87 (4)2.711 (3)178 (5)
O13W—H13A···O6x0.86 (5)2.00 (4)2.736 (3)143 (3)
O13W—H13B···O8xi0.84 (4)2.24 (4)3.014 (3)154 (4)
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x, y+1, z; (v) x+1, y+1, z+1; (vi) x+1, y, z+1/2; (vii) x+1/2, y1/2, z; (viii) x, y, z1/2; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z+1/2; (xi) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, for financial support. SB thanks Dr Thierry Roisnel, Centre de Diffractométrie X (CDIFX) de Rennes, Université de Rennes 1, France, for his technical assistance in the data collection.

References

First citationBénard-Rocherullé, P. & Akkari, H. (2005). Acta Cryst. A61, c333–c334.  Google Scholar
First citationBouayad, A., Trombe, J.-C. & Gleizes, A. (1995). Inorg. Chim. Acta, 230, 1–7.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCohen, S., Lacher, J. R. & Park, J. D. (1959). J. Am. Chem. Soc. 81, 3480.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaben-Schuss, M. & Gerstein, B. C. (1974). J. Chem. Phys. 61, 852–860.  CrossRef CAS Google Scholar
First citationLee, C.-R., Wang, C.-C. & Wang, Y. (1996). Acta Cryst. B52, 966–975.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRobl, C. & Weis, Z. (1986). Z. Naturforsch. Teil B. 41, 1485–1489.  Google Scholar
First citationRobl, C. & Weis, A. (1987). Mater. Res. Bull. 22, 373–380.  CrossRef CAS Google Scholar
First citationRobl, C., Weis, A. & Gnutzmann, V. (1987). Z. Anorg. Allg. Chem. 549, 187–194.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrombe, J. C., Petit, J. F. & Gleizes, A. (1988). New J. Chem. 12, 197–200.  CAS Google Scholar
First citationTrombe, J. C., Petit, J. F. & Gleizes, A. (1990). Inorg. Chim. Acta, 167, 96–81.  CrossRef Web of Science Google Scholar
First citationTrombe, J. C., Petit, J. F. & Gleizes, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 669–681.  CAS Google Scholar
First citationWest, R. & Niu, H. Y. (1963). Inorg. Chem. 85, 2589–2590.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m275-m276
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds